61
Views
20
CrossRef citations to date
0
Altmetric
Review

Transmembrane mucins as novel therapeutic targets

, , &
Pages 835-848 | Published online: 10 Jan 2014

References

  • Kufe DW. Mucins in cancer: function, prognosis and therapy. Nat. Rev. Cancer9(12), 874–885 (2009).
  • Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat. Rev. Cancer4(1), 45–60 (2004).
  • Choudhury A, Moniaux N, Ringel J et al. Alternate splicing at the 3’-end of the human pancreatic tumor-associated mucin MUC4 cDNA. Teratog. Carcinog. Mutagen.21(1), 83–96 (2001).
  • Wreschner DH, Hareuveni M, Tsarfaty I et al. Human epithelial tumor antigen cDNA sequences. Differential splicing may generate multiple protein forms. Eur. J. Biochem.189(3), 463–473 (1990).
  • Ligtenberg MJ, Kruijshaar L, Buijs F, van Meijer M, Litvinov SV, Hilkens J. Cell-associated episialin is a complex containing two proteins derived from a common precursor. J. Biol. Chem.267(9), 6171–6177 (1992).
  • Julian J, Carson DD. Formation of MUC1 metabolic complex is conserved in tumor-derived and normal epithelial cells. Biochem. Biophys. Res. Commun.293(4), 1183–1190 (2002).
  • Sheng Z, Wu K, Carraway KL, Fregien N. Molecular cloning of the transmembrane component of the 13762 mammary adenocarcinoma sialomucin complex. A new member of the epidermal growth factor superfamily. J. Biol. Chem.267(23), 16341–16346 (1992).
  • Thathiah A, Blobel CP, Carson DD. Tumor necrosis factor-alpha converting enzyme/ADAM 17 mediates MUC1 shedding. J. Biol. Chem.278(5), 3386–3394 (2003).
  • Thathiah A, Carson DD. MT1-MMP mediates MUC1 shedding independent of TACE/ADAM17. Biochem. J.382(Pt 1), 363–373 (2004).
  • Tian E, Ten Hagen KG. Recent insights into the biological roles of mucin-type O-glycosylation. Glycoconj. J.26(3), 325–334 (2009).
  • Ten Hagen KG, Fritz TA, Tabak LA. All in the family: the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases. Glycobiology13(1), R1–R16 (2003).
  • Varki A. Selectins and other mammalian sialic acid-binding lectins. Curr. Opin. Cell. Biol.4(2), 257–266 (1992).
  • Sperandio M, Gleissner CA, Ley K. Glycosylation in immune cell trafficking. Immunol. Rev.230(1), 97–113 (2009).
  • Ramphal R, Arora SK. Recognition of mucin components by Pseudomonas aeruginosa. Glycoconj. J.18(9), 709–713 (2001).
  • Evans DJ Jr, Evans DG. Helicobacter pylori adhesins: review and perspectives. Helicobacter5(4), 183–195 (2000).
  • Hattrup CL, Gendler SJ. Structure and function of the cell surface (tethered) mucins. Annu. Rev. Physiol.70, 431–457 (2008).
  • Gendler SJ, Lancaster CA, Taylor-Papadimitriou J et al. Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J. Biol. Chem.265(25), 15286–15293 (1990).
  • Hanisch FG, Muller S. MUC1: the polymorphic appearance of a human mucin. Glycobiology10(5), 439–449 (2000).
  • Kui Wong N, Easton RL, Panico M et al. Characterization of the oligosaccharides associated with the human ovarian tumor marker CA125. J. Biol. Chem.278(31), 28619–28634 (2003).
  • Wesseling J, van der Valk SW, Hilkens J. A mechanism for inhibition of E-cadherin-mediated cell–cell adhesion by the membrane-associated mucin episialin/MUC1. Mol. Biol. Cell7(4), 565–577 (1996).
  • Komatsu M, Carraway CA, Fregien NL, Carraway KL. Reversible disruption of cell–matrix and cell–cell interactions by overexpression of sialomucin complex. J. Biol. Chem.272(52), 33245–33254 (1997).
  • Carson DD, Julian J, Lessey BA, Prakobphol A, Fisher SJ. MUC1 is a scaffold for selectin ligands in the human uterus. Front. Biosci.11, 2903–2908 (2006).
  • Gubbels JA, Felder M, Horibata S et al. MUC16 provides immune protection by inhibiting synapse formation between NK and ovarian tumor cells. Mol. Cancer9, 11 (2010).
  • Belisle JA, Horibata S, Jennifer GA et al. Identification of Siglec-9 as the receptor for MUC16 on human NK cells, B cells, and monocytes. Mol. Cancer9, 118 (2010).
  • Rump A, Morikawa Y, Tanaka M et al. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J. Biol. Chem.279(10), 9190–9198 (2004).
  • Carraway CA, Carraway KL. Sequestration and segregation of receptor kinases in epithelial cells: implications for ErbB2 oncogenesis. Sci. STKE2007(381), re3 (2007).
  • Carson DD. The cytoplasmic tail of MUC1: a very busy place. Sci. Signal.1(27), pe35 (2008).
  • Vasir B, Avigan, D, Wu et al. Dendritic cells induce MUC1 expression and polarization on human T cells by an IL-7-dependent mechanism. J. Immunol.174, 2376–2386 (2005).
  • Vandewielvankemenade E, Ligtenberg MJL, Deboer AJ et al. Episialin (Muc1) inhibits cytotoxic lymphocyte-target cell-interaction. J. Immunol.151(2), 767–776 (1993).
  • Komatsu M, Yee L, Carraway KL. Overexpression of sialomucin complex, a rat homologue of MUC4, inhibits tumor killing by lymphokine-activated killer cells. Cancer Res.59(9), 2229–2236 (1999).
  • Agrawal B, Krantz MJ, Reddish MA, Longenecker BM. Cancer-associated MUC1 mucin inhibits human T-cell proliferation, which is reversible by IL-2. Nat. Med.4(1), 43–49 (1998).
  • Patankar MS, Jing Y, Morrison JC et al. Potent suppression of natural killer cell response mediated by the ovarian tumor marker CA125. Gynecol. Oncol.99(3), 704–713 (2005).
  • Spicer AP, Rowse GJ, Lidner TK, Gendler SJ. Delayed mammary tumor progression in Muc-1 null mice. J. Biol. Chem.270(50), 30093–30101 (1995).
  • Kardon R, Price RE, Julian J et al. Bacterial conjunctivitis in Muc1 null mice. Invest. Ophthalmol. Vis. Sci.40(7), 1328–1335 (1999).
  • Danjo Y, Hazlett LD, Gipson IK. C57BL/6 mice lacking Muc1 show no ocular surface phenotype. Invest. Ophthalmol. Vis. Sci.41(13), 4080–4084 (2000).
  • Cheon DJ, Wang Y, Deng JM et al. CA125/MUC16 is dispensable for mouse development and reproduction. PLoS One4(3), e4675 (2009).
  • Jonckheere N, Van Seuningen I. The membrane-bound mucins: from cell signalling to transcriptional regulation and expression in epithelial cancers. Biochimie92(1), 1–11 (2010).
  • Gendler SJ. MUC1, the renaissance molecule. J. Mammary Gland Biol. Neoplasia6(3), 339–353 (2001).
  • Brayman M, Thathiah A, Carson DD. MUC1: a multifunctional cell surface component of reproductive tissue epithelia. Reprod. Biol. Endocrinol.2, 4 (2004).
  • Dent GA, Civalier CJ, Brecher ME, Bentley SA. MUC1 expression in hematopoietic tissues. Am. J. Clin. Pathol.111(6), 741–747 (1999).
  • Chang JF, Zhao HL, Phillips J, Greenburg G. The epithelial mucin, MUC1, is expressed on resting T lymphocytes and can function as a negative regulator of T cell activation. Cell. Immunol.201(2), 83–88 (2000).
  • Agrawal B, Krantz MJ, Parker J, Longenecker BM. Expression of MUC1 mucin on activated human T cells: implications for a role of MUC1 in normal immune regulation. Cancer Res.58(18), 4079–4081 (1998).
  • Franke FE, Kraus S, Eiermann C, Pauls K, Lalani EN, Bergmann M. MUC1 in normal and impaired spermatogenesis. Mol. Hum. Reprod.7(6), 505–512 (2001).
  • Chaturvedi P, Singh AP, Batra SK. Structure, evolution, and biology of the MUC4 mucin. FASEB J.22(4), 966–981 (2008).
  • Argueso P, Spurr-Michaud S, Russo CL, Tisdale A, Gipson IK. MUC16 mucin is expressed by the human ocular surface epithelia and carries the H185 carbohydrate epitope. Invest. Ophthalmol. Vis. Sci.44(6), 2487–2495 (2003).
  • Davies JR, Kirkham S, Svitacheva N, Thornton DJ, Carlstedt I. MUC16 is produced in tracheal surface epithelium and submucosal glands and is present in secretions from normal human airway and cultured bronchial epithelial cells. Int. J. Biochem. Cell. Biol.39(10), 1943–1954 (2007).
  • Zeimet AG, Offner FA, Muller-Holzner E et al. Peritoneum and tissues of the female reproductive tract as physiological sources of CA-125. Tumour Biol.19(4), 275–282 (1998).
  • Zeimet AG, Muller-Holzner E, Marth C, Daxenbichler G, Dapunt O. Tumor marker CA-125 in tissues of the female reproductive tract and in serum during the normal menstrual cycle. Fertil. Steril.59(5), 1028–1035 (1993).
  • Nustad K, Lebedin Y, Lloyd KO et al. Epitopes on CA 125 from cervical mucus and ascites fluid and characterization of six new antibodies. Third report from the ISOBM TD-1 workshop. Tumour Biol.23(5), 303–314 (2002).
  • O’Connor JC, Julian J, Lim SD, Carson DD. MUC1 expression in human prostate cancer cell lines and primary tumors. Prostate Cancer Prostatic Dis.8(1), 36–44 (2005).
  • Singh AP, Chauhan SC, Bafna S et al. Aberrant expression of transmembrane mucins, MUC1 and MUC4, in human prostate carcinomas. Prostate66(4), 421–429 (2006).
  • Bast RC Jr, Klug TL, St John E et al. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N. Engl. J. Med.309(15), 883–887 (1983).
  • Ginath S, Menczer J, Fintsi Y, Ben-Shem E, Glezerman M, Avinoach I. Tissue and serum CA125 expression in endometrial cancer. Int. J. Gynecol. Cancer12(4), 372–375 (2002).
  • Carson DD, Dharmaraj N, Wang P. Transcriptional control of the expression of MUC1. Expert Rev. Endocrinol. Metab.3(4), 463–471 (2008).
  • McNeer RR, Carraway CA, Fregien NL, Carraway KL. Characterization of the expression and steroid hormone control of sialomucin complex in the rat uterus: implications for uterine receptivity. J. Cell. Physiol.176(1), 110–119 (1998).
  • Idris N, Carraway KL. Sialomucin complex (Muc4) expression in the rat female reproductive tract. Biol. Reprod.61(6), 1431–1438 (1999).
  • Lange C, Fernandez J, Shim D, Spurr-Michaud S, Tisdale A, Gipson IK. Mucin gene expression is not regulated by estrogen and/or progesterone in the ocular surface epithelia of mice. Exp. Eye Res.77(1), 59–68 (2003).
  • Idris N, Carraway KL. Regulation of sialomucin complex/Muc4 expression in rat uterine luminal epithelial cells by transforming growth factor-β: implications for blastocyst implantation. J. Cell. Physiol.185(2), 310–316 (2000).
  • Gipson IK, Ho SB, Spurr-Michaud SJ et al. Mucin genes expressed by human female reproductive tract epithelia. Biol. Reprod.56(4), 999–1011 (1997).
  • Gipson IK, Blalock T, Tisdale A et al. MUC16 is lost from the uterodome (pinopode) surface of the receptive human endometrium: in vitro evidence that MUC16 is a barrier to trophoblast adherence. Biol. Reprod.78(1), 134–142 (2008).
  • Brayman MJ, Julian J, Mulac-Jericevic B, Conneely OM, Edwards DP, Carson DD. Progesterone receptor isoforms A and B differentially regulate MUC1 expression in uterine epithelial cells. Mol. Endocrinol.20(10), 2278–2291 (2006).
  • Wang P, Dharmaraj N, Brayman MJ, Carson DD. Peroxisome proliferator-activated receptor γ activation inhibits progesterone-stimulated human MUC1 expression. Mol. Endocrinol.24(7), 1368–1379 (2010).
  • Dharmaraj N, Wang P, Carson DD. Cytokine and progesterone receptor interplay in the regulation of MUC1 gene expression. Mol. Endocrinol.24(12), 2253–2266 (2010).
  • Perrais M, Pigny P, Ducourouble MP et al. Characterization of human mucin gene MUC4 promoter: importance of growth factors and proinflammatory cytokines for its regulation in pancreatic cancer cells. J. Biol. Chem.276(33), 30923–30933 (2001).
  • Andrianifahanana M, Singh AP, Nemos C et al. IFN-γ-induced expression of MUC4 in pancreatic cancer cells is mediated by STAT-1 upregulation: a novel mechanism for IFN-γ response. Oncogene26(51), 7251–7261 (2007).
  • Jonckheere N, Perrais M, Mariette C et al. A role for human MUC4 mucin gene, the ErbB2 ligand, as a target of TGF-β in pancreatic carcinogenesis. Oncogene23(34), 5729–5738 (2004).
  • Choudhury A, Singh RK, Moniaux N, El-Metwally TH, Aubert JP, Batra SK. Retinoic acid-dependent transforming growth factor-β 2-mediated induction of MUC4 mucin expression in human pancreatic tumor cells follows retinoic acid receptor-α signaling pathway. J. Biol. Chem.275(43), 33929–33936 (2000).
  • Andrianifahanana M, Agrawal A, Singh AP et al. Synergistic induction of the MUC4 mucin gene by interferon-γ and retinoic acid in human pancreatic tumour cells involves a reprogramming of signalling pathways. Oncogene24(40), 6143–6154 (2005).
  • Jonckheere N, Vincent A, Perrais M et al. The human mucin MUC4 is transcriptionally regulated by caudal-related homeobox, hepatocyte nuclear factors, forkhead box A, and GATA endodermal transcription factors in epithelial cancer cells. J. Biol. Chem.282(31), 22638–22650 (2007).
  • Piessen G, Jonckheere N, Vincent A et al. Regulation of the human mucin MUC4 by taurodeoxycholic and taurochenodeoxycholic bile acids in oesophageal cancer cells is mediated by hepatocyte nuclear factor 1α. Biochem. J.402(1), 81–91 (2007).
  • Albertsmeyer AC, Kakkassery V, Spurr-Michaud S, Beeks O, Gipson IK. Effect of pro-inflammatory mediators on membrane-associated mucins expressed by human ocular surface epithelial cells. Exp. Eye Res.90(3), 444–451 (2010).
  • Thapi A, Binder D, Roseales N, Yan XJ, Lash AE, Spriggs DR. Transcription factors that regulate MUC16 expression in ovarian cancer. Presented at: AACR 102nd Annual Meeting. Orlando, FL, USA, 2–6 April 2011.
  • Van Seuningen I, Vincent A. Mucins: a new family of epigenetic biomarkers in epithelial cancers. Expert Opin. Med. Diagnostics3(4), 411–442 (2009).
  • Smorodinsky N, Weiss M, Hartmann ML et al. Detection of a secreted MUC1/SEC protein by MUC1 isoform specific monoclonal antibodies. Biochem. Biophys. Res. Commun.228(1), 115–121 (1996).
  • Zrihan-Licht S, Vos HL, Baruch A et al. Characterization and molecular cloning of a novel MUC1 protein, devoid of tandem repeats, expressed in human breast cancer tissue. Eur. J. Biochem.224(2), 787–795 (1994).
  • Baruch A, Hartmann M, Zrihan-Licht S et al. Preferential expression of novel MUC1 tumor antigen isoforms in human epithelial tumors and their tumor-potentiating function. Int. J. Cancer71(5), 741–749 (1997).
  • Oosterkamp HM, Scheiner L, Stefanova MC, Lloyd KO, Finstad CL. Comparison of MUC-1 mucin expression in epithelial and non-epithelial cancer cell lines and demonstration of a new short variant form (MUC-1/Z). Int. J. Cancer72(1), 87–94 (1997).
  • Levitin F, Baruch A, Weiss M et al. A novel protein derived from the MUC1 gene by alternative splicing and frameshifting. J. Biol. Chem.280(11), 10655–10663 (2005).
  • Choudhury A, Moniaux N, Winpenny JP, Hollingsworth MA, Aubert JP, Batra SK. Human MUC4 mucin cDNA and its variants in pancreatic carcinoma. J. Biochem.128(2), 233–243 (2000).
  • Moniaux N, Escande F, Batra SK, Porchet N, Laine A, Aubert JP. Alternative splicing generates a family of putative secreted and membrane-associated MUC4 mucins. Eur. J. Biochem.267(14), 4536–4544 (2000).
  • Briggs S, Price MR, Tendler SJ. Immune recognition of linear epitopes in peptide fragments of epithelial mucins. Immunology73(4), 505–507 (1991).
  • Hayes DF, Sekine H, Ohno T, Abe M, Keefe K, Kufe DW. Use of a murine monoclonal antibody for detection of circulating plasma DF3 antigen levels in breast cancer patients. J. Clin. Invest.75(5), 1671–1678 (1985).
  • Kufe DW. Targeting the human MUC1 oncoprotein: a tale of two proteins. Cancer Biol. Ther.7(1), 81–84 (2008).
  • Nacht M, Ferguson AT, Zhang W et al. Combining serial analysis of gene expression and array technologies to identify genes differentially expressed in breast cancer. Cancer Research59(21), 5464–5470 (1999).
  • Rakha EA, Boyce RWG, Abd El-Rehim D et al. Expression of mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and their prognostic significance in human breast cancer. Mod. Pathol.18(10), 1295–1304 (2005).
  • Chauhan SC, Singh AP, Ruiz F et al. Aberrant expression of MUC4 in ovarian carcinoma: diagnostic significance alone and in combination with MUC1 and MUC16 (CA125). Mod. Pathol.19(10), 1386–1394 (2006).
  • Nakamori S, Ota DM, Cleary KR, Shirotani K, Irimura T. MUC1 mucin expression as a marker of progression and metastasis of human colorectal carcinoma. Gastroenterology106(2), 353–361 (1994).
  • Hiraga Y, Tanaka S, Haruma K et al. Immunoreactive MUC1 expression at the deepest invasive portion correlates with prognosis of colorectal cancer. Oncology55(4), 307–319 (1998).
  • Luttges J, Feyerabend B, Buchelt T, Pacena M, Kloppel G. The mucin profile of noninvasive and invasive mucinous cystic neoplasms of the pancreas. Am. J. Surg. Pathol.26(4), 466–471 (2002).
  • Kashiwagi H, Kijima H, Dowaki S et al. DF3 expression in human gallbladder carcinoma: significance for lymphatic invasion. Int. J. Oncol.16(3), 455–459 (2000).
  • Nitta T, Sugihara K, Tsuyama S, Murata F. Immunohistochemical study of MUC1 mucin in premalignant oral lesions and oral squamous cell carcinoma: association with disease progression, mode of invasion, and lymph node metastasis. Cancer88(2), 245–254 (2000).
  • Miyazaki K, Kurishima K, Kagohashi K et al. Serum KL-6 levels in lung cancer patients with or without interstitial lung disease. J. Clin. Lab. Anal.24(5), 295–299 (2010).
  • Nagai S, Takenaka K, Sonobe M, Ogawa E, Wada H, Tanaka F. A novel classification of MUC1 expression is correlated with tumor differentiation and postoperative prognosis in non-small cell lung cancer. J. Thorac. Oncol.1(1), 46–51 (2006).
  • Tsutsumida H, Goto M, Kitajima S et al. MUC4 expression correlates with poor prognosis in small-sized lung adenocarcinoma. Lung Cancer55(2), 195–203 (2007).
  • Satoh S, Hinoda Y, Hayashi T, Burdick MD, Imai K, Hollingsworth MA. Enhancement of metastatic properties of pancreatic cancer cells by MUC1 gene encoding an anti-adhesion molecule. Int. J. Cancer88(4), 507–518 (2000).
  • Raina D, Ahmad R, Kumar S et al. MUC1 oncoprotein blocks nuclear targeting of c-Abl in the apoptotic response to DNA damage. EMBO J.25(16), 3774–3783 (2006).
  • Zhang K, Baeckstrom D, Brevinge H, Hansson GC. Secreted MUC1 mucins lacking their cytoplasmic part and carrying sialyl-Lewis a and x epitopes from a tumor cell line and sera of colon carcinoma patients can inhibit HL-60 leukocyte adhesion to E-selectin-expressing endothelial cells. J. Cell. Biochem.60(4), 538–549 (1996).
  • Nath D, Hartnell A, Happerfield L et al. Macrophage-tumour cell interactions: identification of MUC1 on breast cancer cells as a potential counter-receptor for the macrophage-restricted receptor, sialoadhesin. Immunology98(2), 213–219 (1999).
  • Komatsu M, Tatum L, Altman NH, Carraway CAC, Carraway KL. Potentiation of metastasis by cell surface sialomucin complex (rat MUC4), a multifunctional anti-adhesive glycoprotein. Int. J. Cancer87(4), 480–486 (2000).
  • Kondo K, Kohno N, Yokoyama A, Hiwada K. Decreased MUC1 expression induces E-cadherin-mediated cell adhesion of breast cancer cell lines. Cancer Res.58(9), 2014–2019 (1998).
  • Wesseling J, Vandervalk SW, Vos HL, Sonnenberg A, Hilkens J. Episialin (MUC1) overexpression inhibits integrin-mediated cell-adhesion to extracellular-matrix components. J. Cell. Biol.129(1), 255–265 (1995).
  • Carraway KL, Theodoropoulos G, Kozloski GA, Carraway CAC. Muc4/MUC4 functions and regulation in cancer. Future Oncol.5(10), 1631–1640 (2009).
  • Workman HC, Sweeney C, Carraway KL. The membrane mucin Muc4 inhibits apoptosis induced by multiple insults via ErbB2-dependent and ErbB2-independent mechanisms. Cancer Res.69(7), 2845–2852 (2009).
  • Comamala M, Pinard M, Theriault C et al. Downregulation of cell surface CA125/MUC16 induces epithelial-to-mesenchymal transition and restores EGFR signalling in NIH:OVCAR3 ovarian carcinoma cells. Br. J. Cancer104(6), 989–999 (2011).
  • Gubbels JAA, Belisle J, Onda M et al. Mesothelin-MUC16 binding is a high affinity, N-glycan dependent interaction that facilitates peritoneal metastasis of ovarian tumors. Mol. Cancer5(1), 50 (2006).
  • Seelenmeyer C, Wegehingel S, Lechner J, Nickel W. The cancer antigen CA125 represents a novel counter receptor for galectin-1. J. Cell. Sci.116(7), 1305–1318 (2003).
  • Corfield AP, Myerscough N, Longman R, Sylvester P, Arul S, Pignatelli M. Mucins and mucosal protection in the gastrointestinal tract: new prospects for mucins in the pathology of gastrointestinal disease. Gut47(4), 589–594 (2000).
  • Parry S, Hanisch FG, Leir SH et al.N-Glycosylation of the MUC1 mucin in epithelial cells and secretions. Glycobiology16(7), 623–634 (2006).
  • Baldus SE, Engelmann K, Hanisch FG. MUC1 and the MUCs: A family of human mucins with impact in cancer biology. Crit. Rev. Clin. Lab. Sci.41(2), 189–231 (2004).
  • Croce MV, Isla-Larrain M, Tur R, Rabassa ME, Segal-Eiras A. Antigenic differences between metastatic cells in bone marrow and primary tumours and the anti-MUC1 humoral immune response induced in breast cancer patients. Clin. Exp. Metastasis21(2), 139–147 (2004).
  • Burke PA, Gregg JP, Bakhtiar B et al. Characterization of MUC1 glycoprotein on prostate cancer for selection of targeting molecules. Int. J. Oncol.29(1), 49–55 (2006).
  • Demichelis SO, Alberdi CG, Servi WJ, Isla-Larrain MT, Segal-Eiras A, Croce MV. Comparative immunohistochemical study of MUC1 and carbohydrate antigens in breast benign disease and normal mammary gland. Appl. Immunohistochem. Mol. Morphol.18(1), 41–50 (2010).
  • Wang PH, Li YF, Juang CM et al. Altered mRNA expression of sialyltransferase in squamous cell carcinomas of the cervix. Gynecol. Oncol.83(1), 121–127 (2001).
  • Wang PH, Lo WL, Hsu CC et al. Different enzyme activities of sialyltransferases in gynecological cancer cell lines. Eur. J. Gynaecol. Oncol.23(3), 221–226 (2002).
  • Zhu YT, Srivatana U, Ullah A, Gagneja H, Berenson CS, Lance P. Suppression of a sialyltransferase by antisense DNA reduces invasiveness of human colon cancer cells in vitro. Biochim. Biophys. Acta.1536(2–3), 148–160 (2001).
  • Sewell R, Backstrom M, Dalziel M et al. The ST6GalNAc-I sialyltransferase localizes throughout the golgi and is responsible for the synthesis of the tumor-associated Sialyl-Tn O-glycan in human breast cancer. J. Biol. Chem.281(6), 3586–3594 (2006).
  • Picco G, Julien S, Brockhausen I et al. Over-expression of ST3Gal-I promotes mammary tumorigenesis. Glycobiology20(10), 1241–1250 (2010).
  • Jun L, Yuanshu W, Yanying X et al. Altered mRNA expressions of sialyltransferases in human gastric cancer tissues. Med. Oncol. DOI: 10.1007/s12032-010-9771-1 (2010) (Epub ahead of print).
  • Vazquez-Martin C, Cuevas E, Gil-Martin E, Fernandez-Briera A. Correlation analysis between tumor-associated antigen sialyl-Tn expression and ST6GalNAc I activity in human colon adenocarcinoma. Oncology67(2), 159–165 (2004).
  • Bouanene H, Sahrawi W, Mokni M et al. Correlation between heterogeneous expression of sialyltransferases and MUC16 in ovarian tumor tissues. Onkologie34(4), 165–169 (2011).
  • Gendler SJ. MUC1, the renaissance molecule. J. Mammary Gland. Biol.6(3), 339–353 (2001).
  • Lee G, Ge BX, Huang TK, Zheng G, Duan JT, Wang IHY. Positive identification of CA215 pan cancer biomarker from serum specimens of cancer patients. Cancer Biomark.6(2), 111–117 (2010).
  • Lau SK, Weiss LM, Chu PG. Differential expression of MUC1, MUC2, and MUC5AC in carcinomas of various sites: an immunohistochemical study. Am. J. Clin. Pathol.122(1), 61–69 (2004).
  • Schroeder JA, Al Masri A, Adriance MC et al. MUC1 overexpression results in mammary gland tumorigenesis and prolonged alveolar differentiation. Oncogene23(34), 5739–5747 (2004).
  • Kesisis G, Kontovinis LF, Gennatas K, Kortsaris AH. Biological markers in breast cancer prognosis and treatment. J. Buon.15(3), 447–454 (2010).
  • Hayes DF, Bast RC, Desch CE et al. Tumor marker utility grading system: a framework to evaluate clinical utility of tumor markers. J. Natl. Cancer Inst.88(20), 1456–1466 (1996).
  • Walsh MD, Luckie SM, Cummings MC, Antalis TM, McGuckin MA. Heterogeneity of MUC1 expression by human breast carcinoma cell lines in vivo and in vitro. Breast Cancer Res. Treat.58(3), 255–266 (1999).
  • Al-Azawi D, Kelly G, Myers E et al. CA 15–13 is predictive of response and disease recurrence following treatment in locally advanced breast cancer. BMC Cancer6, 220 (2006).
  • Kumpulainen EJ, Keskikuru RJ, Johansson RT. Serum tumor marker CA 15.3 and stage are the two most powerful predictors of survival in primary breast cancer. Breast Cancer Res. Treat.76(2), 95–102 (2002).
  • Workman HC, Miller JK, Ingalla EQ et al. The membrane mucin MUC4 is elevated in breast tumor lymph node metastases relative to matched primary tumors and confers aggressive properties to breast cancer cells. Breast Cancer Research11(5), R70 (2009).
  • Mukhopadhyay P, Chakraborty S, Ponnusamy MP, Lakshmanan I, Jain M, Batra SK. Mucins in the pathogenesis of breast cancer: implications in diagnosis, prognosis and therapy. Biochim. Biophys. Acta.1815(2), 224–240 (2011).
  • Moritani S, Ichihara S, Hasegawa M et al. Serous papillary adenocarcinoma of the female genital organs and invasive micropapillary carcinoma of the breast. Are WT1, CA125, and GCDFP-15 useful in differential diagnosis? Hum. Pathol.39(5), 666–671 (2008).
  • Cozzi PJ, Wang J, Delprado W et al. Muc1, Muc2, Muc4, Muc5ac and Muc6 expression in the progression of prostate cancer. Clin. Exp. Metastas.22(7), 565–573 (2005).
  • Kirschenbaum A, Itzkowitz SH, Wang JP, Yao S, Eliashvili M, Levine AC. MUC1 expression in prostate carcinoma: correlation with grade and stage. Mol. Urol.3(3), 163–167 (1999).
  • Pemberton L, Taylor-Papadimitriou J, Gendler SJ. Antibodies to the cytoplasmic domain of the MUC1 mucin show conservation throughout mammals. Biochem. Biophys. Res. Commun.185(1), 167–175 (1992).
  • Price MR, Rye PD, Petrakou E et al. Summary report on the ISOBM TD-4 Workshop: analysis of 56 monoclonal antibodies against the MUC1 mucin. San Diego, Calif., November 17–23, 1996. Tumour Biol.19(Suppl. 1), 1–20 (1998).
  • O’Connor JC, Julian J, Lim SD, Carson DD. MUC1 expression in human prostate cancer cell lines and primary tumors. Prostate Cancer Prostatic Dis.8(1), 36–44 (2005).
  • Capstick V, Maclean GD, Suresh MR et al. Clinical evaluation of a new two-site assay for CA125 antigen. Int. J. Biol. Markers6(2), 129–135 (1991).
  • Bast RC, Xu FJ, Yu YH, Barnhill S, Zhang Z, Mills GB. Ca 125: the past and the future. Int. J. Biol. Marker13(4), 179–187 (1998).
  • Bafna S, Kaur S, Batra SK. Membrane-bound mucins: the mechanistic basis for alterations in the growth and survival of cancer cells. Oncogene29(20), 2893–2904 (2010).
  • Van Elssen CH, Frings PW, Bot FJ et al. Expression of aberrantly glycosylated Mucin-1 in ovarian cancer. Histopathology57(4), 597–606 (2010).
  • Budiu RA, Mantia-Smaldone G, Elishaev E et al. Soluble MUC1 and serum MUC1-specific antibodies are potential prognostic biomarkers for platinum-resistant ovarian cancer. Cancer Immunol. Immunother.60(7), 975–984 (2011).
  • Seregni E, Botti C, Lombardo C et al. Pattern of mucin gene expression in normal and neoplastic lung tissues. Anticancer Res.16(4B), 2209–2213 (1996).
  • Lopez-Ferrer A, Curull V, Barranco C et al. Mucins as differentiation markers in bronchial epithelium. Squamous cell carcinoma and adenocarcinoma display similar expression patterns. Am. J. Respir. Cell. Mol. Biol.24(1), 22–29 (2001).
  • Guddo F, Giatromanolaki A, Koukourakis MI et al. MUC1 (episialin) expression in non-small cell lung cancer is independent of EGFR and c-erbB-2 expression and correlates with poor survival in node positive patients. J. Clin. Pathol.51(9), 667–671 (1998).
  • Ohgami A, Tsuda T, Osaki T et al. MUC1 mucin mRNA expression in stage I lung adenocarcinoma and its association with early recurrence. Ann. Thorac. Surg.67(3), 810–814 (1999).
  • MacDermed DM, Khodarev NN, Pitroda SP et al. MUC1-associated proliferation signature predicts outcomes in lung adenocarcinoma patients. BMC Med. Genomics3, 16 (2010).
  • Kuemmel A, Single K, Bittinger F et al. TA-MUC1 epitope in non-small cell lung cancer. Lung Cancer63(1), 98–105 (2009).
  • Kwon KY, Ro JY, Singhal N et al. MUC4 expression in non-small cell lung carcinomas: relationship to tumor histology and patient survival. Arch. Pathol. Lab. Med.131(4), 593–598 (2007).
  • Mollick JA, Hodi FS, Soiffer RJ, Nadler LM, Dranoff G. MUC1-like tandem repeat proteins are broadly immunogenic in cancer patients. Cancer Immun.3, 3 (2003).
  • Singh R, Bandyopadhyay D. MUC1: a target molecule for cancer therapy. Cancer Biol. Ther.6(4), 481–486 (2007).
  • Beatson RE, Taylor-Papadimitriou J, Burchell JM. MUC1 immunotherapy. Immunotherapy2(3), 305–327 (2010).
  • Verheijen RH, Massuger LF, Benigno BB et al. Phase III trial of intraperitoneal therapy with yttrium-90-labeled HMFG1 murine monoclonal antibody in patients with epithelial ovarian cancer after a surgically defined complete remission. J. Clin. Oncol.24(4), 571–578 (2006).
  • Buckman R, De Angelis C, Shaw P et al. Intraperitoneal therapy of malignant ascites associated with carcinoma of ovary and breast using radioiodinated monoclonal antibody 2G3. Gynecol. Oncol.47(1), 102–109 (1992).
  • Oei AL, Massuger LF, Oyen WJ. Extraperitoneal leakage as a possible explanation for failure of one-time intraperitoneal treatment in ovarian cancer. Cancer Biother. Radiopharm.22(4), 508–514 (2007).
  • Ocean AJ, Guarino MJ, Pennington KL et al. Activity of fractionated radioimmunotherapy with clivatuzumab tetraxetan combined with low-dose gemcitabine (Gem) in advanced pancreatic cancer (APC). J. Clin. Oncol.29(4 Suppl.), 240 (2011).
  • Gulec SA, Cohen SJ, Pennignton KL et al. Treatment of advanced pancreatic carcinoma with 90Y-clivatuzumab tetraxetan: a Phase I single-dose escalation trial. Clin. Cancer Res.17(12), 4091–4100 (2011).
  • Gold DV, Goggins M, Modrak DE et al. Detection of early-stage pancreatic adenocarcinoma. Cancer Epidemiol. Biomarkers Prev.19(11), 2786–2794 (2010).
  • Chen Y, Clark S, Wong T et al. Armed antibodies targeting the mucin repeats of the ovarian cancer antigen, MUC16, are highly efficacious in animal tumor models. Cancer Res.67(10), 4924–4932 (2007).
  • Rubinstein DB, Karmely M, Pichinuk E et al. The MUC1 oncoprotein as a functional target: immunotoxin binding to α/β junction mediates cell killing. Int. J. Cancer124(1), 46–54 (2009).
  • Dharma Rao T, Park KJ, Smith-Jones P et al. Novel monoclonal antibodies against the proximal (carboxy-terminal) portions of MUC16. Appl. Immunohistochem. Mol. Morphol.18(5), 462–472 (2010).
  • Bitler BG, Menzl I, Huerta CL et al. Intracellular MUC1 peptides inhibit cancer progression. Clin. Cancer Res.15(1), 100–109 (2009).
  • Kufe DW. Functional targeting of the MUC1 oncogene in human cancers. Cancer Biol. Ther.8(13), 1197–1203 (2009).
  • Raina D, Ahmad R, Joshi MD et al. Direct targeting of the mucin 1 oncoprotein blocks survival and tumorigenicity of human breast carcinoma cells. Cancer Res.69(12), 5133–5141 (2009).
  • Joshi MD, Ahmad R, Yin L et al. MUC1 oncoprotein is a druggable target in human prostate cancer cells. Mol. Cancer Ther.8(11), 3056–3065 (2009).
  • Zhou Y, Rajabi H, Kufe D. Mucin 1 C-terminal subunit oncoprotein is a target for small-molecule inhibitors. Mol. Pharmacol.79(5), 886–893 (2011).
  • Torres MP, Ponnusamy MP, Chakraborty S et al. Effects of thymoquinone in the expression of mucin 4 in pancreatic cancer cells: implications for the development of novel cancer therapies. Mol. Cancer Ther.9(5), 1419–1431 (2010).
  • Sangha R, Butts C. L-BLP25: a peptide vaccine strategy in non small cell lung cancer. Clin. Cancer Res.13(15 Pt 2), s4652–s4654 (2007).
  • Sangha R, North S. L-BLP25: a MUC1-targeted peptide vaccine therapy in prostate cancer. Expert Opin. Biol. Ther.7(11), 1723–1730 (2007).
  • Ramlau R, Quoix E, Rolski J et al. A Phase II study of Tg4010 (Mva-Muc1-Il2) in association with chemotherapy in patients with stage III/IV non-small cell lung cancer. J. Thorac. Oncol.3(7), 735–744 (2008).
  • Kaufman HL, Kim-Schulze S, Manson K et al. Poxvirus-based vaccine therapy for patients with advanced pancreatic cancer. J. Transl. Med.5, 60 (2007).
  • Gulley JL, Arlen PM, Tsang KY et al. Pilot study of vaccination with recombinant CEA-MUC-1-TRICOM poxviral-based vaccines in patients with metastatic carcinoma. Clin. Cancer Res.14(10), 3060–3069 (2008).
  • Tang CK, Katsara M, Apostolopoulos V. Strategies used for MUC1 immunotherapy: human clinical studies. Expert Rev. Vaccines7(7), 963–975 (2008).
  • Savla R, Taratula O, Garbuzenko O, Minko T. Tumor targeted quantum dot-mucin 1 aptamer-doxorubicin conjugate for imaging and treatment of cancer. J. Control Release153(1), 16–22 (2011).
  • Ferreira CS, Matthews CS, Missailidis S. DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol.27(6), 289–301 (2006).
  • Glazer ES, Zhu C, Massey KL et al. Noninvasive radiofrequency field destruction of pancreatic adenocarcinoma xenografts treated with targeted gold nanoparticles. Clin. Cancer Res.16(23), 5712–5721 (2010).
  • Constantinou PE, Danysh BP, Lukianova-Helb EY, Lapotko DO, Carson DD. Targeted nanoparticle delivery and cytolysis. Presented at: Nano in Cancer: Linking Chemistry, Biology, and Clinical Applications In Vivo (AACR Special Conference). Miami, FL, USA, 12–15 January 2011.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.