50
Views
2
CrossRef citations to date
0
Altmetric
Reviews

A role for corticosteroid-binding globulin variants in stress-related disorders

&
Pages 301-308 | Published online: 10 Jan 2014

References

  • Brien TG. Human corticosteroid binding globulin. Clin. Endocrinol. 14(2), 193–212 (1981).
  • Daughaday WH. Binding of corticosteroids by plasma proteins. II. Paper electrophoresis and equilibrium paper electrophoresis. J. Clin. Invest. 35(12), 1434–1438 (1956).
  • Daughaday WH. Binding of corticosteroids by plasma proteins. I. Dialysis equilibrium and renal clearance studies. J. Clin. Invest. 35(12), 1428–1433 (1956).
  • Daughaday WH. Binding of corticosteroids by plasma proteins. IV. The electrophoretic demonstration of corticosteroid binding globulin. J. Clin. Invest. 37(4), 519–523 (1958).
  • Daughaday WH. Binding of corticosteroids by plasma proteins. III. The binding of corticosteroid and related hormones by human plasma and plasma protein fractions as measured by equilibrium dialysis. J. Clin. Invest. 37(4), 511–518 (1958).
  • Daughaday WH. Binding of corticosteroids by plasma proteins. V. Corticosteroid-binding globulin activity in normal human beings and in certain disease states. AMA Arch. Intern. Med. 101(2), 286–290 (1958).
  • Torpy DJ, Ho JT. Corticosteroid-binding globulin gene polymorphisms: clinical implications and links to idiopathic chronic fatigue disorders. Clin. Endocrinol. 67(2), 161–167 (2007).
  • Hammond GL, Smith CL, Goping IS et al. Primary structure of human corticosteroid binding globulin, deduced from hepatic and pulmonary cDNAs, exhibits homology with serine protease inhibitors. Proc. Natl Acad. Sci. USA 84(15), 5153–5157 (1987).
  • Sivukhina EV, Jirikowski GF, Bernstein HG, Lewis JG, Herbert Z. Expression of corticosteroid-binding protein in the human hypothalamus, co-localization with oxytocin and vasopressin. Horm. Metab. Res. 38(4), 253–259 (2006).
  • Perrot-Applanat M, Racadot O, Milgrom E. Specific localization of plasma corticosteroid-binding globulin immunoreactivity in pituitary corticotrophs. Endocrinology 115(2), 559–569 (1984).
  • Misao R, Hori M, Ichigo S, Fujimoto J, Tamaya T. Corticosteroid-binding globulin mRNA levels in human uterine endometrium. Steroids 59(10), 603–607 (1994).
  • Misao R, Iwagaki S, Sun WS et al. Evidence for the synthesis of corticosteroid-binding globulin in human placenta. Horm. Res. 51(4), 162–167 (1999).
  • Avvakumov GV, Warmels-Rodenhiser S, Hammond GL. Glycosylation of human corticosteroid-binding globulin at aspargine 238 is necessary for steroid binding. J. Biol. Chem. 268(2), 862–866 (1993).
  • Seralini GE, Bérubé D, Gagné R, Hammond GL. The human corticosteroid binding globulin gene is located on chromosome 14q31-q32.1 near two other serine protease inhibitor genes. Hum. Genet. 86(1), 73–75 (1990).
  • Gagliardi L, Ho JT, Torpy DJ. Corticosteroid-binding globulin: the clinical significance of altered levels and heritable mutations. Mol. Cell. Endocrinol. 316(1), 24–34 (2010).
  • Sievenpiper JL, Vuksan V, Wong EY, Mendelson RA, Bruce-Thompson C. Effect of meal dilution on the postprandial glycemic response. Implications for glycemic testing. Diabetes Care 21(5), 711–716 (1998).
  • Rosner W, Hryb DJ, Khan MS, Singer CJ, Nakhla AM. Are corticosteroid-binding globulin and sex hormone-binding globulin hormones? Ann. NY Acad. Sci. 538, 137–145 (1988).
  • Petersen HH, Andreassen TK, Breiderhoff T et al. Hyporesponsiveness to glucocorticoids in mice genetically deficient for the corticosteroid binding globulin. Mol. Cell. Biol. 26(19), 7236–7245 (2006).
  • Mormede P, Foury A, Barat P et al. Molecular genetics of hypothalamic–pituitary–adrenal axis activity and function. Ann. NY Acad. Sci. 1220, 127–136 (2011).
  • Ousova O, Guyonnet-Duperat V, Iannuccelli N et al. Corticosteroid binding globulin: a new target for cortisol-driven obesity. Mol. Endocrinol. 18(7), 1687–1696 (2004).
  • Torpy DJ, Bachmann AW, Grice JE et al. Familial corticosteroid-binding globulin deficiency due to a novel null mutation: association with fatigue and relative hypotension. J. Clin. Endocrinol. Metab. 86(8), 3692–3700 (2001).
  • Seif SM, Robinson AG, Zimmerman EA, Wilkins J. Plasma neurophysin and vasopressin in the rat: response to adrenalectomy and steroid replacement. Endocrinology 103(4), 1009–1015 (1978).
  • Fuchs AR, Fuchs F, Husslein P, Soloff MS. Oxytocin receptors in the human uterus during pregnancy and parturition. Am. J. Obstet. Gynecol. 150(6), 734–741 (1984).
  • Aguilera G, Subburaju S, Young S, Chen J. The parvocellular vasopressinergic system and responsiveness of the hypothalamic pituitary adrenal axis during chronic stress. Prog. Brain Res. 170, 29–39 (2008).
