30
Views
1
CrossRef citations to date
0
Altmetric
Review

Update on the molecular signature of differentiated thyroid cancer: clinical implications and potential opportunities

&
Pages 819-834 | Published online: 10 Jan 2014

References

  • Schreiner BF, Murphy WT. Malignant neoplasms of the thyroid gland. Ann. Surg.99(1), 116–125 (1934).
  • Crockford PM, Bain GO. Fine-needle aspiration biospy of the thyroid. Can. Med. Assoc. J.110(9), 1029–1032 (1974).
  • Einhorn J, Franzen S. Thin-needle biopsy in the diagnosis of tumours of the thyroid. Acta Radiol.58, 321 (1962).
  • Fujimoto Y, Oka A, Omoto R, Hirose M. Ultrasound scanning of the thyroid gland as a new diagnostic approach. Ultrasonics5, 177–180 (1967).
  • Rudowski W. Critical evaluation of aspiration biopsy in the diagnosis of tumours. Am. J. Surg.95, 40–44 (1958).
  • Seidlin SM, Marinelli LD, Oshry E. Radioactive iodine therapy; effect on functioning metastases of adenocarcinoma of the thyroid. J. Am. Med. Assoc.132(14), 838–847 (1946).
  • Smithers DW. The treatment of cancer of the thyroid with radioactive iodine. J. R. Soc. Med.45(6), 339–340 (1952).
  • Soderstrom N. Puncture of goiters for aspiration biopsy. Acta. Med. Scand.144, 237–244 (1952).
  • Frates MC, Benson CB, Charboneau JW et al. Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement. Ultrasound Q.22(4), 231–238; discussion 239–240 (2006).
  • Baloch ZW, LiVolsi VA, Asa SL et al. Diagnostic terminology and morphologic criteria for cytologic diagnosis of thyroid lesions: a synopsis of the National Cancer Institute Thyroid Fine-Needle Aspiration State of the Science Conference. Diagn. Cytopathol.36(6), 425–437 (2008).
  • British Thyroid Association, Royal College of Physicians. Guidelines for the Management of Thyroid Cancer (2nd Edition). Report of the Thyroid Cancer Guidelines Update Group. Perros P (Ed.). Royal College of Physicians, London, UK (2007).
  • Cooper DS, Doherty GM, Haugen BR et al. Revised american thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid19(11), 1167–1214 (2009).
  • Gharib H, Papini E, Paschke R et al. American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association Medical guidelines for clinical practice for the diagnosis and management of thyroid nodules: executive summary of recommendations. Endocr. Pract.16(3), 468–475 (2010).
  • Pacini F, Castagna MG, Brilli L, Pentheroudakis G. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol.21(Suppl. 5), v214–v219 (2010).
  • Eustatia-Rutten CF, Corssmit EP, Biermasz NR, Pereira AM, Romijn JA, Smit JW. Survival and death causes in differentiated thyroid carcinoma. J. Clin. Endocrinol. Metab.91(1), 313–319 (2006).
  • Grieco M, Santoro M, Berlingieri MT et al. Molecular cloning of PTC, a new oncogene found activated in human thyroid papillary carcinomas and their lymph node metastases. Ann. NY Acad. Sci.551, 380–381 (1988).
  • Lemoine NR, Mayall ES, Wyllie FS et al. Activated ras oncogenes in human thyroid cancers. Cancer Res.48(16), 4459–4463 (1988).
  • Suarez HG, Du Villard JA, Caillou B et al. Detection of activated ras oncogenes in human thyroid carcinomas. Oncogene2(4), 403–406 (1988).
  • Kroll TG, Sarraf P, Pecciarini L et al. PAX8-PPARγ1 fusion oncogene in human thyroid carcinoma [corrected]. Science289(5483), 1357–1360 (2000).
  • Cohen Y, Xing M, Mambo E et al. BRAF mutation in papillary thyroid carcinoma. J. Natl Cancer Inst.95(8), 625–627 (2003).
  • Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC–RAS–BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res.63(7), 1454–1457 (2003).
  • Saji M, Ringel MD. The PI3K–Akt–mTOR pathway in initiation and progression of thyroid tumors. Mol. Cell. Endocrinol.321(1), 20–28 (2010).
  • Xing M. Genetic alterations in the phosphatidylinositol-3 kinase/Akt pathway in thyroid cancer. Thyroid20(7), 697–706 (2010).
  • Menon MP, Khan A. Micro-RNAs in thyroid neoplasms: molecular, diagnostic and therapeutic implications. J. Clin. Pathol.62(11), 978–985 (2009).
  • Pallante P, Visone R, Croce CM, Fusco A. Deregulation of microRNA expression in follicular-cell-derived human thyroid carcinomas. Endocr. Relat. Cancer17(1), F91–F104 (2010).
  • Kondo T, Asa SL, Ezzat S. Epigenetic dysregulation in thyroid neoplasia. Endocrinol. Metab. Clin. North. Am.37(2), 389–400, ix (2008).
