15
Views
0
CrossRef citations to date
0
Altmetric
Review

Advances in imaging in differentiated thyroid cancer: focus on SPECT/CT and PET/CT

, &
Pages 599-616 | Published online: 10 Jan 2014

References

  • King AD. Imaging for staging and management of thyroid cancer. Cancer Imaging8, 57–69 (2008).
  • Caron NR, Clark OH. Well differentiated thyroid cancer. Scand. J. Surg.93(4), 261–271 (2004).
  • Jonklaas J, Sarlis NJ, Litofsky D et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid16(12), 1229–1242 (2006).
  • Guidelines for the Management of Thyroid Cancer (Second Edition). Royal College of Physicians/British Thyroid Association, London, UK (2007).
  • Luster M, Clarke SE, Dietlein M et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging35(10), 1941–1959 (2008).
  • Cooper DS, Doherty GM, Haugen BR et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid19(11), 1167–1214 (2009).
  • AJCC Cancer Staging Handbook (7th Edition). Springer, NY, USA (2010).
  • Loevner LA, Kaplan SL, Cunnane ME, Moonis G. Cross-sectional imaging of the thyroid gland. Neuroimaging Clin. N. Am.18(3), 445–461, vii (2008).
  • Moon WJ, Jung SL, Lee JH et al. Benign and malignant thyroid nodules: US differentiation – multicenter retrospective study. Radiology247(3), 762–770 (2008).
  • Frates MC, Benson CB, Charboneau JW et al. Management of thyroid nodules detected at US Society of Radiologists in Ultrasound consensus conference statement. Radiology237(3), 794–800 (2005).
  • Wong KT, Ahuja AT. Ultrasound of thyroid cancer. Cancer Imaging5, 157–166 (2005).
  • Kim MJ, Kim EK, Park SI et al. US-guided fine-needle aspiration of thyroid nodules: indications, techniques, results. Radiographics28(7), 1869–1886; discussion 1887 (2008).
  • Rago T, Santini F, Scutari M, Pinchera A, Vitti P. Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J. Clin. Endocrinol. Metab.92(8), 2917–2922 (2007).
  • Hong Y, Liu X, Li Z et al. Real-time ultrasound elastography in the differential diagnosis of benign and malignant thyroid nodules. J. Ultrasound Med.28(7), 861–867 (2009).
  • Rago T, Scutari M, Santini F et al. Real-time elastosonography: useful tool for refining the presurgical diagnosis in thyroid nodules with indeterminate or nondiagnostic cytology. J. Clin. Endocrinol. Metab.95(12), 5274–5280 (2010).
  • Mansi L, Moncayo R, Cuccurullo V, Dottorini ME, Rambaldi PF. Nuclear medicine in diagnosis, staging and follow-up of thyroid cancer. Q. J. Nucl. Med. Mol. Imaging48(2), 82–95 (2004).
  • Sebastianes FM, Cerci JJ, Soares Junior J et al. [Preoperative evaluation of cytologically indeterminate thyroid nodules with 18F-FDG PET]. Arq. Bras. Endocrinol. Metabol.52(7), 1176–1183 (2008).
  • Hales NW, Krempl GA, Medina JE. Is there a role for fluorodeoxyglucose positron emission tomography/computed tomography in cytologically indeterminate thyroid nodules? Am. J. Otolaryngol.29(2), 113–118 (2008).
  • Traugott AL, Dehdashti F, Trinkaus K et al. Exclusion of malignancy in thyroid nodules with indeterminate fine-needle aspiration cytology after negative 18F-fluorodeoxyglucose positron emission tomography: interim analysis. World J. Surg.34(6), 1247–1253 (2010).
  • Kouvaraki MA, Shapiro SE, Fornage BD et al. Role of preoperative ultrasonography in the surgical management of patients with thyroid cancer. Surgery134(6), 946–954; discussion 954–945 (2003).
  • Kwak JY, Kim EK, Youk JH et al. Extrathyroid extension of well-differentiated papillary thyroid microcarcinoma on US. Thyroid18(6), 609–614 (2008).
  • Park JS, Son KR, Na DG, Kim E, Kim S. Performance of preoperative sonographic staging of papillary thyroid carcinoma based on the sixth edition of the AJCC/UICC TNM classification system. AJR Am. J. Roentgenol.192(1), 66–72 (2009).
  • King AD, Ahuja AT, To EW, Tse GM, Metreweli C. Staging papillary carcinoma of the thyroid: magnetic resonance imaging vs ultrasound of the neck. Clin. Radiol.55(3), 222–226 (2000).
  • Seo YL, Yoon DY, Lim KJ et al. Locally advanced thyroid cancer: can CT help in prediction of extrathyroidal invasion to adjacent structures? Am. J. Roentgenol.195(3), W240–W244 (2010).
  • Wang JC, Takashima S, Takayama F et al. Tracheal invasion by thyroid carcinoma: prediction using MR imaging. AJR Am. J. Roentgenol.177(4), 929–936 (2001).
  • Wang J, Takashima S, Matsushita T et al. Esophageal invasion by thyroid carcinomas: prediction using magnetic resonance imaging. J. Comput. Assist. Tomogr.27(1), 18–25 (2003).
  • Takashima S, Takayama F, Wang J, Kobayashi S, Kadoya M. Using MR imaging to predict invasion of the recurrent laryngeal nerve by thyroid carcinoma. AJR Am. J. Roentgenol.180(3), 837–842 (2003).
  • Spanu A, Solinas ME, Chessa F, Sanna D, Nuvoli S, Madeddu G. 131I SPECT/CT in the follow-up of differentiated thyroid carcinoma: incremental value versus planar imaging. J. Nucl. Med.50(2), 184–190 (2009).
  • Wong KK, Zarzhevsky N, Cahill JM, Frey KA, Avram AM. Incremental value of diagnostic 131I SPECT/CT fusion imaging in the evaluation of differentiated thyroid carcinoma. AJR Am. J. Roentgenol.191(6), 1785–1794 (2008).
  • Wong KK, Sisson JC, Koral KF, Frey KA, Avram AM. Staging of differentiated thyroid carcinoma using diagnostic 131I SPECT/CT. AJR Am. J. Roentgenol.195(3), 730–736 (2010).
  • Ronga G, Fiorentino A, Paserio E et al. Can iodine-131 whole-body scan be replaced by thyroglobulin measurement in the post-surgical follow-up of differentiated thyroid carcinoma? J. Nucl. Med.31(11), 1766–1771 (1990).
  • Ozata M, Suzuki S, Miyamoto T et al. Serum thyroglobulin in the follow-up of patients with treated differentiated thyroid cancer. J. Clin. Endocrinol. Metab.79(1), 98–105 (1994).
  • Buscombe JR. Radionuclides in the management of thyroid cancer. Cancer Imaging7, 202–209 (2007).
  • Spencer CA, Takeuchi M, Kazarosyan M et al. Serum thyroglobulin autoantibodies: prevalence, influence on serum thyroglobulin measurement, and prognostic significance in patients with differentiated thyroid carcinoma. J. Clin. Endocrinol. Metab.83(4), 1121–1127 (1998).
  • Tang YD, Kuzman JA, Said S et al. Low thyroid function leads to cardiac atrophy with chamber dilatation, impaired myocardial blood flow, loss of arterioles, and severe systolic dysfunction. Circulation112(20), 3122–3130 (2005).
  • Lind P, Kohlfurst S. Respective roles of thyroglobulin, radioiodine imaging, and positron emission tomography in the assessment of thyroid cancer. Semin. Nucl. Med.36(3), 194–205 (2006).
  • Wong KT, Choi FP, Lee YY, Ahuja AT. Current role of radionuclide imaging in differentiated thyroid cancer. Cancer Imaging8, 159–162 (2008).
  • Fatourechi V, Hay ID, Mullan BP et al. Are posttherapy radioiodine scans informative and do they influence subsequent therapy of patients with differentiated thyroid cancer? Thyroid10(7), 573–577 (2000).
  • Reynolds JC. Percent 131I uptake and post-therapy 131I scans: their role in the management of thyroid cancer. Thyroid7(2), 281–284 (1997).
  • Pace L, Klain M, Albanese C et al. Short-term outcome of differentiated thyroid cancer patients receiving a second iodine-131 therapy on the basis of a detectable serum thyroglobulin level after initial treatment. Eur. J. Nucl. Med. Mol. Imaging33(2), 179–183 (2006).
  • Franceschi M, Kusic Z, Franceschi D, Lukinac L, Roncevic S. Thyroglobulin determination, neck ultrasonography and iodine-131 whole-body scintigraphy in differentiated thyroid carcinoma. J. Nucl. Med.37(3), 446–451 (1996).
  • Filesi M, Signore A, Ventroni G, Melacrinis FF, Ronga G. Role of initial iodine-131 whole-body scan and serum thyroglobulin in differentiated thyroid carcinoma metastases. J. Nucl. Med.39(9), 1542–1546 (1998).
  • Norden MM, Larsson F, Tedelind S et al. Down-regulation of the sodium/iodide symporter explains 131I-induced thyroid stunning. Cancer Res.67(15), 7512–7517 (2007).
  • Morris LF, Waxman AD, Braunstein GD. Thyroid stunning. Thyroid13(4), 333–340 (2003).
  • Muratet JP, Daver A, Minier JF, Larra F. Influence of scanning doses of iodine-131 on subsequent first ablative treatment outcome in patients operated on for differentiated thyroid carcinoma. J. Nucl. Med.39(9), 1546–1550 (1998).
  • Morris LF, Waxman AD, Braunstein GD. The nonimpact of thyroid stunning: remnant ablation rates in 131I-scanned and nonscanned individuals. J. Clin. Endocrinol. Metab.86(8), 3507–3511 (2001).
  • Silberstein EB. Comparison of outcomes after 123I versus 131I pre-ablation imaging before radioiodine ablation in differentiated thyroid carcinoma. J. Nucl. Med.48(7), 1043–1046 (2007).
  • Intenzo CM, Jabbour S, Dam HQ, Capuzzi DM. Changing concepts in the management of differentiated thyroid cancer. Semin. Nucl. Med.35(4), 257–265 (2005).
  • Hilditch TE, Dempsey MF, Bolster AA, McMenemin RM, Reed NS. Self-stunning in thyroid ablation: evidence from comparative studies of diagnostic 131I and 123I. Eur. J. Nucl. Med. Mol. Imaging29(6), 783–788 (2002).
  • Urhan M, Dadparvar S, Mavi A et al. Iodine-123 as a diagnostic imaging agent in differentiated thyroid carcinoma: a comparison with iodine-131 post-treatment scanning and serum thyroglobulin measurement. Eur. J. Nucl. Med. Mol. Imaging34(7), 1012–1017 (2007).
  • Cailleux AF, Baudin E, Travagli JP, Ricard M, Schlumberger M. Is diagnostic iodine-131 scanning useful after total thyroid ablation for differentiated thyroid cancer? J. Clin. Endocrinol. Metab.85(1), 175–178 (2000).
  • Pacini F, Capezzone M, Elisei R, Ceccarelli C, Taddei D, Pinchera A. Diagnostic 131-iodine whole-body scan may be avoided in thyroid cancer patients who have undetectable stimulated serum Tg levels after initial treatment. J. Clin. Endocrinol. Metab.87(4), 1499–1501 (2002).
  • Baudin E, Do Cao C, Cailleux AF et al. Positive predictive value of serum thyroglobulin levels, measured during the first year of follow-up after thyroid hormone withdrawal, in thyroid cancer patients. J. Clin. Endocrinol. Metab.88(3), 1107–1111 (2003).
  • Mazzaferri EL, Kloos RT. Is diagnostic iodine-131 scanning with recombinant human TSH useful in the follow-up of differentiated thyroid cancer after thyroid ablation? J. Clin. Endocrinol. Metab.87(4), 1490–1498 (2002).
  • Ma C, Xie J, Kuang A. Is empiric 131I therapy justified for patients with positive thyroglobulin and negative 131I whole-body scanning results? J. Nucl. Med.46(7), 1164–1170 (2005).
  • Ma C, Kuang A, Xie J, Ma T. Possible explanations for patients with discordant findings of serum thyroglobulin and 131I whole-body scanning. J. Nucl. Med.46(9), 1473–1480 (2005).
  • Mazzaferri EL, Robbins RJ, Spencer CA et al. A consensus report of the role of serum thyroglobulin as a monitoring method for low-risk patients with papillary thyroid carcinoma. J. Clin. Endocrinol. Metab.88(4), 1433–1441 (2003).
  • Fatourechi V, Hay ID. Treating the patient with differentiated thyroid cancer with thyroglobulin-positive iodine-131 diagnostic scan-negative metastases: including comments on the role of serum thyroglobulin monitoring in tumor surveillance. Semin. Nucl. Med.30(2), 107–114 (2000).
  • Robbins RJ, Chon JT, Fleisher M, Larson SM, Tuttle RM. Is the serum thyroglobulin response to recombinant human thyrotropin sufficient, by itself, to monitor for residual thyroid carcinoma? J. Clin. Endocrinol. Metab.87(7), 3242–3247 (2002).
  • Schlumberger M, Berg G, Cohen O et al. Follow-up of low-risk patients with differentiated thyroid carcinoma: a European perspective. Eur. J. Endocrinol.150(2), 105–112 (2004).
  • Wong KK, Zarzhevsky N, Cahill JM, Frey KA, Avram AM. Hybrid SPECT-CT and PET-CT imaging of differentiated thyroid carcinoma. Br. J. Radiol.82(982), 860–876 (2009).
  • Feine U. Fluor-18-deoxyglucose positron emission tomography in differentiated thyroid cancer. Eur. J. Endocrinol.138(5), 492–496 (1998).
  • Schluter B, Bohuslavizki KH, Beyer W, Plotkin M, Buchert R, Clausen M. Impact of FDG PET on patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative 131I scan. J. Nucl. Med.42(1), 71–76 (2001).
  • Nahas Z, Goldenberg D, Fakhry C et al. The role of positron emission tomography/computed tomography in the management of recurrent papillary thyroid carcinoma. Laryngoscope115(2), 237–243 (2005).
  • Robbins RJ, Wan Q, Grewal RK et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J. Clin. Endocrinol. Metab.91(2), 498–505 (2006).
  • Grunwald F, Kalicke T, Feine U et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicentre study. Eur J. Nucl. Med.26(12), 1547–1552 (1999).
  • Feine U, Lietzenmayer R, Hanke JP et al. Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J. Nucl. Med.37(9), 1468–1472 (1996).
  • Altenvoerde G, Lerch H, Kuwert T et al. Positron emission tomography with 18F-deoxyglucose in patients with differentiated thyroid carcinoma, elevated thyroglobulin levels and negative iodine scans. Langenbecks Arch. Surg.383, 160–163 (1998).
  • Moog F, Linke R, Manthey N et al. Influence of thyroid-stimulating hormone levels on uptake of FDG in recurrent and metastatic differentiated thyroid carcinoma. J. Nucl. Med.41(12), 1989–1995 (2000).
  • Petrich T, Borner AR, Weckesser E et al. Follow-up of differentiated thyroid cancer patients using rhTSH – preliminary results. Nuklearmedizin40(1), 7–14 (2001).
  • Buck AK, Nekolla S, Ziegler S et al. SPECT/CT. J. Nucl. Med.49(8), 1305–1319 (2008).
  • Shapiro B, Rufini V, Jarwan A et al. Artifacts, anatomical and physiological variants, and unrelated diseases that might cause false-positive whole-body 131I scans in patients with thyroid cancer. Semin. Nucl. Med.30(2), 115–132 (2000).
  • Hasegawa BH, Iwata K, Wong KH et al. Dual-modality imaging of function and physiology. Acad. Radiol.9(11), 1305–1321 (2002).
  • Chowdhury FU, Scarsbrook AF. The role of hybrid SPECT-CT in oncology: current and emerging clinical applications. Clin. Radiol.63(3), 241–251 (2008).
  • Patton JA, Delbeke D, Sandler MP. Image fusion using an integrated, dual-head coincidence camera with X-ray tube-based attenuation maps. J. Nucl. Med.41(8), 1364–1368 (2000).
  • Ingui CJ, Shah NP, Oates ME. Endocrine neoplasm scintigraphy: added value of fusing SPECT/CT images compared with traditional side-by-side analysis. Clin. Nucl. Med.31(11), 665–672 (2006).
  • von Schulthess GK, Pelc NJ. Integrated-modality imaging: the best of both worlds. Acad. Radiol.9(11), 1241–1244 (2002).
  • Yamamoto Y, Nishiyama Y, Monden T, Matsumura Y, Satoh K, Ohkawa M. Clinical usefulness of fusion of 131I SPECT and CT images in patients with differentiated thyroid carcinoma. J. Nucl. Med.44(12), 1905–1910 (2003).
  • Schillaci O. Hybrid SPECT/CT. a new era for SPECT imaging? Eur. J. Nucl. Med. Mol. Imaging32(5), 521–524 (2005).
  • Ruf J, Lehmkuhl L, Bertram H et al. Impact of SPECT and integrated low-dose CT after radioiodine therapy on the management of patients with thyroid carcinoma. Nucl. Med. Commun.25(12), 1177–1182 (2004).
  • Schmidt D, Szikszai A, Linke R, Bautz W, Kuwert T. Impact of 131I SPECT/spiral CT on nodal staging of differentiated thyroid carcinoma at the first radioablation. J. Nucl. Med.50(1), 18–23 (2009).
  • Wang H, Fu HL, Li JN, Zou RJ, Gu ZH, Wu JC. The role of single-photon emission computed tomography/computed tomography for precise localization of metastases in patients with differentiated thyroid cancer. Clin. Imaging33(1), 49–54 (2009).
  • Aide N, Heutte N, Rame JP et al. Clinical relevance of single-photon emission computed tomography/computed tomography of the neck and thorax in postablation 131I scintigraphy for thyroid cancer. J. Clin. Endocrinol. Metab.94(6), 2075–2084 (2009).
  • Mustafa M, Kuwert T, Weber K et al. Regional lymph node involvement in T1 papillary thyroid carcinoma: a bicentric prospective SPECT/CT study. Eur. J. Nucl. Med. Mol. Imaging37(8), 1462–1466 (2010).
  • Grewal RK, Tuttle RM, Fox J et al. The effect of posttherapy 131I SPECT/CT on risk classification and management of patients with differentiated thyroid cancer. J. Nucl. Med.51(9), 1361–1367 (2010).
  • Tharp K, Israel O, Hausmann J et al. Impact of 131I-SPECT/CT images obtained with an integrated system in the follow-up of patients with thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging31(10), 1435–1442 (2004).
  • Chen L, Luo Q, Shen Y et al. Incremental value of 131I SPECT/CT in the management of patients with differentiated thyroid carcinoma. J. Nucl. Med.49(12), 1952–1957 (2008).
  • Kohlfuerst S, Igerc I, Lobnig M et al. Posttherapeutic 131I SPECT-CT offers high diagnostic accuracy when the findings on conventional planar imaging are inconclusive and allows a tailored patient treatment regimen. Eur. J. Nucl. Med. Mol. Imaging36(6), 886–893 (2009).
  • Barwick T, Murray I, Megadmi H et al. Single photon emission computed tomography (SPECT)/computed tomography using iodine-123 in patients with differentiated thyroid cancer: additional value over whole body planar imaging and SPECT. Eur. J. Endocrinol.162(6), 1131–1139 (2010).
  • Schmidt D, Linke R, Uder M, Kuwert T. Five months’ follow-up of patients with and without iodine-positive lymph node metastases of thyroid carcinoma as disclosed by 131I-SPECT/CT at the first radioablation. Eur. J. Nucl. Med. Mol. Imaging37(4), 699–705 (2010).
  • Bockisch A, Freudenberg LS, Schmidt D, Kuwert T. Hybrid imaging by SPECT/CT and PET/CT: proven outcomes in cancer imaging. Semin. Nucl. Med.39(4), 276–289 (2009).
  • Dong MJ, Liu ZF, Zhao K et al. Value of 18F-FDG-PET/PET-CT in differentiated thyroid carcinoma with radioiodine-negative whole-body scan: a meta-analysis. Nucl. Med. Commun.30(8), 639–650 (2009).
  • Razfar A, Branstetter BFT, Christopoulos A et al. Clinical usefulness of positron emission tomography–computed tomography in recurrent thyroid carcinoma. Arch. Otolaryngol. Head Neck Surg.136(2), 120–125 (2010).
  • Shammas A, Degirmenci B, Mountz JM et al.18F-FDG PET/CT in patients with suspected recurrent or metastatic well-differentiated thyroid cancer. J. Nucl. Med.48(2), 221–226 (2007).
  • Palmedo H, Bucerius J, Joe A et al. Integrated PET/CT in differentiated thyroid cancer: diagnostic accuracy and impact on patient management. J. Nucl. Med.47(4), 616–624 (2006).
  • Phan HT, Jager PL, Paans AM et al. The diagnostic value of 124I-PET in patients with differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging35(5), 958–965 (2008).
  • Freudenberg LS, Antoch G, Frilling A et al. Combined metabolic and morphologic imaging in thyroid carcinoma patients with elevated serum thyroglobulin and negative cervical ultrasonography: role of 124I-PET/CT and FDG-PET. Eur. J. Nucl. Med. Mol. Imaging35(5), 950–957 (2008).
  • Tuttle RM, Leboeuf R, Martorella AJ. Papillary thyroid cancer: monitoring and therapy. Endocrinol. Metab. Clin. North Am.36(3), 753–778, vii (2007).
  • Gupta-Abramson V, Troxel AB, Nellore A et al. Phase II trial of sorafenib in advanced thyroid cancer. J. Clin. Oncol.26(29), 4714–4719 (2008).
  • Brans B, Bodei L, Giammarile F et al. Clinical radionuclide therapy dosimetry: the quest for the ‘Holy Gray’. Eur. J. Nucl. Med. Mol. Imaging34(5), 772–786 (2007).
  • Prideaux AR, Song H, Hobbs RF et al. Three-dimensional radiobiologic dosimetry: application of radiobiologic modeling to patient-specific 3-dimensional imaging-based internal dosimetry. J. Nucl. Med.48(6), 1008–1016 (2007).
  • Jentzen W, Hobbs RF, Stahl A, Knust J, Sgouros G, Bockisch A. Pre-therapeutic 124I PET(/CT) dosimetry confirms low average absorbed doses per administered 131I activity to the salivary glands in radioiodine therapy of differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging37(5), 884–895 (2010).
  • Jentzen W, Freudenberg L, Eising EG, Sonnenschein W, Knust J, Bockisch A. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J. Nucl. Med.49(6), 1017–1023 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.