  • de Kloet ER, Voorhuis TA, Leunissen JL, Koch B. Intracellular CBG-like molecules in the rat pituitary. J. Steroid Biochem. 20(1), 367–371 (1984).
  • Strel'chyonok OA, Avvakumov GV. Evidence for the presence of specific binding sites for transcortin in human liver plasma membranes. Biochim. Biophys. Acta 755(3), 514–517 (1983).
  • Strel'chyonok OA, Avvakumov GV. Interaction of human CBG with cell membranes. J. Steroid Biochem. Mol. Biol. 40(4-6), 795–803 (1991).
  • Nakhla AM, Khan MS, Rosner W. Induction of adenylate cyclase in a mammary carcinoma cell line by human corticosteroid-binding globulin. Biochem. Biophys. Res. Commun. 153(3), 1012–1018 (1988).
  • Sumer-Bayraktar Z, Kolarich D, Campbell MP, Ali S, Packer NH, Thaysen-Andersen M. N-glycans modulate the function of human corticosteroid-binding globulin. Mol. Cell Proteomics 10(8), M111.009100 (2011).
  • Adams JS. ‘Bound’ to work: the free hormone hypothesis revisited. Cell 122(5), 647–649 (2005).
  • Goldstein DS, McEwen B. Allostasis, homeostats, and the nature of stress. Stress 5(1), 55–58 (2002).
  • Seyle H. A syndrome produced by diverse nocuous agents. 1936. J. Neuropsychiatry Clin. Neurosci. 10(2), 230–231 (1998).
  • Lazarus RS. Psychological stress and coping in adaptation and illness. Int. J. Psychiatry Med. 5(4), 321–333 (1974).
  • Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 213(4514), 1394–1397 (1981).
  • Holsboer F. Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J. Affect. Disord. 62(1–2), 77–91 (2001).
  • Holsboer F, Von Bardeleben U, Gerken A, Stalla GK, Müller OA. Blunted corticotropin and normal cortisol response to human corticotropin-releasing factor in depression. N. Engl. J. Med. 311(17), 1127 (1984).
  • Dinan TG, Lavelle E, Scott LV, Newell-Price J, Medbak S, Grossman AB. Desmopressin normalizes the blunted adrenocorticotropin response to corticotropin-releasing hormone in melancholic depression: evidence of enhanced vasopressinergic responsivity. J. Clin. Endocrinol. Metab. 84(6), 2238–2240 (1999).
  • Miller DB, O'Callaghan JP. Neuroendocrine aspects of the response to stress. Metab. Clin. Exp. 51(6 Suppl. 1), 5–10 (2002).
  • Chrousos GP. Stress and disorders of the stress system. Nat. Rev. Endocrinol. 5(7), 374–381 (2009).
  • Elenkov IJ, Chrousos GP. Stress system – organization, physiology and immunoregulation. Neuroimmunomodulation 13(5–6), 257–267 (2006).
  • Darlington DN, Miyamoto M, Keil LC, Dallman MF. Paraventricular stimulation with glutamate elicits bradycardia and pituitary responses. Am. J. Physiol. 256(1 Pt 2), R112–R119 (1989).
  • McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol. Rev. 87(3), 873–904 (2007).
  • Rivier C, Vale W. Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature 305(5932), 325–327 (1983).
  • Koob GF, Heinrichs SC, Pich EM et al. The role of corticotropin-releasing factor in behavioural responses to stress. Ciba Found. Symp. 172, 277–289; discussion 290 (1993).
  • Antoni FA, Holmes MC, Jones MT. Oxytocin as well as vasopressin potentiate ovine CRF in vitro. Peptides 4(4), 411–415 (1983).
  • Gillies GE, Linton EA, Lowry PJ. Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature 299(5881), 355–357 (1982).
  • Reichlin S. Neuroendocrinology. N. Engl. J. Med. 269, 1296–1303 (1963).
  • Keller-Wood ME, Dallman MF. Corticosteroid inhibition of ACTH secretion. Endocr. Rev. 5(1), 1–24 (1984).
  • Erkut ZA, Pool C, Swaab DF. Glucocorticoids suppress corticotropin-releasing hormone and vasopressin expression in human hypothalamic neurons. J. Clin. Endocrinol. Metab. 83(6), 2066–2073 (1998).
  • Henckens MJ, van Wingen GA, Joëls M, Fernández G. Corticosteroid induced decoupling of the amygdala in men. Cereb. Cortex doi:10.1093/cercor/bhr313 (2011) (Epub ahead of print).
  • McEwen BS. Stress, adaptation, and disease. Allostasis and allostatic load. Ann. NY Acad. Sci. 840, 33–44 (1998).
  • McEwen BS. Allostasis and allostatic load: implications for neuropsychopharmacology. Neuropsychopharmacology 22(2), 108–124 (2000).
  • Clauw DJ, Chrousos GP. Chronic pain and fatigue syndromes: overlapping clinical and neuroendocrine features and potential pathogenic mechanisms. Neuroimmunomodulation 4(3), 134–153 (1997).
  • McEwen BS, Kalia M. The role of corticosteroids and stress in chronic pain conditions. Metab. Clin. Exp. 59(Suppl. 1), S9–S15 (2010).
  • Clark WC, Yang JC, Janal MN. Altered pain and visual sensitivity in humans: the effects of acute and chronic stress. Ann. NY Acad. Sci. 467, 116–129 (1986).
  • Gamaro GD, Xavier MH, Denardin JD et al. The effects of acute and repeated restraint stress on the nociceptive response in rats. Physiol. Behav. 63(4), 693–697 (1998).
  • Imbe H, Iwai-Liao Y, