69
Views
1
CrossRef citations to date
0
Altmetric
Review

Cardiovascular complications of diabetes: recent insights in pathophysiology and therapeutics

&
Pages 689-696 | Published online: 10 Jan 2014

References

  • Zoungas S, Patel A. Cardiovascular outcomes in Type 2 diabetes: the impact of preventative therapies. Ann. NY Acad. Sci.1212, 29–40 (2010).
  • Thomas JE, Foody JM. The pathophysiology of cardiovascular disease in diabetes mellitus and the future of therapy. J. Cardiometab. Syndr.2(2), 108–113 (2007).
  • Aryangat AV, Gerich JE. Type 2 diabetes: postprandial hyperglycemia and increased cardiovascular risk. Vasc. Health Risk Manag.6, 145–155 (2010).
  • Ford ES, Zhao G, Li C. Pre-diabetes and the risk for cardiovascular disease: a systematic review of the evidence. J. Am. Coll. Cardiol.55(13), 1310–1317 (2010).
  • Rivellese AA, Riccardi G, Vaccaro O. Cardiovascular risk in women with diabetes. Nutr. Metab. Cardiovasc. Dis.20(6), 474–480 (2010).
  • Desouza CV, Bolli GB, Fonseca V. Hypoglycemia, diabetes and cardiovascular events. Diabetes Care33(6), 1389–1394 (2010).
  • Ariza MA, Vimalananda VG, Rosenzweig JL. The economic consequences of diabetes and cardiovascular disease in the United States. Rev. Endocr. Metab. Disord.11(1), 1–10 (2010).
  • AHA. American Heart Association. Heart disease and stroke statistics – 2005 update. American Heart Association, TX, USA (2006).
  • Mazzone T. Intensive glucose lowering and cardiovascular disease prevention in diabetes: reconciling the recent clinical trial data. Circulation122(21), 2201–2211 (2010).
  • Ismail-Beigi F. Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial – clinical implications. Clin. Chem.57(2), 261–263 (2011).
  • Cannon CP. Mixed dyslipidemia, metabolic syndrome, diabetes mellitus, and cardiovascular disease: clinical implications. Am. J. Cardiol.102(12A), 5L–9L (2008).
  • Laakso M. Lipid disorders in Type 2 diabetes. Endocrinol. Nutr.56(Suppl. 4), 43–45 (2009).
  • Schwartz SL. Diabetes and dyslipidaemia. Diabetes Obes. Metab.8(4), 355–364 (2006).
  • Ali YS, Linton MF, Fazio S. Targeting cardiovascular risk in patients with diabetes: management of dyslipidemia. Curr. Opin. Endocrinol. Diabetes Obes.15(2), 142–146 (2008).
  • Dunn FL. Management of dyslipidemia in people with Type 2 diabetes mellitus. Rev. Endocr. Metab. Disord.11(1), 41–51 (2010).
  • Rudkowska I. Fish oils for cardiovascular disease: impact on diabetes. Maturitas67(1), 25–28 (2010).
  • Cannon CP. Combination therapy in the management of mixed dyslipidaemia. J. Intern. Med.263(4), 353–365 (2008).
  • Bell DS, Al Badarin F, O’Keefe JH Jr. Therapies for diabetic dyslipidemia. Diabetes Obes. Metab.13(4), 313–325 (2011).
  • Mathieu P, Lemieux I, Despres JP. Obesity, inflammation, and cardiovascular risk. Clin. Pharmacol. Ther.87(4), 407–416 (2010).
  • Mathieu P, Pibarot P, Larose E, Poirier P, Marette A, Despres JP. Visceral obesity and the heart. Int. J. Biochem. Cell. Biol.40(5), 821–836 (2008).
  • Wheeler GL, Shi R, Beck SR et al. Pericardial and visceral adipose tissues measured volumetrically with computed tomography are highly associated in Type 2 diabetic families. Invest. Radiol.40(2), 97–101 (2005).
  • Iacobellis G, Ribaudo MC, Assael F et al. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J. Clin. Endocrinol. Metab.88(11), 5163–5168 (2003).
  • Mazurek T, Zhang L, Zalewski A et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation108(20), 2460–2466 (2003).
  • Hsueh W, Abel ED, Breslow JL et al. Recipes for creating animal models of diabetic cardiovascular disease. Circ. Res.100(10), 1415–1427 (2007).
  • Renard CB, Kramer F, Johansson F et al. Diabetes and diabetes-associated lipid abnormalities have distinct effects on initiation and progression of atherosclerotic lesions. J. Clin. Invest.114(5), 659–668 (2004).
  • Goldberg IJ. Why does diabetes increase atherosclerosis? I don’t know! J. Clin. Invest.114(5), 613–615 (2004).
  • Somwar R, Fang X, Sweeney G. Models of Type 2 diabetes. Drug Discovery Today2(3), 183–189 (2005).
  • Fazio S, Linton MF. Mouse models of hyperlipidemia and atherosclerosis. Front. Biosci.6, D515–D525 (2001).
  • Veniant MM, Withycombe S, Young SG. Lipoprotein size and atherosclerosis susceptibility in ApoE(-/-) and Ldlr(-/-) mice. Arterioscler. Thromb. Vasc. Biol.21(10), 1567–1570 (2001).
  • Veniant MM, Zlot CH, Walzem RL et al. Lipoprotein clearance mechanisms in LDL receptor-deficient ‘Apo-B48-only’ and ‘Apo-B100-only’ mice. J. Clin. Invest.102(8), 1559–1568 (1998).
  • Leppanen P, Koota S, Kholova I et al. Gene transfers of vascular endothelial growth factor-A, vascular endothelial growth factor-B, vascular endothelial growth factor-C, and vascular endothelial growth factor-D have no effects on atherosclerosis in hypercholesterolemic low-density lipoprotein-receptor/apolipoprotein B48-deficient mice. Circulation112(9), 1347–1352 (2005).
  • Fazio S, Babaev VR, Burleigh ME, Major AS, Hasty AH, Linton MF. Physiological expression of macrophage apoE in the artery wall reduces atherosclerosis in severely hyperlipidemic mice. J. Lipid Res.43(10), 1602–1609 (2002).
  • Tsutsumi Y, Losordo DW. Double face of VEGF. Circulation112(9), 1248–1250 (2005).
  • Lavigne C, Marette A, Jacques H. Cod and soy proteins compared with casein improve glucose tolerance and insulin sensitivity in rats. Am. J. Physiol. Endocrinol. Metab.278(3), E491–E500 (2000).
  • Tremblay F, Lavigne C, Jacques H, Marette A. Dietary cod protein restores insulin-induced activation of phosphatidylinositol 3-kinase/Akt and GLUT4 translocation to the T-tubules in skeletal muscle of high-fat-fed obese rats. Diabetes52(1), 29–37 (2003).
  • Khamzina L, Veilleux A, Bergeron S, Marette A. Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology146(3), 1473–1481 (2005).
  • Ilany J, Bilan PJ, Kapur S et al. Overexpression of Rad in muscle worsens diet-induced insulin resistance and glucose intolerance and lowers plasma triglyceride level. Proc. Natl Acad. Sci. USA103(12), 4481–4486 (2006).
  • Perreault M, Marette A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat. Med.7(10), 1138–1143 (2001).
  • Collins AR, Meehan WP, Kintscher U et al. Troglitazone inhibits formation of early atherosclerotic lesions in diabetic and nondiabetic low density lipoprotein receptor-deficient mice. Arterioscler. Thromb. Vasc. Biol.21(3), 365–371 (2001).
  • Towler DA, Bidder M, Latifi T, Coleman T, Semenkovich CF. Diet-induced diabetes activates an osteogenic gene regulatory program in the aortas of low density lipoprotein receptor-deficient mice. J. Biol. Chem.273(46), 30427–30434 (1998).
  • Heinonen SE, Leppanen P, Kholova I et al. Increased atherosclerotic lesion calcification in a novel mouse model combining insulin resistance, hyperglycemia, and hypercholesterolemia. Circ. Res.101(10), 1058–1067 (2007).
  • Devedjian JC, George M, Casellas A et al. Transgenic mice overexpressing insulin-like growth factor-II in β cells develop Type 2 diabetes. J. Clin. Invest.105(6), 731–740 (2000).
  • Duff CJ, Hooper NM. PCSK9: an emerging target for treatment of hypercholesterolemia. Expert Opin. Ther. Targets15(2), 157–168 (2011).
  • Park SW, Moon YA, Horton JD. Post-transcriptional regulation of low density lipoprotein receptor protein by proprotein convertase subtilisin/kexin type 9a in mouse liver. J. Biol. Chem.279(48), 50630–50638 (2004).
  • Ni YG, Condra JH, Orsatti L et al. A proprotein convertase subtilisin-like/kexin type 9 (PCSK9) C-terminal domain antibody antigen-binding fragment inhibits PCSK9 internalization and restores low density lipoprotein uptake. J. Biol. Chem.285(17), 12882–12891 (2010).
  • Davignon J, Dubuc G, Seidah NG. The influence of PCSK9 polymorphisms on serum low-density lipoprotein cholesterol and risk of atherosclerosis. Curr. Atheroscler. Rep.12(5), 308–315 (2010).
  • Marian AJ. PCSK9 as a therapeutic target in atherosclerosis. Curr. Atheroscler. Rep.12(3), 151–154 (2010).
  • Chan JC, Piper DE, Cao Q et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc. Natl Acad. Sci. USA106(24), 9820–9825 (2009).
  • Ni YG, Di Marco S, Condra JH et al. A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J. Lipid Res.52(1), 78–86 (2011).
  • Costet P, Hoffmann MM, Cariou B, Guyomarc’h Delasalle B, Konrad T, Winkler K. Plasma PCSK9 is increased by fenofibrate and atorvastatin in a non-additive fashion in diabetic patients. Atherosclerosis212(1), 246–251 (2010).
  • Ason B, Tep S, Davis HR Jr. et al. Improved efficacy for ezetimibe and rosuvastatin by attenuating the induction of PCSK9. J. Lipid Res.52(4), 679–687 (2011).
  • Montecucco F, Mach F. Update on statin-mediated anti-inflammatory activities in atherosclerosis. Semin. Immunopathol.31(1), 127–142 (2009).
  • Deng Y, Scherer PE. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann. NY Acad. Sci.1212, E1–E19 (2010).
  • Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP. Cardiovascular benefits of bariatric surgery in morbidly obese patients. Obes. Rev12(7), 515–524 (2011).
  • Xu A, Wang Y, Lam KS, Vanhoutte PM. Vascular actions of adipokines molecular mechanisms and therapeutic implications. Adv. Pharmacol.60, 229–255 (2010).
  • Yamauchi T, Kadowaki T. Physiological and pathophysiological roles of adiponectin and adiponectin receptors in the integrated regulation of metabolic and cardiovascular diseases. Int. J. Obes.32(Suppl. 7), S13–S18 (2008).
  • Okamoto Y. Adiponectin provides cardiovascular protection in metabolic syndrome. Cardiol. Res. Pract.2011, 313179 (2011).
  • Ohashi K, Ouchi N, Matsuzawa Y. Adiponectin and hypertension. Am. J. Hypertens.24(3), 263–269 (2010).
  • Shibata R, Sato K, Pimentel DR et al. Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat. Med.11(10), 1096–1103 (2005).
  • Shibata R, Izumiya Y, Sato K et al. Adiponectin protects against the development of systolic dysfunction following myocardial infarction. J. Mol. Cell. Cardiol.42(6), 1065–1074 (2007).
  • Holland WL, Miller RA, Wang ZV et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med.17(1), 55–63 (2011).
  • Debinski M, Buszman PP, Milewski K et al. Intracoronary adiponectin at reperfusion reduces infarct size in a porcine myocardial infarction model. Int. J. Mol. Med.27(6), 775–781 (2011).
  • Shibata R, Ouchi N, Ito M et al. Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat. Med.10(12), 1384–1389 (2004).
  • Palanivel R, Fang X, Park M et al. Globular and full-length forms of adiponectin mediate specific changes in glucose and fatty acid uptake and metabolism in cardiomyocytes. Cardiovasc. Res.75(1), 148–157 (2007).
  • Ganguly R, Schram K, Fang X et al. Adiponectin increases LPL activity via RhoA/ROCK-mediated actin remodelling in adult rat cardiomyocytes. Endocrinology152(1), 247–254 (2010).
  • Fang X, Palanivel R, Cresser J et al. An APPL1–AMPK signaling axis mediates beneficial metabolic effects of adiponectin in the heart. Am. J. Physiol. Endocrinol. Metab.299(5), E721–E729 (2010).
  • Antonopoulos AS, Lee R, Margaritis M, Antoniades C. Adiponectin as a regulator of vascular redox state: therapeutic implications. Recent Pat. Cardiovasc. Drug Discov.6(2), 78–88 (2011).
  • Nagasawa H, Yokota C, Toyoda K, Ito A, Minematsu K. High level of plasma adiponectin in acute stroke patients is associated with stroke mortality. J. Neurol. Sci.304(1–2), 102–106 (2011).
  • Liu Y, Retnakaran R, Hanley A, Tungtrongchitr R, Shaw C, Sweeney G. Total and high molecular weight but not trimeric or hexameric forms of adiponectin correlate with markers of the metabolic syndrome and liver injury in Thai subjects. J. Clin. Endocrinol. Metab.92(11), 4313–4318 (2007).
  • Shetty S, Kusminski CM, Scherer PE. Adiponectin in health and disease: evaluation of adiponectin-targeted drug development strategies. Trends Pharmacol. Sci.30(5), 234–239 (2009).
  • Salmenniemi U, Ruotsalainen E, Pihlajamaki J et al. Multiple abnormalities in glucose and energy metabolism and coordinated changes in levels of adiponectin, cytokines, and adhesion molecules in subjects with metabolic syndrome. Circulation110(25), 3842–3848 (2004).
  • Cote M, Mauriege P, Bergeron J et al. Adiponectinemia in visceral obesity: impact on glucose tolerance and plasma lipoprotein and lipid levels in men. J. Clin. Endocrinol. Metab.90(3), 1434–1439 (2005).
  • Pan XR, Li GW, Hu YH et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care20(4), 537–544 (1997).
  • Tuomilehto J, Lindstrom J, Eriksson JG et al. Prevention of Type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N. Engl. J. Med.344(18), 1343–1350 (2001).
  • Knowler WC, Barrett-Connor E, Fowler SE et al. Reduction in the incidence of Type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med.346(6), 393–403 (2002).
  • Ratner R, Goldberg R, Haffner S et al. Impact of intensive lifestyle and metformin therapy on cardiovascular disease risk factors in the diabetes prevention program. Diabetes Care28(4), 888–894 (2005).
  • Di Marzo V, Cote M, Matias I et al. Changes in plasma endocannabinoid levels in viscerally obese men following a 1 year lifestyle modification programme and waist circumference reduction: associations with changes in metabolic risk factors. Diabetologia52(2), 213–217 (2009).
  • Fedor D, Kelley DS. Prevention of insulin resistance by n-3 polyunsaturated fatty acids. Curr. Opin. Clin. Nutr. Metab. Care12(2), 138–146 (2009).
  • Harris WS, Mozaffarian D, Rimm E et al. Omega-6 fatty acids and risk for cardiovascular disease: a science advisory from the American Heart Association Nutrition Subcommittee of the Council on Nutrition, Physical Activity, and Metabolism; Council on Cardiovascular Nursing; and Council on Epidemiology and Prevention. Circulation119(6), 902–907 (2009).
  • Ramsden CE, Hibbeln JR, Majchrzak SF, Davis JM. n-6 fatty acid-specific and mixed polyunsaturate dietary interventions have different effects on CHD risk: a meta-analysis of randomised controlled trials. Br. J. Nutr.104(11), 1586–1600 (2010).
  • Kurukulasuriya LR, Sowers JR. Therapies for Type 2 diabetes: lowering HbA1c and associated cardiovascular risk factors. Cardiovasc. Diabetol.9, 45 (2010).
  • Graham MJ, Lemonidis KM, Whipple CP et al. Antisense inhibition of proprotein convertase subtilisin/kexin type 9 reduces serum LDL in hyperlipidemic mice. J. Lipid Res.48(4), 763–767 (2007).
  • Frank-Kamenetsky M, Grefhorst A, Anderson NN et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl Acad. Sci. USA105(33), 11915–11920 (2008).
  • Felts AS. Molecule of the month. TREDAPTIVE (nicotinic acid/laropiprant): a new lipid-modifying therapy for the treatment of LDL-C, HDL-C and triglycerides. Curr. Top. Med. Chem.8(14), 1310 (2008).
  • Hochtl T, Farhan S, Wojta J, Huber K. New anticoagulant agents in acute coronary syndromes. Heart97(3), 244–252 (2011).
  • Koo MH, Nawarskas JJ, Frishman WH. Prasugrel: a new antiplatelet drug for the prevention and treatment of cardiovascular disease. Cardiol. Rev.16(6), 314–318 (2008).
  • Wallentin L, Becker RC, Budaj A et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N. Engl. J. Med.361(11), 1045–1057 (2009).
  • James S, Akerblom A, Cannon CP et al. Comparison of ticagrelor, the first reversible oral P2Y(12) receptor antagonist, with clopidogrel in patients with acute coronary syndromes: rationale, design, and baseline characteristics of the PLATelet inhibition and patient Outcomes (PLATO) trial. Am. Heart J.157(4), 599–605 (2009).
  • Gu J, Noe A, Chandra P et al. Pharmacokinetics and pharmacodynamics of LCZ696, a novel dual-acting angiotensin receptor-neprilysin inhibitor (ARNi). J. Clin. Pharmacol.50(4), 401–414 (2010).
  • Ruilope LM, Dukat A, Bohm M, Lacourciere Y, Gong J, Lefkowitz MP. Blood-pressure reduction with LCZ696, a novel dual-acting inhibitor of the angiotensin II receptor and neprilysin: a randomised, double-blind, placebo-controlled, active comparator study. Lancet375(9722), 1255–1266 (2010).
  • Patel N, Hegele RA. Mipomersen as a potential adjunctive therapy for hypercholesterolemia. Expert. Opin. Pharmacother.11(15), 2569–2572 (2010).
  • Verge D, Lopez X. Impact of GLP-1 and GLP-1 receptor agonists on cardiovascular risk factors in Type 2 diabetes. Curr. Diabetes Rev.6(4), 191–200 (2010).
  • Chilton R, Wyatt J, Nandish S, Oliveros R, Lujan M. Cardiovascular comorbidities of Type 2 diabetes mellitus: defining the potential of glucagonlike peptide-1-based therapies. Am. J. Med.124(1 Suppl.), S35–S53 (2011).
  • King A. Coronary heart disease: new hope for CETP inhibitors. Nat. Rev. Cardiol.8(1), 5 (2011).
  • Davidson MH. Update on inhibition. J. Clin. Lipidol.4(5), 394–398 (2010).
  • Bain JR, Stevens RD, Wenner BR, Ilkayeva O, Muoio DM, Newgard CB. Metabolomics applied to diabetes research: moving from information to knowledge. Diabetes58(11), 2429–2443 (2009).
  • Lewis GD, Asnani A, Gerszten RE. Application of metabolomics to cardiovascular biomarker and pathway discovery. J. Am. Coll. Cardiol.52(2), 117–123 (2008).
  • Giovane A, Balestrieri A, Napoli C. New insights into cardiovascular and lipid metabolomics. J. Cell. Biochem.105(3), 648–654 (2008).
  • Charansonney OL, Despres JP. Disease prevention – should we target obesity or sedentary lifestyle? Nat. Rev. Cardiol.7(8), 468–472 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.