  • Eszlinger M, Krohn K, Kukulska A, Jarzab B, Paschke R. Perspectives and limitations of microarray-based gene expression profiling of thyroid tumors. Endocr. Rev.28(3), 322–338 (2007).
  • Laubenbacher R, Hower V, Jarrah A et al. A systems biology view of cancer. Biochim. Biophys. Acta.1796(2), 129–139 (2009).
  • Chan JKC, Hirokawa M, Evans H et al. Tumours of the thyroid and parathyroid. In: WHO Classification of Tumours; Pathology and Genetics of Tumours of Endocrine Organs. DeLellis RA, Lloyd RV, Heitz PU, Eng C (Eds). IARC Press, Lyon, France, 49–175 (2004).
  • Baloch ZW, Fleisher S, LiVolsi VA, Gupta PK. Diagnosis of “follicular neoplasm”: a gray zone in thyroid fine-needle aspiration cytology. Diagn. Cytopathol.26(1), 41–44 (2002).
  • Raber W, Kaserer K, Niederle B, Vierhapper H. Risk factors for malignancy of thyroid nodules initially identified as follicular neoplasia by fine-needle aspiration: results of a prospective study of one hundred twenty patients. Thyroid10(8), 709–712 (2000).
  • Yang J, Schnadig V, Logrono R, Wasserman PG. Fine-needle aspiration of thyroid nodules: a study of 4703 patients with histologic and clinical correlations. Cancer111(5), 306–315 (2007).
  • Cibas ES, Ali SZ. The Bethesda System for reporting thyroid cytopathology. Am. J. Clin. Pathol.132(5), 658–665 (2009).
  • Layfield LJ, Morton MJ, Cramer HM, Hirschowitz S. Implications of the proposed thyroid fine-needle aspiration category of “follicular lesion of undetermined significance”: a five-year multi-institutional analysis. Diagn. Cytopathol.37(10), 710–714 (2009).
  • Nayar R, Ivanovic M. The indeterminate thyroid fine-needle aspiration: experience from an academic center using terminology similar to that proposed in the 2007 National Cancer Institute Thyroid Fine Needle Aspiration State of the Science Conference. Cancer Cytopathol.117(3), 195–202 (2009).
  • Ohori NP, Nikiforova MN, Schoedel KE et al. Contribution of molecular testing to thyroid fine-needle aspiration cytology of “follicular lesion of undetermined significance/atypia of undetermined significance”. Cancer Cytopathol.118(1), 17–23 (2010).
  • Vasko VV, Gaudart J, Allasia C et al. Thyroid follicular adenomas may display features of follicular carcinoma and follicular variant of papillary carcinoma. Eur. J. Endocrinol.151(6), 779–786 (2004).
  • Rosai J, Carcangiu ML, DeLellis RA. Tumors of the thyroid gland: Follicular Carcinomas. Papillary Carcinomas. In: Atlas of Tumor Pathology. Rosai J, Sobin LH (Eds). Armed Forces Institute of Pathology, DC, USA, 49–121 (1992).
  • Franc B, de la Salmoniere P, Lange F et al. Interobserver and intraobserver reproducibility in the histopathology of follicular thyroid carcinoma. Hum. Pathol.34(11), 1092–1100 (2003).
  • Lloyd RV, Erickson LA, Casey MB et al. Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am. J. Surg. Pathol.28(10), 1336–1340 (2004).
  • Sobrinho-Simoes M, Eloy C, Vinagre J, Soares P. Molecular pathology of thyroid tumors: diagnostic and prognostic relevance. Int. J. Surg. Pathol.18(3 Suppl.), 209S–212S (2010).
  • Liu J, Singh B, Tallini G et al. Follicular variant of papillary thyroid carcinoma: a clinicopathologic study of a problematic entity. Cancer107(6), 1255–1264 (2006).
  • Rivera M, Tuttle RM, Patel S, Shaha A, Shah JP, Ghossein RA. Encapsulated papillary thyroid carcinoma: a clinico-pathologic study of 106 cases with emphasis on its morphologic subtypes (histologic growth pattern). Thyroid19(2), 119–127 (2009).
  • Fagin JA, Mitsiades N. Molecular pathology of thyroid cancer: diagnostic and clinical implications. Best Pract. Res. Clin. Endocrinol. Metab.22(6), 955–969 (2008).
  • Santoro M, Melillo RM, Carlomagno F, Vecchio G, Fusco A. Minireview: RET: normal and abnormal functions. Endocrinology145(12), 5448–5451 (2004).
  • Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr. Rev.28(7), 742–762 (2007).
  • Dwight T, Thoppe SR, Foukakis T et al. Involvement of the PAX8/peroxisome proliferator-activated receptor γ rearrangement in follicular thyroid tumors. J. Clin. Endocrinol. Metab.88(9), 4440–4445 (2003).
  • Nikiforova MN, Lynch RA, Biddinger PW et al.RAS point mutations and PAX8-PPAR γ rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J. Clin. Endocrinol. Metab.88(5), 2318–2326 (2003).
  • Nikiforova MN, Nikiforov YE. Molecular diagnostics and predictors in thyroid cancer. Thyroid19(12), 1351–1361 (2009).
  • Vasko V, Ferrand M, Di Cristofaro J, Carayon P, Henry JF, de Micco C. Specific pattern of RAS oncogene mutations in follicular thyroid tumors. J. Clin. Endocrinol. Metab.88(6), 2745–2752 (2003).
  • Kang DY, Kim KH, Kim JM et al. High prevalence of RET, RAS, and ERK expression in Hashimoto’s thyroiditis and in papillary thyroid carcinoma in the Korean population. Thyroid17(11), 1031–1038 (2007).
  • Rhoden KJ, Unger K, Salvatore G et al. RET/papillary thyroid cancer rearrangement in nonneoplastic thyrocytes: follicular cells of Hashimoto’s thyroiditis share low-level recombination events with a subset of papillary carcinoma. J. Clin. Endocrinol. Metab.91(6), 2414–2423 (2006).
  • Marques AR, Espadinha C, Catarino AL et al. Expression of PAX8-PPAR γ 1 rearrangements in both follicular thyroid carcinomas and adenomas. J. Clin. Endocrinol. Metab.87(8), 3947–3952 (2002).
  • Arora N, Scognamiglio T, Zhu B, Fahey TJ 3rd. Do benign thyroid nodules have malignant potential? An evidence-based review. World. J. Surg.32(7), 1237–1246 (2008).
  • Kim CS, Zhu X. Lessons from mouse models of thyroid cancer. Thyroid19(12), 1317–1331 (2009).
  • Handkiewicz-Junak D, Czarniecka A, Jarzab B. Molecular prognostic markers in papillary and follicular thyroid cancer: Current status and future directions. Mol. Cell. Endocrinol.322(1–2), 8–28 (2010).
  • Xing M, Clark D, Guan H et al. BRAF mutation testing of thyroid fine-needle aspiration biopsy specimens for preoperative risk stratification in papillary thyroid cancer. J. Clin. Oncol.27(18), 2977–2982 (2009).
  • Xing M. BRAF mutation in thyroid cancer. Endocr. Relat. Cancer12(2), 245–262 (2005).
  • Dhillon AS, Kolch W. Oncogenic B-Raf mutations: crystal clear at last. Cancer Cell.5(4), 303–304 (2004).
  • Wan PT, Garnett MJ, Roe SM et al. Mechanism of activation of the RAF–ERK signaling pathway by oncogenic mutations of B-RAF. Cell116(6), 855–867 (2004).
  • Mitsutake N, Miyagishi M, Mitsutake S et al. BRAF mediates RET/PTC-induced mitogen-activated protein kinase activation in thyroid cells: functional support for requirement of the RET/PTC–RAS–BRAF pathway in papillary thyroid carcinogenesis. Endocrinology147(2), 1014–1019 (2006).
  • Liu D, Liu Z, Condouris S, Xing M. BRAF V600E maintains proliferation, transformation, and tumorigenicity of BRAF-mutant papillary thyroid cancer cells. J. Clin. Endocrinol. Metab.92(6), 2264–2271 (2007).
  • Mitsutake N, Knauf JA, Mitsutake S, Mesa C Jr., Zhang L, Fagin JA. Conditional BRAFV600E expression induces DNA synthesis, apoptosis, dedifferentiation, and chromosomal instability in thyroid PCCL3 cells. Cancer Res.65(6), 2465–2473 (2005).
  • Xing M, Westra WH, Tufano RP et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J. Clin. Endocrinol. Metab.90(12), 6373–6379 (2005).
  • Kebebew E, Weng J, Bauer J et al. The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann. Surg.246(3), 466–470; discussion 470–461 (2007).
  • Elisei R, Ugolini C, Viola D et al. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year median follow-up study. J. Clin. Endocrinol. Metab.93(10), 3943–3949 (2008).
  • Riesco-Eizaguirre G, Rodriguez I, De la Vieja A et al. The BRAFV600E oncogene induces transforming growth factor beta secretion leading to sodium iodide symporter repression and increased malignancy in thyroid cancer. Cancer Res.69(21), 8317–8325 (2009).
  • Barollo S, Pennelli G, Vianello F et al. BRAF in primary and recurrent papillary thyroid cancers: the relationship with (131) I and 2-[(18)F]fluoro-2-deoxy-D-glucose uptake ability. Eur. J. Endocrinol.163(4), 659–663 (2010).
  • Eszlinger M, Paschke R. Molecular fine-needle aspiration biopsy diagnosis of thyroid nodules by tumor specific mutations and gene expression patterns. Mol Cell. Endocrinol.322(1–2), 29–37 (2010).
  • Marchetti I, Lessi F, Mazzanti CM et al. A morpho-molecular diagnosis of papillary thyroid carcinoma: BRAF V600E detection as an important tool in preoperative evaluation of fine-needle aspirates. Thyroid19(8), 837–842 (2009).
  • Yip L, Nikiforova MN, Carty SE et al. Optimizing surgical treatment of papillary thyroid carcinoma associated with BRAF mutation. Surgery146(6), 1215–1223 (2009).
  • Adeniran AJ, Zhu Z, Gandhi M et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am. J. Surg. Pathol.30(2), 216–222 (2006).
  • Fenton CL, Lukes Y, Nicholson D, Dinauer CA, Francis GL, Tuttle RM. The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J. Clin. Endocrinol. Metab.85(3), 1170–1175 (2000).
  • Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA. Distinct pattern of RET oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res.57(9), 1690–1694 (1997).
  • Rabes HM, Demidchik EP, Sidorow JD et al. Pattern of radiation-induced RET and NTRK1 rearrangements in 191 post-chernobyl papillary thyroid carcinomas: biological, phenotypic, and clinical implications. Clin. Cancer Res.6(3), 1093–1103 (2000).
  • Unger K, Zitzelsberger H, Salvatore G et al. Heterogeneity in the distribution of RET/PTC rearrangements within individual post-Chernobyl papillary thyroid carcinomas. J. Clin. Endocrinol. Metab.89(9), 4272–4279 (2004).
  • Zhu Z, Ciampi R, Nikiforova MN, Gandhi M, Nikiforov YE. Prevalence of RET/PTC rearrangements in thyroid papillary carcinomas: effects of the detection methods and genetic heterogeneity. J. Clin. Endocrinol. Metab.91(9), 3603–3610 (2006).
  • Repplinger D, Bargren A, Zhang YW, Adler JT, Haymart M, Chen H. Is Hashimoto’s thyroiditis a risk factor for papillary thyroid cancer? J. Surg. Res.150(1), 49–52 (2008).
  • Jhiang SM, Sagartz JE, Tong Q et al. Targeted expression of the ret/PTC1 oncogene induces papillary thyroid carcinomas. Endocrinology137(1), 375–378 (1996).
  • Santoro M, Chiappetta G, Cerrato A et al. Development of thyroid papillary carcinomas secondary to tissue-specific expression of the RET/PTC1 oncogene in transgenic mice. Oncogene12(8), 1821–1826 (1996).
  • Esapa CT, Johnson SJ, Kendall-Taylor P, Lennard TW, Harris PE. Prevalence of Ras mutations in thyroid neoplasia. Clin. Endocrinol.50(4), 529–535 (1999).
  • Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat. Rev. Cancer6(4), 292–306 (2006).
  • Santarpia L, Myers JN, Sherman SI, Trimarchi F, Clayman GL, El-Naggar AK. Genetic alterations in the RAS/RAF/mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways in the follicular variant of papillary thyroid carcinoma. Cancer116(12), 2974–2983 (2010).
  • Di Cristofaro J, Marcy M, Vasko V et al. Molecular genetic study comparing follicular variant versus classic papillary thyroid carcinomas: association of N-ras mutation in codon 61 with follicular variant. Hum. Pathol.37(7), 824–830 (2006).
  • Freitas BC, Cerutti JM. Genetic markers differentiating follicular thyroid carcinoma from benign lesions. Mol. Cell. Endocrinol.321(1), 77–85 (2010).
  • Volante M, Rapa I, Gandhi M et al. RAS mutations are the predominant molecular alteration in poorly differentiated thyroid carcinomas and bear prognostic impact. J. Clin. Endocrinol. Metab.94(12), 4735–4741 (2009).
  • Eberhardt NL, Grebe SK, McIver B, Reddi HV. The role of the PAX8/PPARγ fusion oncogene in the pathogenesis of follicular thyroid cancer. Mol. Cell. Endocrinol.321(1), 50–56 (2010).
  • Marques AR, Espadinha C, Frias MJ et al. Underexpression of peroxisome proliferator-activated receptor (PPAR)γ in PAX8/PPARγ-negative thyroid tumours. Br. J. Cancer91(4), 732–738 (2004).
  • Sahin M, Allard BL, Yates M et al. PPARγ staining as a surrogate for PAX8/PPARγ fusion oncogene expression in follicular neoplasms: clinicopathological correlation and histopathological diagnostic value. J. Clin. Endocrinol. Metab.90(1), 463–468 (2005).
  • Reddi HV, Madde P, Marlow LA et al. Expression of the PAX8/PPARγ fusion protein is associated with decreased neovascularization in vivo: impact on tumorigenesis and disease prognosis. Genes Cancer1(5), 480–492 (2010).
  • Cantara S, Capezzone M, Marchisotta S et al. Impact of proto-oncogene mutation detection in cytological specimens from thyroid nodules improves the diagnostic accuracy of cytology. J. Clin. Endocrinol. Metab.95(3), 1365–1369 (2010).
  • Musholt TJ, Fottner C, Weber MM et al. Detection of papillary thyroid carcinoma by analysis of BRAF and RET/PTC1 mutations in fine-needle aspiration biopsies of thyroid nodules. World J. Surg.34(11), 2595–2603 (2010).
  • Nikiforov YE, Steward DL, Robinson-Smith TM et al. Molecular testing for mutations in improving the fine-needle aspiration diagnosis of thyroid nodules. J. Clin. Endocrinol. Metab.94(6), 2092–2098 (2009).
  • Kebebew E, Peng M, Reiff E, Duh QY, Clark OH, McMillan A. ECM1 and TMPRSS4 are diagnostic markers of malignant thyroid neoplasms and improve the accuracy of fine needle aspiration biopsy. Ann. Surg.242(3), 353–361; discussion 361–353 (2005).
  • Lubitz CC, Ugras SK, Kazam JJ et al. Microarray analysis of thyroid nodule fine-needle aspirates accurately classifies benign and malignant lesions. J. Mol. Diagn.8(4), 490–498; quiz 528 (2006).
  • Moses W, Weng J, Sansano I et al. Molecular testing for somatic mutations improves the accuracy of thyroid fine-needle aspiration biopsy. World J. Surg.34(11), 2589–2594 (2010).
  • Ambros V. microRNAs: tiny regulators with great potential. Cell107(7), 823–826 (2001).
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116(2), 281–297 (2004).
  • He H, Jazdzewski K, Li W et al. The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl Acad. Sci. USA102(52), 19075–19080 (2005).
  • Weber F, Teresi RE, Broelsch CE, Frilling A, Eng C. A limited set of human microRNA is deregulated in follicular thyroid carcinoma. J. Clin. Endocrinol. Metab.91(9), 3584–3591 (2006).
  • Nikiforova MN, Tseng GC, Steward D, Diorio D, Nikiforov YE. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J. Clin. Endocrinol. Metab.93(5), 1600–1608 (2008).
  • Chen YT, Kitabayashi N, Zhou XK, Fahey TJ 3rd, Scognamiglio T. MicroRNA analysis as a potential diagnostic tool for papillary thyroid carcinoma. Mod. Pathol.21(9), 1139–1146 (2008).
  • Pallante P, Visone R, Ferracin M et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr. Relat. Cancer13(2), 497–508 (2006).
  • Sheu SY, Grabellus F, Schwertheim S, Worm K, Broecker-Preuss M, Schmid KW. Differential miRNA expression profiles in variants of papillary thyroid carcinoma and encapsulated follicular thyroid tumours. Br. J. Cancer102(2), 376–382 (2010).
  • Tetzlaff MT, Liu A, Xu X et al. Differential expression of miRNAs in papillary thyroid carcinoma compared with multinodular goiter using formalin fixed paraffin embedded tissues. Endocr. Pathol.18(3), 163–173 (2007).
  • Chou CK, Chen RF, Chou FF et al. miR-146b is highly expressed in adult papillary thyroid carcinomas with high risk features including extrathyroidal invasion and the BRAF(V600E) mutation. Thyroid20(5), 489–494 (2010).
  • Mazeh H, Mizrahi I, Halle D et al. Development of a microRNA-based molecular assay for the detection of papillary thyroid carcinoma in aspiration biopsy samples. Thyroid21(2), 111–118 (2011).
  • Yip L, Kelly L, Shuai Y et al. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma. Ann. Surg. Oncol.18(7), 2035–2041 (2011).
  • Brioschi M, Fischer J, Cairoli R et al. Down-regulation of microRNAs 222/221 in acute myelogenous leukemia with deranged core-binding factor subunits. Neoplasia12(11), 866–876 (2011).
  • Conti A, Aguennouz M, La Torre D et al. miR-21 and 221 upregulation and miR-181b downregulation in human grade II–IV astrocytic tumors. J. Neurooncol.93(3), 325–332 (2009).
  • Di Leva G, Gasparini P, Piovan C et al. MicroRNA cluster 221–222 and estrogen receptor α interactions in breast cancer. J. Natl Cancer Inst.102(10), 706–721 (2011).
  • Garofalo M, Di Leva G, Romano G et al. miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell16(6), 498–509 (2009).
  • Hurst DR, Edmonds MD, Scott GK, Benz CC, Vaidya KS, Welch DR. Breast cancer metastasis suppressor 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res.69(4), 1279–1283 (2009).
  • Miller TE, Ghoshal K, Ramaswamy B et al. MicroRNA-221/222 confers tamoxifen resistance in breast cancer by targeting p27Kip1. J. Biol. Chem.283(44), 29897–29903 (2008).
  • Patnaik SK, Kannisto E, Mallick R, Yendamuri S. Overexpression of the lung cancer-prognostic miR-146b microRNAs has a minimal and negative effect on the malignant phenotype of A549 lung cancer cells. PloS One6(7), e22379 (2011).
  • Stinson S, Lackner MR, Adai AT et al. miR-221/222 targeting of trichorhinophalangeal 1 (TRPS1) promotes epithelial-to-mesenchymal transition in breast cancer. Sci. Signal.4(186), pt5 (2011).
  • Sun T, Wang Q, Balk S, Brown M, Lee GS, Kantoff P. The role of microRNA-221 and microRNA-222 in androgen-independent prostate cancer cell lines. Cancer Res.69(8), 3356–3363 (2009).
  • Zhang J, Han L, Ge Y et al. miR-221/222 promote malignant progression of glioma through activation of the Akt pathway. Int. J. Oncol.36(4), 913–920 (2011).
  • Xing M. Gene methylation in thyroid tumorigenesis. Endocrinology148(3), 948–953 (2007).
  • Smith JA, Fan CY, Zou C, Bodenner D, Kokoska MS. Methylation status of genes in papillary thyroid carcinoma. Arch. Otolaryngol. Head Neck Surg.133(10), 1006–1011 (2007).
  • Ringel MD, Anderson J, Souza SL et al. Expression of the sodium iodide symporter and thyroglobulin genes are reduced in papillary thyroid cancer. Mod. Pathol.14(4), 289–296 (2001).
  • Liu D, Hu S, Hou P, Jiang D, Condouris S, Xing M. Suppression of BRAF/MEK/MAP kinase pathway restores expression of iodide-metabolizing genes in thyroid cells expressing the V600E BRAF mutant. Clin. Cancer Res.13(4), 1341–1349 (2007).
  • Zuo H, Gandhi M, Edreira MM et al. Downregulation of Rap1GAP through epigenetic silencing and loss of heterozygosity promotes invasion and progression of thyroid tumors. Cancer Res.70(4), 1389–1397 (2010).
  • Schagdarsurengin U, Richter AM, Wohler C, Dammann RH. Frequent epigenetic inactivation of RASSF10 in thyroid cancer. Epigenetics4(8), 571–576 (2009).
  • Guan H, Ji M, Hou P et al. Hypermethylation of the DNA mismatch repair gene hMLH1 and its association with lymph node metastasis and T1799A BRAF mutation in patients with papillary thyroid cancer. Cancer113(2), 247–255 (2008).
  • Kondo T, Nakazawa T, Ma D et al. Epigenetic silencing of TTF-1/NKX2-1 through DNA hypermethylation and histone H3 modulation in thyroid carcinomas. Lab. Invest.89(7), 791–799 (2009).
  • Hu S, Liu D, Tufano RP et al. Association of aberrant methylation of tumor suppressor genes with tumor aggressiveness and BRAF mutation in papillary thyroid cancer. Int. J. Cancer119(10), 2322–2329 (2006).
  • Fujarewicz K, Jarzab M, Eszlinger M et al. A multi-gene approach to differentiate papillary thyroid carcinoma from benign lesions: gene selection using support vector machines with bootstrapping. Endocr. Relat. Cancer14(3), 809–826 (2007).
  • Fontaine JF, Mirebeau-Prunier D, Raharijaona M et al. Increasing the number of thyroid lesions classes in microarray analysis improves the relevance of diagnostic markers. PloS One4(10), e7632 (2009).
  • Griffith OL, Melck A, Jones SJ, Wiseman SM. Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J. Clin. Oncol.24(31), 5043–5051 (2006).
  • Oler G, Camacho CP, Hojaij FC, Michaluart P Jr, Riggins GJ, Cerutti JM. Gene expression profiling of papillary thyroid carcinoma identifies transcripts correlated with BRAF mutational status and lymph node metastasis. Clin. Cancer Res.14(15), 4735–4742 (2008).
  • Takano T, Yamada H. Trefoil factor 3 (TFF3): a promising indicator for diagnosing thyroid follicular carcinoma. Endocr. J.56(1), 9–16 (2009).
  • Shibru D, Hwang J, Khanafshar E, Duh QY, Clark OH, Kebebew E. Does the 3-gene diagnostic assay accurately distinguish benign from malignant thyroid neoplasms? Cancer113(5), 930–935 (2008).
  • Weber F, Shen L, Aldred MA et al. Genetic classification of benign and malignant thyroid follicular neoplasia based on a three-gene combination. J. Clin. Endocrinol. Metab.90(5), 2512–2521 (2005).
  • Arora N, Scognamiglio T, Lubitz CC et al. Identification of borderline thyroid tumors by gene expression array analysis. Cancer115(23), 5421–5431 (2009).
  • Denning KM, Smyth PC, Cahill SF et al. A molecular expression signature distinguishing follicular lesions in thyroid carcinoma using preamplification RT-PCR in archival samples. Mod. Pathol.20(10), 1095–1102 (2007).
  • Prasad NB, Somervell H, Tufano RP et al. Identification of genes differentially expressed in benign versus malignant thyroid tumors. Clin. Cancer Res.14(11), 3327–3337 (2008).
  • Chudova D, Wilde JI, Wang ET et al. Molecular classification of thyroid nodules using high-dimensionality genomic data. J. Clin. Endocrinol. Metab.95(12), 5296–5304 (2010).
  • Fischer S, Asa SL. Application of immunohistochemistry to thyroid neoplasms. Arch. Pathol. Lab. Med.132(3), 359–372 (2008).
  • de Micco C, Savchenko V, Giorgi R, Sebag F, Henry JF. Utility of malignancy markers in fine-needle aspiration cytology of thyroid nodules: comparison of Hector Battifora mesothelial antigen-1, thyroid peroxidase and dipeptidyl aminopeptidase IV. Br. J. Cancer98(4), 818–823 (2008).
  • Fenton C, Patel A, Dinauer C, Robie DK, Tuttle RM, Francis GL. The expression of vascular endothelial growth factor and the type 1 vascular endothelial growth factor receptor correlate with the size of papillary thyroid carcinoma in children and young adults. Thyroid10(4), 349–357 (2000).
  • Bartolazzi A, D’Alessandria C, Parisella MG et al. Thyroid cancer imaging in vivo by targeting the anti-apoptotic molecule galectin-3. PloS One3(11), e3768 (2008).
  • Bartolazzi A, Gasbarri A, Papotti M et al. Application of an immunodiagnostic method for improving preoperative diagnosis of nodular thyroid lesions. Lancet357(9269), 1644–1650 (2001).
  • Bartolazzi A, Orlandi F, Saggiorato E et al. Galectin-3-expression analysis in the surgical selection of follicular thyroid nodules with indeterminate fine-needle aspiration cytology: a prospective multicentre study. Lancet Oncol.9(6), 543–549 (2008).
  • Carpi A, Naccarato AG, Iervasi G et al. Large needle aspiration biopsy and galectin-3 determination in selected thyroid nodules with indeterminate FNA-cytology. Br. J. Cancer95(2), 204–209 (2006).
  • Carpi A, Rossi G, Coscio GD et al. Galectin-3 detection on large-needle aspiration biopsy improves preoperative selection of thyroid nodules: a prospective cohort study. Ann. Med.42(1), 70–78 (2010).
  • Chiu CG, Strugnell SS, Griffith OL et al. Diagnostic utility of galectin-3 in thyroid cancer. Am. J. Pathol.176(5), 2067–2081 (2010).
  • Akahani S, Nangia-Makker P, Inohara H, Kim HR, Raz A. Galectin-3: a novel antiapoptotic molecule with a functional BH1 (NWGR) domain of Bcl-2 family. Cancer Res.57(23), 5272–5276 (1997).
  • Cecchinelli B, Lavra L, Rinaldo C et al. Repression of the antiapoptotic molecule galectin-3 by homeodomain-interacting protein kinase 2-activated p53 is required for p53-induced apoptosis. Mol. Cell. Biol.26(12), 4746–4757 (2006).
  • Lavra L, Rinaldo C, Ulivieri A et al. The loss of the p53 activator HIPK2 is responsible for galectin-3 overexpression in well differentiated thyroid carcinomas. PloS One6(6), e20665 (2011).
  • Lin CI, Whang EE, Abramson MA et al. Galectin-3 regulates apoptosis and doxorubicin chemoresistance in papillary thyroid cancer cells. Biochem. Biophys. Res. Commun.379(2), 626–631 (2009).
  • Lin CI, Whang EE, Donner DB et al. Galectin-3 targeted therapy with a small molecule inhibitor activates apoptosis and enhances both chemosensitivity and radiosensitivity in papillary thyroid cancer. Mol. Cancer Res.7(10), 1655–1662 (2009).
  • Liu FT, Rabinovich GA. Galectins as modulators of tumour progression. Nat. Rev. Cancer5(1), 29–41 (2005).
  • Yoshii T, Inohara H, Takenaka Y et al. Galectin-3 maintains the transformed phenotype of thyroid papillary carcinoma cells. Int. J. Oncol.18(4), 787–792 (2001).
  • Maruta J, Hashimoto H, Yamashita H, Yamashita H, Noguchi S. Immunostaining of galectin-3 and CD44v6 using fine-needle aspiration for distinguishing follicular carcinoma from adenoma. Diagn. Cytopathol.31(6), 392–396 (2004).
  • Mehrotra P, Okpokam A, Bouhaidar R et al. Galectin-3 does not reliably distinguish benign from malignant thyroid neoplasms. Histopathology45(5), 493–500 (2004).
  • Bartolazzi A, Bellotti C, Sciacchitano S. Methodology and technical requirements of the galectin-3 test for the preoperative characterization of thyroid nodules. Appl. Immunohistochem. Mol. Morphol. (2011) (Epub ahead of print).
  • Bartolazzi A, Bussolati G. Galectin-3 does not reliably distinguish benign from malignant thyroid neoplasms. Histopathology48(2), 212–213 (2006).
  • Bartolazzi A, Papotti M, Orlandi F. Methodological considerations regarding the use of galectin-3 expression analysis in preoperative evaluation of thyroid nodules. J. Clin. Endocrinol. Metab.88(2), 950; author reply 950–951 (2003).
  • Cerutti JM, Delcelo R, Amadei MJ et al. A preoperative diagnostic test that distinguishes benign from malignant thyroid carcinoma based on gene expression. J Clin. Invest.113(8), 1234–1242 (2004).
  • Cerutti JM, Latini FR, Nakabashi C et al. Diagnosis of suspicious thyroid nodules using four protein biomarkers. Clin. Cancer Res.12(11 Pt 1), 3311–3318 (2006).
  • Liu YY, Morreau H, Kievit J, Romijn JA, Carrasco N, Smit JW. Combined immunostaining with galectin-3, fibronectin-1, CITED-1, Hector Battifora mesothelial-1, cytokeratin-19, peroxisome proliferator-activated receptor-γ, and sodium/iodide symporter antibodies for the differential diagnosis of non-medullary thyroid carcinoma. Eur. J. Endocrinol.158(3), 375–384 (2008).
  • Sapio MR, Guerra A, Posca D et al. Combined analysis of galectin-3 and BRAFV600E improves the accuracy of fine-needle aspiration biopsy with cytological findings suspicious for papillary thyroid carcinoma. Endocr. Relat. Cancer14(4), 1089–1097 (2007).
  • Dai G, Levy O, Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature379(6564), 458–460 (1996).
  • Spitzweg C, Heufelder AE, Morris JC. Thyroid iodine transport. Thyroid10(4), 321–330 (2000).
  • Robbins J, Merino MJ, Boice JD Jr et al. Thyroid cancer: a lethal endocrine neoplasm. Ann. Intern. Med.115(2), 133–147 (1991).
  • Braga-Basaria M, Ringel MD. Clinical review 158: beyond radioiodine: a review of potential new therapeutic approaches for thyroid cancer. J. Clin. Endocrinol. Metab.88(5), 1947–1960 (2003).
  • Vadysirisack DD, Venkateswaran A, Zhang Z, Jhiang SM. MEK signaling modulates sodium iodide symporter at multiple levels and in a paradoxical manner. Endocr. Relat. Cancer14(2), 421–432 (2007).
  • Kogai T, Taki K, Brent GA. Enhancement of sodium/iodide symporter expression in thyroid and breast cancer. Endocr. Relat. Cancer13(3), 797–826 (2006).
  • Fenton MS, Marion KM, Salem AK, Hogen R, Naeim F, Hershman JM. Sunitinib inhibits MEK/ERK and SAPK/JNK pathways and increases sodium/iodide symporter expression in papillary thyroid cancer. Thyroid20(9), 965–974 (2010).
  • Hou P, Bojdani E, Xing M. Induction of thyroid gene expression and radioiodine uptake in thyroid cancer cells by targeting major signaling pathways. J. Clin. Endocrinol. Metab.95(2), 820–828 (2010).
  • Sherman SI. Targeted therapy of thyroid cancer. Biochem. Pharmacol.80(5), 592–601 (2010).
  • Chougnet C, Brassard M, Leboulleux S, Baudin E, Schlumberger M. Molecular targeted therapies for patients with refractory thyroid cancer. Clin. Oncol. (R. Coll. Radiol.)22(6), 448–455 (2010).
  • Duntas LH, Bernardini R. Sorafenib: rays of hope in thyroid cancer. Thyroid20(12), 1351–1358 (2010).
  • Takimoto CH, Awada A. Safety and anti-tumor activity of sorafenib (Nexavar) in combination with other anti-cancer agents: a review of clinical trials. Cancer Chemother. Pharmacol.61(4), 535–548 (2008).
  • Hong DS, Sebti SM, Newman RA et al. Phase I trial of a combination of the multikinase inhibitor sorafenib and the farnesyltransferase inhibitor tipifarnib in advanced malignancies. Clin. Cancer Res.15(22), 7061–7068 (2009).
  • Kwon EJ, Kish LS, Jaworsky C. The histologic spectrum of epithelial neoplasms induced by sorafenib. J. Am. Acad. Dermatol.61(3), 522–527 (2009).
  • Smith KJ, Haley H, Hamza S, Skelton HG. Eruptive keratoacanthoma-type squamous cell carcinomas in patients taking sorafenib for the treatment of solid tumors. Dermatol. Surg.35(11), 1766–1770 (2009).
  • Lodish MB, Stratakis CA. Endocrine side effects of broad-acting kinase inhibitors. Endocr. Relat. Cancer17(3), R233–R244 (2010).
  • Hoperia V, Larin A, Jensen K, Bauer A, Vasko V. Thyroid fine needle aspiration biopsies in children: study of cytological-histological correlation and immunostaining with thyroid peroxidase monoclonal antibodies. Int. J. Pediatr. Endocrinol.2010, 690108 (2010).
  • Bevers TB, Anderson BO, Bonaccio E et al. NCCN clinical practice guidelines in oncology: breast cancer screening and diagnosis. J. Natl Compr. Canc. Netw.7(10), 1060–1096 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.