103
Views
10
CrossRef citations to date
0
Altmetric
Review

Transthyretin: roles in the nervous system beyond thyroxine and retinol transport

, &
Pages 181-189 | Published online: 10 Jan 2014

References

  • Seibert FB, Nelson JW. Electrophoretic study of the blood protein response in tuberculosis. J. Biol. Chem.143(1), 29–38 (1942).
  • Kabat EA, Moore DH, Landow H. An electrophoretic study of the protein components in cerebrospinal fluid and their relationship to the serum proteins. J. Clin. Invest.21(5), 571–577 (1942).
  • Nomenclature committee of IUB (NC-IUB) IUB-IUPAC Joint commission on biochemical nomenclature (JCBN). Newsletter 1981. J. Biol. Chem.256(1), 12–14 (1981).
  • Raz A, Goodman DS. The interaction of thyroxine with human plasma prealbumin and with the prealbumin–retinol-binding protein complex. J. Biol. Chem.244(12), 3230–3237 (1969).
  • Power DM, Elias NP, Richardson SJ, Mendes J, Soares CM, Santos CR. Evolution of the thyroid hormone-binding protein, transthyretin. Gen. Comp. Endocrinol.119(3), 241–255 (2000).
  • Schreiber G, Richardson SJ. The evolution of gene expression, structure and function of transthyretin. Comp. Biochem. Physiol. B. Biochem. Mol. Biol.116(2), 137–160 (1997).
  • Blake CC, Geisow MJ, Oatley SJ, Rerat B, Rerat C. Structure of prealbumin: secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8 A. J. Mol. Biol.121(3), 339–356 (1978).
  • Blake CC, Swan ID, Rerat C, Berthou J, Laurent A, Rerat B. An x-ray study of the subunit structure of prealbumin. J. Mol. Biol.61(1), 217–224 (1971).
  • Felding P, Fex G. Cellular origin of prealbumin in the rat. Biochim. Biophys. Acta716(3), 446–449 (1982).
  • Aleshire SL, Bradley CA, Richardson LD, Parl FF. Localization of human prealbumin in choroid plexus epithelium. J. Histochem. Cytochem.31(5), 608–612 (1983).
  • Soprano DR, Herbert J, Soprano KJ, Schon EA, Goodman DS. Demonstration of transthyretin mRNA in the brain and other extrahepatic tissues in the rat. J. Biol. Chem.260(21), 11793–11798 (1985).
  • Soprano DR, Soprano KJ, Goodman DS. Retinol-binding protein and transthyretin mRNA levels in visceral yolk sac and liver during fetal development in the rat. Proc. Natl Acad. Sci. USA83(19), 7330–7334 (1986).
  • Cavallaro T, Martone RL, Dwork AJ, Schon EA, Herbert J. The retinal pigment epithelium is the unique site of transthyretin synthesis in the rat eye. Invest. Ophthalmol. Visual Sci.31(3), 497–501 (1990).
  • Martone RL, Schon EA, Goodman DS, Soprano DR, Herbert J. Retinol-binding protein is synthesized in the mammalian eye. Biochem. Biophys. Res. Commun.157(3), 1078–1084 (1988).
  • Jacobsson B, Collins VP, Grimelius L, Pettersson T, Sandstedt B, Carlstrom A. Transthyretin immunoreactivity in human and porcine liver, choroid plexus, and pancreatic islets. J. Histochem. Cytochem.: Official J. Histochem. Soc.37(1), 31–37 (1989).
  • Martone RL, Mizuno R, Herbert J. The mammalian pineal gland is a synthetic site for TTR and RBP. J. Rheumatol.20, 175 (1993).
  • McKinnon B, Li H, Richard K, Mortimer R. Synthesis of thyroid hormone binding proteins transthyretin and albumin by human trophoblast. J. Clin. Endocrinol. Metab.90(12), 6714–6720 (2005).
  • Makover A, Moriwaki H, Ramakrishnan R, Saraiva MJ, Blaner WS, Goodman DS. Plasma transthyretin. Tissue sites of degradation and turnover in the rat. J. Biol. Chem.263(18), 8598–8603 (1988).
  • Sousa MM, Saraiva MJ. Internalization of transthyretin. Evidence of a novel yet unidentified receptor-associated protein (RAP)-sensitive receptor. J. Biol. Chem.276(17), 14420–14425 (2001).
  • Sousa MM, Norden AG, Jacobsen C et al. Evidence for the role of megalin in renal uptake of transthyretin. J. Biol. Chem.275(49), 38176–38181 (2000).
  • Ingenbleek Y, De Visscher M, De Nayer P. Measurement of prealbumin as index of protein-calorie malnutrition. Lancet2(7768), 106–109 (1972).
  • Ingenbleek Y, Van Den Schrieck HG, De Nayer P, De Visscher M. Albumin, transferrin and the thyroxine-binding prealbumin/retinol-binding protein (TBPA-RBP) complex in assessment of malnutrition. Clin. Chim. Acta63(1), 61–67 (1975).
  • Ingenbleek Y, Young VR. Significance of transthyretin in protein metabolism. Clin. Chem. Lab. Med.40(12), 1281–1291 (2002).
  • Potter MA, Luxton G. Transthyretin measurement as a screening tool for protein calorie malnutrition in emergency hospital admissions. Clin. Chem. Lab Med.40, 1349–1354 (2002).
  • Ingenbleek Y. Plasma transthyretin reflects the fluctuations of lean body mass in health and disease. In: Recent Advances in Transthyretin Evolution, Structure and Biological Functions. Richardson SJ, Cody V (Eds). Springer-Verlag, Berlin Heidelberg, Germany (2009).
  • Dentice M, Salvatore D. Deiodinases: the balance of thyroid hormone: local impact of thyroid hormone inactivation. J. Endocrinol.209(3), 273–282 (2011).
  • Bartalena L. Recent achievements in studies on thyroid hormone-binding proteins. Endocrine Rev.11(1), 47–64 (1990).
  • Hagen GA, Solberg LA Jr. Brain and cerebrospinal fluid permeability to intravenous thyroid hormones. Endocrinology95(5), 1398–1410 (1974).
  • Chanoine JP, Braverman LE. The role of transthyretin in the transport of thyroid hormone to cerebrospinal fluid and brain. Acta Med. Austriaca19(Suppl. 1), 25–28 (1992).
  • Andrea TA, Cavalieri RR, Goldfine ID, Jorgensen EC. Binding of thyroid hormones and analogues to the human plasma protein prealbumin. Biochemistry19(1), 55–63 (1980).
  • Palha JA. Transthyretin as a thyroid hormone carrier: function revisited. Clin. Chem. Lab Med.40(12), 1292–1300 (2002).
  • Episkopou V, Maeda S, Nishiguchi S et al. Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone. Proc. Natl Acad. Sci. USA90(6), 2375–2379 (1993).
  • Palha JA, Episkopou V, Maeda S, Shimada K, Gottesman ME, Saraiva MJ. Thyroid hormone metabolism in a transthyretin-null mouse strain. J. Biol. Chem.269(52), 33135–33139 (1994).
  • Mendel CM. The free hormone hypothesis: a physiologically based mathematical model. Endocrine Rev.10(3), 232–274 (1989).
  • Palha JA, Fernandes R, De Escobar GM, Episkopou V, Gottesman M, Saraiva MJ. Transthyretin regulates thyroid hormone levels in the choroid plexus, but not in the brain parenchyma: study in a transthyretin-null mouse model. Endocrinology141(9), 3267–3272 (2000).
  • Palha JA, Hays MT, Morreale De Escobar G, Episkopou V, Gottesman ME, Saraiva MJ. Transthyretin is not essential for thyroxine to reach the brain and other tissues in transthyretin-null mice. Am. J. Physiol.272(3 Pt 1), E485–E493 (1997).
  • Palha JA, Nissanov J, Fernandes R et al. Thyroid hormone distribution in the mouse brain: the role of transthyretin. Neuroscience113(4), 837–847 (2002).
  • Kallee E, Ott H. Albuminpolymorphien: analbuminaemie, bisalbuminaemie und dysalbuminaemische hyperthyroxinaemie. In: Innere Medizin in Praxis und Klinik. Hornbostel H, Kaufmann W, Siegenthaler W (Eds). Georg Thieme Verlag Stuttgart, New York, USA, 108–119 (1992).
  • Mendel CM, Murai JT, Siiteri PK, Monroe SE, Inoue M. Conservation of free but not total or non-sex-hormone-binding-globulin-bound testosterone in serum from Nagase analbuminemic rats. Endocrinology124(6), 3128–3130 (1989).
  • Bartalena L. Studies on thyroxine-binding globulin. J. Endocrinol. Invest.16(5), 353–371 (1993).
  • Refetoff S. Inherited thyroxine-binding globulin abnormalities in man. Endocrine Rev.10(3), 275–293 (1989).
  • Kassem NA, Deane R, Segal MB, Preston JE. Role of transthyretin in thyroxine transfer from cerebrospinal fluid to brain and choroid plexus. Am. J. Physiol.291(5), R1310–R1315 (2006).
  • Landers KA, McKinnon BD, Li H, Subramaniam VN, Mortimer RH, Richard K. Carrier-mediated thyroid hormone transport into placenta by placental transthyretin. J. Clin. Endocrinol. Metab.94(7), 2610–2616 (2009).
  • Patel J, Landers K, Li H, Mortimer RH, Richard K. Delivery of maternal thyroid hormones to the fetus. Trends Endocrinol. Metab.22(5), 164–170 (2011).
  • Kanai M, Raz A, Goodman DS. Retinol-binding protein: the transport protein for vitamin A in human plasma. J. Clin. Invest.47(9), 2025–2044 (1968).
  • Gudas LJ. Emerging roles for retinoids in regeneration and differentiation in normal and disease states. Biochim. Et Biophys. Acta (2011).
  • Goodman DS. Vitamin A and retinoids in health and disease. N. Engl. J. Med.310(16), 1023–1031 (1984).
  • Noy N, Slosberg E, Scarlata S. Interactions of retinol with binding proteins: studies with retinol-binding protein and with transthyretin. Biochemistry31(45), 11118–11124 (1992).
  • van Bennekum AM, Wei S, Gamble MV et al. Biochemical basis for depressed serum retinol levels in transthyretin-deficient mice. J. Biol. Chem.276(2), 1107–1113 (2001).
  • Monaco HL, Rizzi M, Coda A. Structure of a complex of two plasma proteins: transthyretin and retinol-binding protein. Science268(5213), 1039–1041 (1995).
  • Wei S, Episkopou V, Piantedosi R et al. Studies on the metabolism of retinol and retinol-binding protein in transthyretin-deficient mice produced by homologous recombination. J. Biol. Chem.270(2), 866–870 (1995).
  • Sundaram M, Sivaprasadarao A, Desousa MM, Findlay JB. The transfer of retinol from serum retinol-binding protein to cellular retinol-binding protein is mediated by a membrane receptor. J. Biol. Chem.273(6), 3336–3342 (1998).
  • Kawaguchi R, Yu J, Honda J et al. A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science315(5813), 820–825 (2007).
  • Sousa MM, Berglund L, Saraiva MJ. Transthyretin in high density lipoproteins: association with apolipoprotein A-I. J. Lipid Res.41(1), 58–65 (2000).
  • Liz MA, Faro CJ, Saraiva MJ, Sousa MM. Transthyretin, a new cryptic protease. J. Biol. Chem.279(20), 21431–21438 (2004).
  • Liz MA, Gomes CM, Saraiva MJ, Sousa MM. ApoA-I cleaved by transthyretin has reduced ability to promote cholesterol efflux and increased amyloidogenicity. J. Lipid Res.48(11), 2385–2395 (2007).
  • Liz MA, Fleming CE, Nunes AF et al. Substrate specificity of transthyretin: identification of natural substrates in the nervous system. Biochem. J.419(2), 467–474 (2009).
  • Costa R, Ferreira-Da-Silva F, Saraiva MJ, Cardoso I. Transthyretin protects against A-β peptide toxicity by proteolytic cleavage of the peptide: a mechanism sensitive to the Kunitz protease inhibitor. PLoS One3(8), e2899 (2008).
  • Sousa JC, Grandela C, Fernandez-Ruiz J et al. Transthyretin is involved in depression-like behaviour and exploratory activity. J. Neurochem.88(5), 1052–1058 (2004).
  • Heilig M. The NPY system in stress, anxiety and depression. Neuropeptides38(4), 213–224 (2004).
  • Nunes AF, Saraiva MJ, Sousa MM. Transthyretin knockouts are a new mouse model for increased neuropeptide Y. FASEB J.20(1), 166–168 (2006).
  • Fleming CE, Saraiva MJ, Sousa MM. Transthyretin enhances nerve regeneration. J. Neurochem.103(2), 831–839 (2007).
  • Brouillette J, Quirion R. Transthyretin: a key gene involved in the maintenance of memory capacities during aging. Neurobiol. Aging29(11), 1721–1732 (2008).
  • Buxbaum JN, Ye Z, Reixach N et al. Transthyretin protects Alzheimer’s mice from the behavioral and biochemical effects of Aβ toxicity. Proc. Natl Acad. Sci. USA105(7), 2681–2686 (2008).
  • Sousa JC, Marques F, Dias-Ferreira E, Cerqueira JJ, Sousa N, Palha JA. Transthyretin influences spatial reference memory. Neurobiol. Learn. Mem.88(3), 381–385 (2007).
  • Prigge ST, Mains RE, Eipper BA, Amzel LM. New insights into copper monooxygenases and peptide amidation: structure, mechanism and function. Cell. Mol. Life Sci.57(8–9), 1236–1259 (2000).
  • Fleming CE, Mar FM, Franquinho F, Saraiva MJ, Sousa MM. Transthyretin internalization by sensory neurons is megalin mediated and necessary for its neuritogenic activity. J. Neurosci.: Official J. Soc. Neurosci.29(10), 3220–3232 (2009).
  • Liverman CS, Cui L, Yong C et al. Response of the brain to oligemia: gene expression, c-Fos, and Nrf2 localization. Brain Res. Mol. Brain Res.126(1), 57–66 (2004).
  • Suzuyama K, Shiraishi T, Oishi T et al. Combined proteomic approach with SELDI-TOF-MS and peptide mass fingerprinting identified the rapid increase of monomeric transthyretin in rat cerebrospinal fluid after transient focal cerebral ischemia. Brain Res. Mol. Brain Res.129(1–2), 44–53 (2004).
  • Sironi L, Tremoli E, Miller I et al. Acute-phase proteins before cerebral ischemia in stroke-prone rats: identification by proteomics. Stroke32(3), 753–760 (2001).
  • Santos SD, Lambertsen KL, Clausen BH et al. CSF transthyretin neuroprotection in a mouse model of brain ischemia. J. Neurochem.115(6), 1434–1444 (2010).
  • Wang X, Li W, Zhao D et al.Caenorhabditis elegans transthyretin-like protein TTR-52 mediates recognition of apoptotic cells by the CED-1 phagocyte receptor. Nat. Cell Biol.12(7), 655–664 (2010).
  • Goedert M, Spillantini MG. A century of Alzheimer’s disease. Science314(5800), 777–781 (2006).
  • Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science297(5580), 353–356 (2002).
  • Pimplikar SW, Nixon RA, Robakis NK, Shen J, Tsai LH. Amyloid-independent mechanisms in Alzheimer’s disease pathogenesis. J. Neurosci.: Official J. Soc. Neurosci.30(45), 14946–14954 (2010).
  • Schwarzman AL, Gregori L, Vitek MP et al. Transthyretin sequesters amyloid β protein and prevents amyloid formation. Proc. Natl Acad. Sci. USA91(18), 8368–8372 (1994).
  • Liu L, Murphy RM. Kinetics of inhibition of β-amyloid aggregation by transthyretin. Biochemistry45(51), 15702–15709 (2006).
  • Costa R, Goncalves A, Saraiva MJ, Cardoso I. Transthyretin binding to A-B peptide – impact on A-B fibrillogenesis and toxicity. FEBS Lett.582(6), 936–942 (2008).
  • Stein TD, Anders NJ, Decarli C, Chan SL, Mattson MP, Johnson JA. Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis. J. Neurosci.24(35), 7707–7717 (2004).
  • Stein TD, Johnson JA. Genetic programming by the proteolytic fragments of the amyloid precursor protein: somewhere between confusion and clarity. Rev. Neurosci.14(4), 317–341 (2003).
  • Castaño EM, Roher AE, Esh CL, Kokjohn TA, Beach T. Comparative proteomics of cerebrospinal fluid in neuropathologically-confirmed Alzheimer’s disease and non-demented elderly subjects. Neurol. Res.28(2), 155–163 (2006).
  • Gloeckner SF, Meyne F, Wagner F et al. Quantitative analysis of transthyretin, tau and amyloid-β in patients with dementia. J. Alzheimers Dis.14(1), 17–25 (2008).
  • Serot JM, Christmann D, Dubost T, Couturier M. Cerebrospinal fluid transthyretin: aging and late onset al z.heimer’s disease. J. Neurol. Neurosurg. Psychiat.63(4), 506–508 (1997).
  • Riisoen H. Reduced prealbumin (transthyretin) in CSF of severely demented patients with Alzheimer’s disease. Acta Neurol. Scand.78(6), 455–459 (1988).
  • Merched A, Serot JM, Visvikis S, Aguillon D, Faure G, Siest G. Apolipoprotein E, transthyretin and actin in the CSF of Alzheimer’s patients: relation with the senile plaques and cytoskeleton biochemistry. FEBS Lett425(2), 225–228 (1998).
  • Han SH, Jung ES, Sohn JH et al. Human serum transthyretin levels correlate inversely with Alzheimer’s disease. J. Alzheimers Dis.25(1), 77–84 (2011).
  • Oliveira SM, Ribeiro CA, Cardoso I, Saraiva MJ. Gender-dependent transthyretin modulation of brain amyloid-β levels: evidence from a mouse model of Alzheimer’s disease. J. Alzheimers Dis.27(2), 429–439 (2011).
  • Li X, Masliah E, Reixach N, Buxbaum JN. Neuronal production of transthyretin in human and murine Alzheimer’s disease: is it protective? J. Neurosci.: Official J. Soc. Neurosci.31(35), 12483–12490 (2011).
  • Lazarov O, Robinson J, Tang YP et al. Environmental enrichment reduces Aβ levels and amyloid deposition in transgenic mice. Cell120(5), 701–713 (2005).
  • Choi SH, Leight SN, Lee VM et al. Accelerated Aβ deposition in APPswe/PS1ΔE9 mice with hemizygous deletions of TTR (transthyretin). J. Neurosci.27(26), 7006–7010 (2007).
  • Wati H, Kawarabayashi T, Matsubara E et al. Transthyretin accelerates vascular Aβ deposition in a mouse model of Alzheimer’s disease. Brain Pathol.19(1), 48–57 (2009).
  • Doggui S, Brouillette J, Chabot JG, Farso M, Quirion R. Possible involvement of transthyretin in hippocampal β-amyloid burden and learning behaviors in a mouse model of Alzheimer’s disease (TgCRND8). Neurodegener Dis.7(1–3), 88–95 (2010).
  • Andrade C. A peculiar form of peripheral neuropathy; familiar atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain75(3), 408–427 (1952).
  • Coimbra A, Andrade C. Familial amyloid polyneuropathy: an electron microscope study of the peripheral nerve in five cases. II. Nerve fibre changes. Brain94(2), 207–212 (1971).
  • Yamashita T, Ando Y, Uchino M. Familial amyloid polyneuropathy. Brain Nerve63(6), 583–595 (2011).
  • Kitchens WH. Domino liver transplantation: indications, techniques, and outcomes. Transplant. Rev. (Orlando)25(4), 167–177 (2011).
  • Almeida MR, Macedo B, Cardoso I et al. Selective binding to transthyretin and tetramer stabilization in serum from patients with familial amyloidotic polyneuropathy by an iodinated diflunisal derivative. Biochem. J.381(Pt 2), 351–356 (2004).
  • Cardoso I, Almeida MR, Ferreira N, Arsequell G, Valencia G, Saraiva MJ. Comparative in vitro and ex vivo activities of selected inhibitors of transthyretin aggregation: relevance in drug design. Biochem. J.408(1), 131–138 (2007).
  • Ferreira N, Cardoso I, Domingues MR et al. Binding of epigallocatechin-3-gallate to transthyretin modulates its amyloidogenicity. FEBS Lett.583(22), 3569–3576 (2009).
  • Klabunde T, Petrassi HM, Oza VB, Raman P, Kelly JW, Sacchettini JC. Rational design of potent human transthyretin amyloid disease inhibitors. Nat. Struct. Biol.7(4), 312–321 (2000).
  • Macedo B, Magalhaes J, Batista AR, Saraiva MJ. Carvedilol treatment reduces transthyretin deposition in a familial amyloidotic polyneuropathy mouse model. Pharmacol. Res.62(6), 514–522 (2010).
  • Oza VB, Smith C, Raman P et al. Synthesis, structure, and activity of diclofenac analogues as transthyretin amyloid fibril formation inhibitors. J. Med. Chem.45(2), 321–332 (2002).
  • Trivella DB, Bleicher L, Palmieri Lde C et al. Conformational differences between the wild type and V30M mutant transthyretin modulate its binding to genistein: implications to tetramer stability and ligand-binding. J. Struct. Biol.170(3), 522–531 (2010).
  • Sekijima Y, Kelly JW, Ikeda S. Pathogenesis of and therapeutic strategies to ameliorate the transthyretin amyloidoses. Curr. Pharm. Des.14(30), 3219–3230 (2008).
  • Cardoso I, Merlini G, Saraiva MJ. 4’-iodo-4’-deoxydoxorubicin and tetracyclines disrupt transthyretin amyloid fibrils in vitro producing noncytotoxic species: screening for TTR fibril disrupters. FASEB J.17(8), 803–809 (2003).
  • Cardoso I, Saraiva MJ. Doxycycline disrupts transthyretin amyloid: evidence from studies in a FAP transgenic mice model. FASEB J.20(2), 234–239 (2006).
  • Macedo B, Batista AR, Ferreira N, Almeida MR, Saraiva MJ. Anti-apoptotic treatment reduces transthyretin deposition in a transgenic mouse model of familial amyloidotic polyneuropathy. Biochim. Et Biophys. Acta1782(9), 517–522 (2008).
  • Cardoso I, Martins D, Ribeiro T, Merlini G, Saraiva MJ. Synergy of combined doxycycline/TUDCA treatment in lowering transthyretin deposition and associated biomarkers: studies in FAP mouse models. J. Transl. Med.8, 74 (2010).
  • Terazaki H, Ando Y, Fernandes R, Yamamura K, Maeda S, Saraiva MJ. Immunization in familial amyloidotic polyneuropathy: counteracting deposition by immunization with a Y78F TTR mutant. Lab Invest.86(1), 23–31 (2006).
  • Love KT, Mahon KP, Levins CG et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA107(5), 1864–1869 (2010).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.