172
Views
2
CrossRef citations to date
0
Altmetric
Review

Molecular mechanisms of cachexia in chronic disease

, &
Pages 73-90 | Published online: 10 Jan 2014

References

  • Evans WJ, Morley JE, Argiles J et al. Cachexia: a new definition. Clin. Nutr.27(6), 793–799 (2008).
  • Argiles JM, Anker SD, Evans WJ et al. Consensus on cachexia definitions. J. Am. Med. Dir. Assoc.11(4), 229–230 (2010).
  • Fearon K, Strasser F, Anker SD et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol.12(5), 489–495 (2011).
  • Tan BH, Fearon KC. Cachexia: prevalence and impact in medicine. Curr. Opin. Clin. Nutr. Metab. Care11(4), 400–407 (2008).
  • Muscaritoli M, Anker SD, Argiles J et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by special interest groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin. Nutr.29(2), 154–159 (2010).
  • Wagner PD. Possible mechanisms underlying the development of cachexia in COPD. Eur. Respir. J.31(3), 492–501 (2008).
  • Argiles JM, Busquets S, Toledo M, Lopez-Soriano FJ. The role of cytokines in cancer cachexia. Curr. Opin. Support Palliat. Care3(4), 263–268 (2009).
  • Tisdale MJ. Mechanisms of cancer cachexia. Physiol. Rev.89(2), 381–410 (2009).
  • Laviano A, Inui A, Marks DL et al. Neural control of the anorexia-cachexia syndrome. Am. J. Physiol. Endocrinol. Metab.295(5), E1000–E1008 (2008).
  • Garfield AS, Lam DD, Marston OJ, Przydzial MJ, Heisler LK. Role of central melanocortin pathways in energy homeostasis. Trends Endocrinol. Metab.20(5), 203–215 (2009).
  • Tao YX. The melanocortin-4 receptor: physiology, pharmacology, and pathophysiology. Endocr. Rev.31(4), 506–543 (2010).
  • Krasnow SM, Marks DL. Neuropeptides in the pathophysiology and treatment of cachexia. Curr. Opin. Support Palliat. Care4(4), 266–271 (2010).
  • Tolle V, Low MJ. In vivo evidence for inverse agonism of Agouti-related peptide in the central nervous system of proopiomelanocortin-deficient mice. Diabetes57(1), 86–94 (2008).
  • Bagnol D, Lu XY, Kaelin CB et al. Anatomy of an endogenous antagonist: relationship between Agouti-related protein and proopiomelanocortin in brain. J. Neurosci.19(18), RC26 (1999).
  • Huszar D, Lynch CA, Fairchild-Huntress V et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell88(1), 131–141 (1997).
  • Tung YC, Rimmington D, O’Rahilly S, Coll AP. Pro-opiomelanocortin modulates the thermogenic and physical activity responses to high-fat feeding and markedly influences dietary fat preference. Endocrinology148(11), 5331–5338 (2007).
  • Luquet S, Perez FA, Hnasko TS, Palmiter RD. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science310(5748), 683–685 (2005).
  • Appleyard SM, Bailey TW, Doyle MW et al. Proopiomelanocortin neurons in nucleus tractus solitarius are activated by visceral afferents: regulation by cholecystokinin and opioids. J. Neurosci.25(14), 3578–3585 (2005).
  • Fioramonti X, Contie S, Song Z, Routh VH, Lorsignol A, Penicaud L. Characterization of glucosensing neuron subpopulations in the arcuate nucleus: integration in neuropeptide Y and pro-opio melanocortin networks? Diabetes56(5), 1219–1227 (2007).
  • Parton LE, Ye CP, Coppari R et al. Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature449(7159), 228–232 (2007).
  • Cheung W, Yu PX, Little BM, Cone RD, Marks DL, Mak RH. Role of leptin and melanocortin signaling in uremia-associated cachexia. J. Clin. Invest.115(6), 1659–1665 (2005).
  • Marks DL, Butler AA, Turner R, Brookhart G, Cone RD. Differential role of melanocortin receptor subtypes in cachexia. Endocrinology144(4), 1513–1523 (2003).
  • Sartin JL, Marks DL, McMahon CD et al. Central role of the melanocortin-4 receptors in appetite regulation after endotoxin. J. Anim. Sci.86(10), 2557–2567 (2008).
  • Joppa MA, Gogas KR, Foster AC, Markison S. Central infusion of the melanocortin receptor antagonist agouti-related peptide (AgRP(83-132)) prevents cachexia-related symptoms induced by radiation and colon-26 tumors in mice. Peptides28(3), 636–642 (2007).
  • Scarlett JM, Bowe DD, Zhu X, Batra AK, Grant WF, Marks DL. Genetic and pharmacologic blockade of central melanocortin signaling attenuates cardiac cachexia in rodent models of heart failure. J. Endocrinol.206(1), 121–130 (2010).
  • Cheung WW, Kuo HJ, Markison S et al. Peripheral administration of the melanocortin-4 receptor antagonist NBI-12i ameliorates uremia-associated cachexia in mice. J. Am. Soc. Nephrol.18(9), 2517–2524 (2007).
  • Laviano A, Meguid MM, Rossi-Fanelli F. Cancer anorexia: clinical implications, pathogenesis, and therapeutic strategies. Lancet Oncol.4(11), 686–694 (2003).
  • Chance WT, Xiao C, Dayal R, Sheriff S. Alteration of NPY and Y1 receptor in dorsomedial and ventromedial areas of hypothalamus in anorectic tumor-bearing rats. Peptides28(2), 295–301 (2007).
  • Grossberg AJ, Scarlett JM, Marks DL. Hypothalamic mechanisms in cachexia. Physiol. Behav.100(5), 478–489 (2010).
  • Anker SD, Ponikowski PP, Clark AL et al. Cytokines and neurohormones relating to body composition alterations in the wasting syndrome of chronic heart failure. Eur. Heart J.20(9), 683–693 (1999).
  • Arruda AP, Milanski M, Romanatto T et al. Hypothalamic actions of tumor necrosis factor α provide the thermogenic core for the wastage syndrome in cachexia. Endocrinology151(2), 683–694 (2010).
  • Deboer MD, Scarlett JM, Levasseur PR, Grant WF, Marks DL. Administration of IL-1 β to the 4th ventricle causes anorexia that is blocked by agouti-related peptide and that coincides with activation of tyrosine-hydroxylase neurons in the nucleus of the solitary tract. Peptides30(2), 210–218 (2009).
  • Johnen H, Lin S, Kuffner T et al. Tumor-induced anorexia and weight loss are mediated by the TGF- β superfamily cytokine MIC-1. Nat. Med.13(11), 1333–1340 (2007).
  • Skipworth RJ, Deans DA, Tan BH et al. Plasma MIC-1 correlates with systemic inflammation but is not an independent determinant of nutritional status or survival in oesophago-gastric cancer. Br. J. Cancer102(4), 665–672 (2010).
  • Gayle D, Ilyin SE, Flynn MC, Plata-Salaman CR. Lipopolysaccharide (LPS)- and muramyl dipeptide (MDP)-induced anorexia during refeeding following acute fasting: characterization of brain cytokine and neuropeptide systems mRNAs. Brain Res.795(1–2), 77–86 (1998).
  • Utsuyama M, Hirokawa K. Differential expression of various cytokine receptors in the brain after stimulation with LPS in young and old mice. Exp. Gerontol.37(2–3), 411–420 (2002).
  • Grossberg AJ, Scarlett JM, Zhu X et al. Arcuate nucleus proopiomelanocortin neurons mediate the acute anorectic actions of leukemia inhibitory factor via gp130. Endocrinology151(2), 606–616 (2010).
  • Dallaporta M, Pecchi E, Jacques C et al. c-Fos immunoreactivity induced by intraperitoneal LPS administration is reduced in the brain of mice lacking the microsomal prostaglandin E synthase-1 (mPGES-1). Brain Behav. Immun.21(8), 1109–1121 (2007).
  • Pecchi E, Dallaporta M, Jean A, Thirion S, Troadec JD. mPGES-1 knock-out mice are resistant to cancer-induced anorexia despite the absence of central mPGES-1 up-regulation in wild-type anorexic mice. J. Neuroimmunol.199(1–2), 104–114 (2008).
  • Heisler LK, Jobst EE, Sutton GM et al. Serotonin reciprocally regulates melanocortin neurons to modulate food intake. Neuron51(2), 239–249 (2006).
  • Cangiano C, Cascino A, Ceci F et al. Plasma and CSF tryptophan in cancer anorexia. J. Neural. Transm. Gen. Sect.81(3), 225–233 (1990).
  • Laviano A, Cangiano C, Preziosa I et al. Plasma tryptophan levels and anorexia in liver cirrhosis. Int. J. Eat. Disord.21(2), 181–186 (1997).
  • Laviano A, Meguid MM, Cascino A, Molfino A, Rossi Fanelli F. Tryptophan in wasting diseases: at the crossing between immune function and behaviour. Curr. Opin. Clin. Nutr. Metab. Care12(4), 392–397 (2009).
  • Hu Z, Cha SH, Chohnan S, Lane MD. Hypothalamic malonyl-CoA as a mediator of feeding behavior. Proc. Natl Acad. Sci. USA100(22), 12624–12629 (2003).
  • Smiechowska J, Utech A, Taffet G, Hayes T, Marcelli M, Garcia JM. Adipokines in patients with cancer anorexia and cachexia. J. Investig. Med.58(3), 554–559 (2010).
  • Nakajima TE, Yamada Y, Hamano T et al. Adipocytokine levels in gastric cancer patients: resistin and visfatin as biomarkers of gastric cancer. J. Gastroenterol.44(7), 685–690 (2009).
  • Itoh T, Nagaya N, Yoshikawa M et al. Elevated plasma ghrelin level in underweight patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.170(8), 879–882 (2004).
  • Xin X, Ren AJ, Zheng X et al. Disturbance of circulating ghrelin and obestatin in chronic heart failure patients especially in those with cachexia. Peptides30(12), 2281–2285 (2009).
  • Garcia JM, Garcia-Touza M, Hijazi RA et al. Active ghrelin levels and active to total ghrelin ratio in cancer-induced cachexia. J. Clin. Endocrinol. Metab.90(5), 2920–2926 (2005).
  • Deboer MD, Zhu XX, Levasseur P et al. Ghrelin treatment causes increased food intake and retention of lean body mass in a rat model of cancer cachexia. Endocrinology148(6), 3004–3012 (2007).
  • Deboer MD, Zhu X, Levasseur PR et al. Ghrelin treatment of chronic kidney disease: improvements in lean body mass and cytokine profile. Endocrinology149(2), 827–835 (2008).
  • Ruud J, Blomqvist A. Identification of rat brainstem neuronal structures activated during cancer-induced anorexia. J. Comp. Neurol.504(3), 275–286 (2007).
  • Gaykema RP, Daniels TE, Shapiro NJ, Thacker GC, Park SM, Goehler LE. Immune challenge and satiety-related activation of both distinct and overlapping neuronal populations in the brainstem indicate parallel pathways for viscerosensory signaling. Brain Res.1294, 61–79 (2009).
  • Tracey KJ. Physiology and immunology of the cholinergic antiinflammatory pathway. J. Clin. Invest.117(2), 289–296 (2007).
  • Nogueiras R, Wiedmer P, Perez-Tilve D et al. The central melanocortin system directly controls peripheral lipid metabolism. J. Clin. Invest.117(11), 3475–3488 (2007).
  • Rossi J, Balthasar N, Olson D et al. Melanocortin-4 receptors expressed by cholinergic neurons regulate energy balance and glucose homeostasis. Cell Metab.13(2), 195–204 (2011).
  • Cypess AM, Lehman S, Williams G et al. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med.360(15), 1509–1517 (2009).
  • Virtanen KA, Lidell ME, Orava J et al. Functional brown adipose tissue in healthy adults. N. Engl. J. Med.360(15), 1518–1525 (2009).
  • Zhang Y, Kerman IA, Laque A et al. Leptin-receptor-expressing neurons in the dorsomedial hypothalamus and median preoptic area regulate sympathetic brown adipose tissue circuits. J. Neurosci.31(5), 1873–1884 (2011).
  • Voss-Andreae A, Murphy JG, Ellacott KL et al. Role of the central melanocortin circuitry in adaptive thermogenesis of brown adipose tissue. Endocrinology148(4), 1550–1560 (2007).
  • Brito MN, Brito NA, Baro DJ, Song CK, Bartness TJ. Differential activation of the sympathetic innervation of adipose tissues by melanocortin receptor stimulation. Endocrinology148(11), 5339–5347 (2007).
  • Hargrove JL, Heinz G, Heinz O. Modeling transitions in body composition: the approach to steady state for anthropometric measures and physiological functions in the Minnesota human starvation study. Dyn. Med.7, 16 (2008).
  • Haas V, Onur S, Paul T et al. Leptin and body weight regulation in patients with anorexia nervosa before and during weight recovery. Am. J. Clin. Nutr.81(4), 889–896 (2005).
  • Sergi G, Coin A, Marin S et al. Body composition and resting energy expenditure in elderly male patients with chronic obstructive pulmonary disease. Respir. Med.100(11), 1918–1924 (2006).
  • Cao DX, Wu GH, Zhang B et al. Resting energy expenditure and body composition in patients with newly detected cancer. Clin. Nutr.29(1), 72–77 (2010).
  • Riggio O, Angeloni S, Ciuffa L et al. Malnutrition is not related to alterations in energy balance in patients with stable liver cirrhosis. Clin. Nutr.22(6), 553–559 (2003).
  • Moses AW, Slater C, Preston T, Barber MD, Fearon KC. Reduced total energy expenditure and physical activity in cachectic patients with pancreatic cancer can be modulated by an energy and protein dense oral supplement enriched with n-3 fatty acids. Br. J. Cancer90(5), 996–1002 (2004).
  • Lechan RM, Fekete C. The TRH neuron: a hypothalamic integrator of energy metabolism. Prog. Brain Res.153, 209–235 (2006).
  • Fouladiun M, Korner U, Bosaeus I, Daneryd P, Hyltander A, Lundholm KG. Body composition and time course changes in regional distribution of fat and lean tissue in unselected cancer patients on palliative care – correlations with food intake, metabolism, exercise capacity, and hormones. Cancer103(10), 2189–2198 (2005).
  • Vanhorebeek I, Langouche L, Van Den Berghe G. Endocrine aspects of acute and prolonged critical illness. Nat. Clin. Pract. Endocrinol. Metab.2(1), 20–31 (2006).
  • Hryniewicz K, Androne AS, Hudaihed A, Katz SD. Partial reversal of cachexia by β-adrenergic receptor blocker therapy in patients with chronic heart failure. J. Card. Fail.9(6), 464–468 (2003).
  • Muller MJ, Bottcher J, Selberg O et al. Hypermetabolism in clinically stable patients with liver cirrhosis. Am. J. Clin. Nutr.69(6), 1194–1201 (1999).
  • Lainscak M, Keber I, Anker SD. Body composition changes in patients with systolic heart failure treated with β blockers: a pilot study. Int. J. Cardiol.106(3), 319–322 (2006).
  • Dumas JF, Goupille C, Julienne CM et al. Efficiency of oxidative phosphorylation in liver mitochondria is decreased in a rat model of peritoneal carcinosis. J. Hepatol.54(2), 320–327 (2011).
  • Bevilacqua L, Seifert EL, Estey C, Gerrits MF, Harper ME. Absence of uncoupling protein-3 leads to greater activation of an adenine nucleotide translocase-mediated proton conductance in skeletal muscle mitochondria from calorie restricted mice. Biochim. Biophys. Acta1797(8), 1389–1397 (2010).
  • Constantinou C, Fontes De Oliveira CC, Mintzopoulos D et al. Nuclear magnetic resonance in conjunction with functional genomics suggests mitochondrial dysfunction in a murine model of cancer cachexia. Int. J. Mol. Med.27(1), 15–24 (2011).
  • White JP, Baltgalvis KA, Puppa MJ, Sato S, Baynes JW, Carson JA. Muscle oxidative capacity during IL-6-dependent cancer cachexia. Am. J. Physiol. Regul. Integr. Comp. Physiol.300(2), R201–R211 (2011).
  • Sanders PM, Tisdale MJ. Effect of zinc-α2-glycoprotein (ZAG) on expression of uncoupling proteins in skeletal muscle and adipose tissue. Cancer Lett.212(1), 71–81 (2004).
  • Virtanen KA, Nuutila P. Brown adipose tissue in humans. Curr. Opin. Lipidol.22(1), 49–54 (2011).
  • Bing C, Brown M, King P, Collins P, Tisdale MJ, Williams G. Increased gene expression of brown fat uncoupling protein (UCP)1 and skeletal muscle UCP2 and UCP3 in MAC16-induced cancer cachexia. Cancer Res.60(9), 2405–2410 (2000).
  • Bing C, Russell ST, Beckett EE et al. Expression of uncoupling proteins-1, -2 and -3 mRNA is induced by an adenocarcinoma-derived lipid-mobilizing factor. Br. J. Cancer86(4), 612–618 (2002).
  • Busquets S, Almendro V, Barreiro E, Figueras M, Argiles JM, Lopez-Soriano FJ. Activation of UCPs gene expression in skeletal muscle can be independent on both circulating fatty acids and food intake. Involvement of ROS in a model of mouse cancer cachexia. FEBS Lett.579(3), 717–722 (2005).
  • Minnaard R, Schrauwen P, Schaart G, Hesselink MK. UCP3 in muscle wasting, a role in modulating lipotoxicity? FEBS Lett.580(22), 5172–5176 (2006).
  • Brand MD, Esteves TC. Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab.2(2), 85–93 (2005).
  • Busquets S, Garcia-Martinez C, Olivan M, Barreiro E, Lopez-Soriano FJ, Argiles JM. Overexpression of UCP3 in both murine and human myotubes is linked with the activation of proteolytic systems: a role in muscle wasting? Biochim. Biophys. Acta1760(2), 253–258 (2006).
  • Dejong CH, Busquets S, Moses AG et al. Systemic inflammation correlates with increased expression of skeletal muscle ubiquitin but not uncoupling proteins in cancer cachexia. Oncol. Rep.14(1), 257–263 (2005).
  • Collins P, Bing C, Mcculloch P, Williams G. Muscle UCP-3 mRNA levels are elevated in weight loss associated with gastrointestinal adenocarcinoma in humans. Br. J. Cancer86(3), 372–375 (2002).
  • Muller MJ, Bosy-Westphal A, Kutzner D, Heller M. Metabolically active components of fat-free mass and resting energy expenditure in humans: recent lessons from imaging technologies. Obes. Rev.3(2), 113–122 (2002).
  • Kushner I, Rzewnicki DL. The acute phase response: general aspects. Baillieres Clin. Rheumatol.8(3), 513–530 (1994).
  • Stephens NA, Skipworth RJ, Fearon KC. Cachexia, survival and the acute phase response. Curr. Opin. Support Palliat. Care2(4), 267–274 (2008).
  • Mcmillan DC, Slater C, Preston T, Falconer JS, Fearon KC. Simultaneous measurement of albumin and fibrinogen synthetic rates in normal fasted subjects. Nutrition12(9), 602–607 (1996).
  • Bonetto A, Aydogdu T, Kunzevitzky N et al. STAT3 activation in skeletal muscle links muscle wasting and the acute phase response in cancer cachexia. PLoS One6(7), e22538 (2011).
  • Watchorn TM, Waddell I, Dowidar N, Ross JA. Proteolysis-inducing factor regulates hepatic gene expression via the transcription factors NF-(κ)B and STAT3. FASEB J.15(3), 562–564 (2001).
  • Zhang L, Du J, Hu Z et al. IL-6 and serum amyloid A synergy mediates angiotensin II-induced muscle wasting. J. Am. Soc. Nephrol.20(3), 604–612 (2009).
  • Martignoni ME, Dimitriu C, Bachmann J et al. Liver macrophages contribute to pancreatic cancer-related cachexia. Oncol. Rep.21(2), 363–369 (2009).
  • Berriel Diaz M, Krones-Herzig A, Metzger D et al. Nuclear receptor cofactor receptor interacting protein 140 controls hepatic triglyceride metabolism during wasting in mice. Hepatology48(3), 782–791 (2008).
  • Herzig S, Hedrick S, Morantte I, Koo SH, Galimi F, Montminy M. CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-γ. Nature426(6963), 190–193 (2003).
  • Yoon JC, Puigserver P, Chen G et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature413(6852), 131–138 (2001).
  • Viollet B, Horman S, Leclerc J et al. AMPK inhibition in health and disease. Crit. Rev. Biochem. Mol. Biol.45(4), 276–295 (2010).
  • Viollet B, Foretz M, Guigas B et al. Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders. J. Physiol.574(Pt 1), 41–53 (2006).
  • Kukidome D, Nishikawa T, Sonoda K et al. Activation of AMP-activated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes55(1), 120–127 (2006).
  • Iwabu M, Yamauchi T, Okada-Iwabu M et al. Adiponectin and AdipoR1 regulate PGC-1α and mitochondria by Ca(2+) and AMPK/SIRT1. Nature464(7293), 1313–1319 (2010).
  • Koo SH, Satoh H, Herzig S et al. PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3. Nat. Med.10(5), 530–534 (2004).
  • Liu C, Lin JD. PGC-1 coactivators in the control of energy metabolism. Acta Biochim. Biophys. Sin. (Shanghai)43(4), 248–257 (2011).
  • Puigserver P, Rhee J, Lin J et al. Cytokine stimulation of energy expenditure through p38 MAP kinase activation of PPARγ coactivator-1. Mol. Cell8(5), 971–982 (2001).
  • Takabatake N, Nakamura H, Abe S et al. The relationship between chronic hypoxemia and activation of the tumor necrosis factor-α system in patients with chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.161(4 Pt 1), 1179–1184 (2000).
  • Raguso CA, Luthy C. Nutritional status in chronic obstructive pulmonary disease: role of hypoxia. Nutrition27(2), 138–143 (2011).
  • Swallow EB, Reyes D, Hopkinson NS et al. Quadriceps strength predicts mortality in patients with moderate to severe chronic obstructive pulmonary disease. Thorax62(2), 115–120 (2007).
  • Breitbart A, Auger-Messier M, Molkentin JD, Heineke J. Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting. Am. J. Physiol. Heart Circ. Physiol.300(6), H1973–H1982 (2011).
  • Grinspoon S, Mulligan K. Weight loss and wasting in patients infected with human immunodeficiency virus. Clin. Infect. Dis.36(Suppl. 2), S69–S78 (2003).
  • Baltgalvis KA, Berger FG, Pena MM, Mark Davis J, White JP, Carson JA. Activity level, apoptosis, and development of cachexia in Apc(Min/+) mice. J. Appl. Physiol.109(4), 1155–1161 (2010).
  • Toledo M, Busquets S, Sirisi S et al. Cancer cachexia: physical activity and muscle force in tumour-bearing rats. Oncol. Rep.25(1), 189–193 (2011).
  • Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. Int. J. Biochem. Cell Biol.37(10), 1974–1984 (2005).
  • Aguilar V, Alliouachene S, Sotiropoulos A et al. S6 kinase deletion suppresses muscle growth adaptations to nutrient availability by activating AMP kinase. Cell Metab.5(6), 476–487 (2007).
  • Drummond MJ, Dreyer HC, Fry CS, Glynn EL, Rasmussen BB. Nutritional and contractile regulation of human skeletal muscle protein synthesis and mTORC1 signaling. J. Appl. Physiol.106(4), 1374–1384 (2009).
  • Mieulet V, Roceri M, Espeillac C et al. S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover. Am. J. Physiol. Cell Physiol.293(2), C712–C722 (2007).
  • Shahbazian D, Roux PP, Mieulet V et al. The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. EMBO J.25(12), 2781–2791 (2006).
  • Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG. Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J.20(16), 4370–4379 (2001).
  • Polak P, Hall MN. mTOR and the control of whole body metabolism. Curr. Opin. Cell Biol.21(2), 209–218 (2009).
  • Toth MJ, Ward K, Van Der Velden J et al. Chronic heart failure reduces Akt phosphorylation in human skeletal muscle: relationship to muscle size and function. J. Appl. Physiol.110(4), 892–900 (2011).
  • Zhou X, Wang JL, Lu J et al. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell142(4), 531–543 (2010).
  • Benny Klimek ME, Aydogdu T, Link MJ, Pons M, Koniaris LG, Zimmers TA. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochem. Biophys. Res. Commun.391(3), 1548–1554 (2010).
  • Sartori R, Milan G, Patron M et al. Smad2 and 3 transcription factors control muscle mass in adulthood. Am. J. Physiol. Cell Physiol.296(6), C1248–C1257 (2009).
  • Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am. J. Physiol. Cell Physiol.296(6), C1258–C1270 (2009).
  • Zhao J, Brault JJ, Schild A et al. FOXO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab.6(6), 472–483 (2007).
  • Lecker SH, Solomon V, Mitch WE, Goldberg AL. Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states. J. Nutr.129(Suppl. 1), S227–S237 (1999).
  • Dahlmann B. Role of proteasomes in disease. BMC Biochem.8(Suppl. 1), S3 (2007).
  • Lecker SH, Jagoe RT, Gilbert A et al. Multiple types of skeletal muscle atrophy involve a common program of changes in gene expression. FASEB J.18(1), 39–51 (2004).
  • Cong H, Sun L, Liu C, Tien P. Inhibition of atrogin-1/MAFbx expression by adenovirus-delivered small hairpin RNAs attenuates muscle atrophy in fasting mice. Hum. Gene Ther.22(3), 313–324 (2011).
  • Eddins MJ, Marblestone JG, Suresh Kumar KG et al. Targeting the ubiquitin E3 ligase MuRF1 to inhibit muscle atrophy. Cell Biochem. Biophys.60(1–2), 113–118 (2011).
  • Krawiec BJ, Nystrom GJ, Frost RA, Jefferson LS, Lang CH. AMP-activated protein kinase agonists increase mRNA content of the muscle-specific ubiquitin ligases MAFbx and MuRF1 in C2C12 cells. Am. J. Physiol. Endocrinol. Metab.292(6), E1555–E1567 (2007).
  • Sandri M, Sandri C, Gilbert A et al. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell117(3), 399–412 (2004).
  • Mcclung JM, Judge AR, Powers SK, Yan Z. p38 MAPK links oxidative stress to autophagy-related gene expression in cachectic muscle wasting. Am. J. Physiol. Cell Physiol.298(3), C542–C549 (2010).
  • Agusti AG, Sauleda J, Miralles C et al. Skeletal muscle apoptosis and weight loss in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.166(4), 485–489 (2002).
  • Fukuda T, Sumi T, Nobeyama H et al. Multiple organ failure of tumor-bearing rabbits in cancer cachexia is caused by apoptosis of normal organ cells. Int. J. Oncol.34(1), 61–67 (2009).
  • Argiles JM, Lopez-Soriano FJ, Busquets S. Apoptosis signalling is essential and precedes protein degradation in wasting skeletal muscle during catabolic conditions. Int. J. Biochem. Cell Biol.40(9), 1674–1678 (2008).
  • Du J, Wang X, Miereles C et al. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions. J. Clin. Invest.113(1), 115–123 (2004).
  • Busquets S, Deans C, Figueras M et al. Apoptosis is present in skeletal muscle of cachectic gastro-intestinal cancer patients. Clin. Nutr.26(5), 614–618 (2007).
  • Mcghee NK, Jefferson LS, Kimball SR. Elevated corticosterone associated with food deprivation upregulates expression in rat skeletal muscle of the mTORC1 repressor, REDD1. J. Nutr.139(5), 828–834 (2009).
  • Kuma A, Hatano M, Matsui M et al. The role of autophagy during the early neonatal starvation period. Nature432(7020), 1032–1036 (2004).
  • Vabulas RM, Hartl FU. Protein synthesis upon acute nutrient restriction relies on proteasome function. Science310(5756), 1960–1963 (2005).
  • Baracos VE, Devivo C, Hoyle DH, Goldberg AL. Activation of the ATP-ubiquitin-proteasome pathway in skeletal muscle of cachectic rats bearing a hepatoma. Am. J. Physiol.268(5 Pt 1), E996–E1006 (1995).
  • Criollo A, Senovilla L, Authier H et al. The IKK complex contributes to the induction of autophagy. EMBO J.29(3), 619–631 (2010).
  • Paul PK, Gupta SK, Bhatnagar S et al. Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J. Cell Biol.191(7), 1395–1411 (2010).
  • Paul PK, Kumar A. TRAF6 coordinates the activation of autophagy and ubiquitin-proteasome systems in atrophying skeletal muscle. Autophagy7(5), 555–556 (2011).
  • Rhoads MG, Kandarian SC, Pacelli F, Doglietto GB, Bossola M. Expression of NF-κ B and IκB proteins in skeletal muscle of gastric cancer patients. Eur. J. Cancer46(1), 191–197 (2010).
  • Bhatnagar S, Mittal A, Gupta SK, Kumar A. TWEAK causes myotube atrophy through coordinated activation of ubiquitin-proteasome system, autophagy, and caspases. J. Cell Physiol. doi:10.1002/jcp.22821 (2011) (Epub ahead of print).
  • Sciorati C, Touvier T, Buono R et al. Necdin is expressed in cachectic skeletal muscle to protect fibers from tumor-induced wasting. J. Cell Sci.122(Pt 8), 1119–1125 (2009).
  • Barreiro E, De La Puente B, Busquets S, Lopez-Soriano FJ, Gea J, Argiles JM. Both oxidative and nitrosative stress are associated with muscle wasting in tumour-bearing rats. FEBS Lett.579(7), 1646–1652 (2005).
  • Fuster G, Busquets S, Ametller E et al. Are peroxisome proliferator-activated receptors involved in skeletal muscle wasting during experimental cancer cachexia? Role of β 2-adrenergic agonists. Cancer Res.67(13), 6512–6519 (2007).
  • Guarnier FA, Cecchini AL, Suzukawa AA et al. Time course of skeletal muscle loss and oxidative stress in rats with Walker 256 solid tumor. Muscle Nerve42(6), 950–958 (2010).
  • Mortensen OH, Frandsen L, Schjerling P, Nishimura E, Grunnet N. PGC-1α and PGC-1β have both similar and distinct effects on myofiber switching toward an oxidative phenotype. Am. J. Physiol. Endocrinol. Metab.291(4), E807–E816 (2006).
  • Lopez M, Lelliott CJ, Tovar S et al. Tamoxifen-induced anorexia is associated with fatty acid synthase inhibition in the ventromedial nucleus of the hypothalamus and accumulation of malonyl-CoA. Diabetes55(5), 1327–1336 (2006).
  • Cha SH, Rodgers JT, Puigserver P, Chohnan S, Lane MD. Hypothalamic malonyl-CoA triggers mitochondrial biogenesis and oxidative gene expression in skeletal muscle: role of PGC-1α. Proc. Natl Acad. Sci. USA103(42), 15410–15415 (2006).
  • Cheung WW, Rosengren S, Boyle DL, Mak RH. Modulation of melanocortin signaling ameliorates uremic cachexia. Kidney Int.74(2), 180–186 (2008).
  • Nicholson JR, Kohler G, Schaerer F, Senn C, Weyermann P, Hofbauer KG. Peripheral administration of a melanocortin 4-receptor inverse agonist prevents loss of lean body mass in tumor-bearing mice. J. Pharmacol. Exp. Ther.317(2), 771–777 (2006).
  • O’Neill ED, Wilding JP, Kahn CR et al. Absence of insulin signalling in skeletal muscle is associated with reduced muscle mass and function: evidence for decreased protein synthesis and not increased degradation. Age (Dordr.)32(2), 209–222 (2010).
  • Holt RI, Jones JS, Baker AJ, Buchanan CR, Miell JP. The effect of short stature, portal hypertension, and cholestasis on growth hormone resistance in children with liver disease. J. Clin. Endocrinol. Metab.84(9), 3277–3282 (1999).
  • Mak RH, Cheung WW, Roberts CT Jr. The growth hormone-insulin-like growth factor-I axis in chronic kidney disease. Growth Horm. IGF Res.18(1), 17–25 (2008).
  • Yang SY, Hoy M, Fuller B, Sales KM, Seifalian AM, Winslet MC. Pretreatment with insulin-like growth factor I protects skeletal muscle cells against oxidative damage via PI3K/Akt and ERK1/2 MAPK pathways. Lab Invest.90(3), 391–401 (2010).
  • Cassano M, Quattrocelli M, Crippa S, Perini I, Ronzoni F, Sampaolesi M. Cellular mechanisms and local progenitor activation to regulate skeletal muscle mass. J. Muscle Res. Cell Motil.30(7–8), 243–253 (2009).
  • Penna F, Costamagna D, Fanzani A, Bonelli G, Baccino FM, Costelli P. Muscle wasting and impaired myogenesis in tumor bearing mice are prevented by ERK inhibition. PLoS One5(10), e13604 (2010).
  • Lopez-Menduina M, Martin AI, Castillero E, Villanua MA, Lopez-Calderon A. Systemic IGF-I administration attenuates the inhibitory effect of chronic arthritis on gastrocnemius mass and decreases atrogin-1 and IGFBP-3. Am. J. Physiol. Regul. Integr. Comp. Physiol.299(2), R541–R551 (2010).
  • Stitt TN, Drujan D, Clarke BA et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol. Cell14(3), 395–403 (2004).
  • Paddon-Jones D, Sheffield-Moore M, Cree MG et al. Atrophy and impaired muscle protein synthesis during prolonged inactivity and stress. J. Clin. Endocrinol. Metab.91(12), 4836–4841 (2006).
  • Schakman O, Gilson H, Thissen JP. Mechanisms of glucocorticoid-induced myopathy. J. Endocrinol.197(1), 1–10 (2008).
  • Zheng B, Ohkawa S, Li H, Roberts-Wilson TK, Price SR. FOXO3a mediates signaling crosstalk that coordinates ubiquitin and atrogin-1/MAFbx expression during glucocorticoid-induced skeletal muscle atrophy. FASEB J.24(8), 2660–2669 (2010).
  • Gilson H, Schakman O, Combaret L et al. Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy. Endocrinology148(1), 452–460 (2007).
  • Sanders PM, Russell ST, Tisdale MJ. Angiotensin II directly induces muscle protein catabolism through the ubiquitin-proteasome proteolytic pathway and may play a role in cancer cachexia. Br. J. Cancer93(4), 425–434 (2005).
  • Russell ST, Wyke SM, Tisdale MJ. Mechanism of induction of muscle protein degradation by angiotensin II. Cell Signal.18(7), 1087–1096 (2006).
  • Yoshida T, Semprun-Prieto L, Sukhanov S, Delafontaine P. IGF-1 prevents ANG II-induced skeletal muscle atrophy via Akt- and Foxo-dependent inhibition of the ubiquitin ligase atrogin-1 expression. Am. J. Physiol. Heart Circ. Physiol.298(5), H1565–H1570 (2010).
  • Brink M, Price SR, Chrast J et al. Angiotensin II induces skeletal muscle wasting through enhanced protein degradation and down-regulates autocrine insulin-like growth factor I. Endocrinology142(4), 1489–1496 (2001).
  • Lenk K, Schuler G, Adams V. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J. Cachex. Sarcopenia Muscle1(1), 9–21 (2010).
  • Tisdale MJ. Zinc-α2-glycoprotein in cachexia and obesity. Curr. Opin. Support Palliat. Care3(4), 288–293 (2009).
  • Schweiger M, Schreiber R, Haemmerle G et al. Adipose triglyceride lipase and hormone-sensitive lipase are the major enzymes in adipose tissue triacylglycerol catabolism. J. Biol. Chem.281(52), 40236–40241 (2006).
  • Bing C, Russell S, Becket E et al. Adipose atrophy in cancer cachexia: morphologic and molecular analysis of adipose tissue in tumour-bearing mice. Br. J. Cancer95(8), 1028–1037 (2006).
  • Dahlman I, Mejhert N, Linder K et al. Adipose tissue pathways involved in weight loss of cancer cachexia. Br. J. Cancer102(10), 1541–1548 (2010).
  • Ryden M, Agustsson T, Laurencikiene J et al. Lipolysis – not inflammation, cell death, or lipogenesis – is involved in adipose tissue loss in cancer cachexia. Cancer113(7), 1695–1704 (2008).
  • Drott C, Persson H, Lundholm K. Cardiovascular and metabolic response to adrenaline infusion in weight-losing patients with and without cancer. Clin. Physiol.9(5), 427–439 (1989).
  • Agustsson T, Ryden M, Hoffstedt J et al. Mechanism of increased lipolysis in cancer cachexia. Cancer Res.67(11), 5531–5537 (2007).
  • Islam-Ali B, Khan S, Price SA, Tisdale MJ. Modulation of adipocyte G-protein expression in cancer cachexia by a lipid-mobilizing factor (LMF). Br. J. Cancer85(5), 758–763 (2001).
  • Ishiko O, Yasui T, Hirai K et al. Lipolytic activity of anemia-inducing substance from tumor-bearing rabbits. Nutr. Cancer33(2), 201–205 (1999).
  • Groundwater P, Beck SA, Barton C, Adamson C, Ferrier IN, Tisdale MJ. Alteration of serum and urinary lipolytic activity with weight loss in cachectic cancer patients. Br. J. Cancer62(5), 816–821 (1990).
  • Felix K, Fakelman F, Hartmann D et al. Identification of serum proteins involved in pancreatic cancer cachexia. Life Sci.88(5–6), 218–225 (2011).
  • Todorov PT, Mcdevitt TM, Meyer DJ, Ueyama H, Ohkubo I, Tisdale MJ. Purification and characterization of a tumor lipid-mobilizing factor. Cancer Res.58(11), 2353–2358 (1998).
  • Hale LP, Price DT, Sanchez LM, Demark-Wahnefried W, Madden JF. Zinc α-2-glycoprotein is expressed by malignant prostatic epithelium and may serve as a potential serum marker for prostate cancer. Clin. Cancer Res.7(4), 846–853 (2001).
  • Irmak S, Tilki D, Heukeshoven J et al. Stage-dependent increase of orosomucoid and zinc-α2-glycoprotein in urinary bladder cancer. Proteomics5(16), 4296–4304 (2005).
  • Bing C, Bao Y, Jenkins J et al. Zinc-α2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia. Proc. Natl Acad. Sci. USA101(8), 2500–2505 (2004).
  • Mracek T, Stephens NA, Gao D et al. Enhanced ZAG production by subcutaneous adipose tissue is linked to weight loss in gastrointestinal cancer patients. Br. J. Cancer104(3), 441–447 (2011).
  • Russell ST, Zimmerman TP, Domin BA, Tisdale MJ. Induction of lipolysis in vitro and loss of body fat in vivo by zinc-α2-glycoprotein. Biochim. Biophys. Acta1636(1), 59–68 (2004).
  • Russell ST, Tisdale MJ. The role of glucocorticoids in the induction of zinc-α2-glycoprotein expression in adipose tissue in cancer cachexia. Br. J. Cancer92(5), 876–881 (2005).
  • Plomgaard P, Fischer CP, Ibfelt T, Pedersen BK, Van Hall G. Tumor necrosis factor-α modulates human in vivo lipolysis. J. Clin. Endocrinol. Metab.93(2), 543–549 (2008).
  • Bezaire V, Mairal A, Anesia R, Lefort C, Langin D. Chronic TNFα and cAMP pre-treatment of human adipocytes alter HSL, ATGL and perilipin to regulate basal and stimulated lipolysis. FEBS Lett.583(18), 3045–3049 (2009).
  • Ryden M, Arvidsson E, Blomqvist L, Perbeck L, Dicker A, Arner P. Targets for TNF-α-induced lipolysis in human adipocytes. Biochem. Biophys. Res. Commun.318(1), 168–175 (2004).
  • Laurencikiene J, Van Harmelen V, Arvidsson Nordstrom E et al. NF-κB is important for TNF-α-induced lipolysis in human adipocytes. J. Lipid. Res.48(5), 1069–1077 (2007).
  • Zhang HH, Halbleib M, Ahmad F, Manganiello VC, Greenberg AS. Tumor necrosis factor-α stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes51(10), 2929–2935 (2002).
  • Hu E, Kim JB, Sarraf P, Spiegelman BM. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPARγ. Science274(5295), 2100–2103 (1996).
  • Jove M, Laguna JC, Vazquez-Carrera M. Agonist-induced activation releases peroxisome proliferator-activated receptor β/δ from its inhibition by palmitate-induced nuclear factor-κB in skeletal muscle cells. Biochim. Biophys. Acta1734(1), 52–61 (2005).
  • Hauner H, Petruschke T, Russ M, Rohrig K, Eckel J. Effects of tumour necrosis factor α (TNF α) on glucose transport and lipid metabolism of newly-differentiated human fat cells in cell culture. Diabetologia38(7), 764–771 (1995).
  • Hammarstedt A, Isakson P, Gustafson B, Smith U. Wnt-signaling is maintained and adipogenesis inhibited by TNFα but not MCP-1 and resistin. Biochem. Biophys. Res. Commun.357(3), 700–706 (2007).
  • Cawthorn WP, Heyd F, Hegyi K, Sethi JK. Tumour necrosis factor-α inhibits adipogenesis via a β-catenin/TCF4(TCF7L2)-dependent pathway. Cell Death Differ.14(7), 1361–1373 (2007).
  • Itoigawa Y, Kishimoto KN, Sano H, Kaneko K, Itoi E. Molecular mechanism of fatty degeneration in rotator cuff muscle with tendon rupture. J. Orthop. Res.29(6), 861–866 (2011).
  • Baltgalvis KA, Berger FG, Pena MM, Davis JM, Muga SJ, Carson JA. Interleukin-6 and cachexia in ApcMin/+ mice. Am. J. Physiol. Regul. Integr. Comp. Physiol.294(2), R393–R401 (2008).
  • Hardardottir I, Doerrler W, Feingold KR, Grunfeld C. Cytokines stimulate lipolysis and decrease lipoprotein lipase activity in cultured fat cells by a prostaglandin independent mechanism. Biochem. Biophys. Res. Commun.186(1), 237–243 (1992).
  • Bing C, Trayhurn P. New insights into adipose tissue atrophy in cancer cachexia. Proc. Nutr. Soc.68(4), 385–392 (2009).
  • Henderson JT, Mullen BJ, Roder JC. Physiological effects of CNTF-induced wasting. Cytokine8(10), 784–793 (1996).
  • Ding Q, Mracek T, Gonzalez-Muniesa P et al. Identification of macrophage inhibitory cytokine-1 in adipose tissue and its secretion as an adipokine by human adipocytes. Endocrinology150(4), 1688–1696 (2009).
  • Zuijdgeest-Van Leeuwen SD, Van Den Berg JW, Wattimena JL et al. Lipolysis and lipid oxidation in weight-losing cancer patients and healthy subjects. Metabolism49(7), 931–936 (2000).
  • Laurencikiene J, Stenson BM, Arvidsson Nordstrom E et al. Evidence for an important role of CIDEA in human cancer cachexia. Cancer Res.68(22), 9247–9254 (2008).
  • Busquets S, Serpe R, Sirisi S et al. Megestrol acetate: its impact on muscle protein metabolism supports its use in cancer cachexia. Clin. Nutr.29(6), 733–737 (2010).
  • Yeh SS, Marandi M, Thode HC Jr et al. Report of a pilot, double-blind, placebo-controlled study of megestrol acetate in elderly dialysis patients with cachexia. J. Ren. Nutr.20(1), 52–62 (2010).
  • Couluris M, Mayer JL, Freyer DR, Sandler E, Xu P, Krischer JP. The effect of cyproheptadine hydrochloride (periactin) and megestrol acetate (megace) on weight in children with cancer/treatment-related cachexia. J. Pediatr. Hematol. Oncol.30(11), 791–797 (2008).
  • Strasser F, Luftner D, Possinger K et al. Comparison of orally administered cannabis extract and δ-9-tetrahydrocannabinol in treating patients with cancer-related anorexia-cachexia syndrome: a multicenter, Phase 3, randomized, double-blind, placebo-controlled clinical trial from the Cannabis-in-cachexia-study-group. J. Clin. Oncol.24(21), 3394–3400 (2006).
  • Weyermann P, Dallmann R, Magyar J et al. Orally available selective melanocortin-4 receptor antagonists stimulate food intake and reduce cancer-induced cachexia in mice. PLoS One4(3), e4774 (2009).
  • Akamizu T, Kangawa K. Ghrelin for cachexia. J. Cachexia Sarcopenia Muscle1(2), 169–176 (2010).
  • Nagaya N, Moriya J, Yasumura Y et al. Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation110(24), 3674–3679 (2004).
  • Nagaya N, Itoh T, Murakami S et al. Treatment of cachexia with ghrelin in patients with COPD. Chest128(3), 1187–1193 (2005).
  • Kung T, Springer J, Doehner W, Anker SD, Von Haehling S. Novel treatment approaches to cachexia and sarcopenia: highlights from the 5th Cachexia conference. Exp. Opin. Investig. Drugs19(4), 579–585 (2010).
  • Lundholm K, Gunnebo L, Korner U et al. Effects by daily long term provision of ghrelin to unselected weight-losing cancer patients: a randomized double-blind study. Cancer116(8), 2044–2052 (2010).
  • Dewey A, Baughan C, Dean T, Higgins B, Johnson I. Eicosapentaenoic acid (EPA, an ω-3 fatty acid from fish oils) for the treatment of cancer cachexia. Cochrane Database Syst. Rev.1, CD004597 (2007).
  • Eley HL, Russell ST, Tisdale MJ. Effect of branched-chain amino acids on muscle atrophy in cancer cachexia. Biochem. J.407(1), 113–120 (2007).
  • Pfeifer M, Begerow B, Minne HW, Suppan K, Fahrleitner-Pammer A, Dobnig H. Effects of a long-term vitamin D and calcium supplementation on falls and parameters of muscle function in community-dwelling older individuals. Osteoporos. Int.20(2), 315–322 (2009).
  • Kanzaki M, Soda K, Gin PT, Kai T, Konishi F, Kawakami M. Erythropoietin attenuates cachectic events and decreases production of interleukin-6, a cachexia-inducing cytokine. Cytokine32(5), 234–239 (2005).
  • Beijer S, Hupperets PS, Van Den Borne BE et al. Effect of adenosine 5’-triphosphate infusions on the nutritional status and survival of preterminal cancer patients. Anticancer Drugs20(7), 625–633 (2009).
  • Argiles JM, Olivan M, Busquets S, Lopez-Soriano FJ. Optimal management of cancer anorexia-cachexia syndrome. Cancer Manag. Res.2, 27–38 (2010).
  • Silverio R, Laviano A, Rossi Fanelli F, Seelaender M. l-carnitine and cancer cachexia: clinical and experimental aspects. J. Cachex. Sarcopenia Muscle2(1), 37–44 (2011).
  • Gordon JN, Trebble TM, Ellis RD, Duncan HD, Johns T, Goggin PM. Thalidomide in the treatment of cancer cachexia: a randomised placebo controlled trial. Gut54(4), 540–545 (2005).
  • Wilkes EA, Selby AL, Cole AT, Freeman JG, Rennie MJ, Khan ZH. Poor tolerability of thalidomide in end-stage oesophageal cancer. Eur. J. Cancer Care20(5), 593–600 (2011).
  • Steffen BT, Lees SJ, Booth FW. Anti-TNF treatment reduces rat skeletal muscle wasting in monocrotaline-induced cardiac cachexia. J. Appl. Physiol.105(6), 1950–1958 (2008).
  • Goldberg RM, Loprinzi CL, Mailliard JA et al. Pentoxifylline for treatment of cancer anorexia and cachexia? A randomized, double-blind, placebo-controlled trial. J. Clin. Oncol.13(11), 2856–2859 (1995).
  • Mantovani G, Maccio A, Madeddu C et al. Phase 2 nonrandomized study of the efficacy and safety of COX-2 inhibitor celecoxib on patients with cancer cachexia. J. Mol. Med.88(1), 85–92 (2010).
  • Figueras M, Busquets S, Carbo N et al. Interleukin-15 is able to suppress the increased DNA fragmentation associated with muscle wasting in tumour-bearing rats. FEBS Lett.569(1–3), 201–206 (2004).
  • Chasen M, Hirschman SZ, Bhargava R. Phase 2 study of the novel peptide-nucleic acid OHR118 in the management of cancer-related anorexia/cachexia. J. Am. Med. Dir. Assoc.12(1), 62–67 (2011).
  • Anker SD, Negassa A, Coats AJ et al. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: an observational study. Lancet361(9363), 1077–1083 (2003).
  • Smart NA, Steele M. The effect of physical training on systemic proinflammatory cytokine expression in heart failure patients: a systematic review. Congest. Heart Fail.17(3), 110–114 (2011).
  • Janaudis-Ferreira T, Hill K, Goldstein RS et al. Resistance arm training in patients with COPD: a randomized controlled trial. Chest139(1), 151–158 (2011).
  • Troosters T, Probst VS, Crul T et al. Resistance training prevents deterioration in quadriceps muscle function during acute exacerbations of chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med.181(10), 1072–1077 (2010).
  • Lemmey AB, Marcora SM, Chester K, Wilson S, Casanova F, Maddison PJ. Effects of high-intensity resistance training in patients with rheumatoid arthritis: a randomized controlled trial. Arthritis Rheum.61(12), 1726–1734 (2009).
  • Dong J, Sundell MB, Pupim LB, Wu P, Shintani A, Ikizler TA. The effect of resistance exercise to augment long-term benefits of intradialytic oral nutritional supplementation in chronic hemodialysis patients. J. Ren. Nutr.21(2), 149–159 (2011).
  • Murphy KT, Koopman R, Naim T et al. Antibody-directed myostatin inhibition in 21-mo-old mice reveals novel roles for myostatin signaling in skeletal muscle structure and function. FASEB J.24(11), 4433–4442 (2010).
  • Morine KJ, Bish LT, Pendrak K, Sleeper MM, Barton ER, Sweeney HL. Systemic myostatin inhibition via liver-targeted gene transfer in normal and dystrophic mice. PLoS One5(2), e9176 (2010).
  • Fearon KC, Voss AC, Hustead DS. Definition of cancer cachexia: effect of weight loss, reduced food intake, and systemic inflammation on functional status and prognosis. Am. J. Clin. Nutr.83(6), 1345–1350 (2006).
  • Mak RH, Cheung WW, Zhan JY, Shen Q, Foster BJ. Cachexia and protein-energy wasting in children with chronic kidney disease. Pediatr. Nephrol. doi:10.1007/s00467-011-1765-5 (2011) (Epub ahead of print).
  • Gullett NP, Mazurak VC, Hebbar G, Ziegler TR. Nutritional interventions for cancer-induced cachexia. Curr. Probl. Cancer35(2), 58–90 (2011).
  • Zhang D, Zhou Y, Wu L et al. Association of IL-6 gene polymorphisms with cachexia susceptibility and survival time of patients with pancreatic cancer. Ann. Clin. Lab Sci.38(2), 113–119 (2008).
  • Kalantar-Zadeh K, Horwich TB, Oreopoulos A et al. Risk factor paradox in wasting diseases. Curr. Opin. Clin. Nutr. Metab. Care10(4), 433–442 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.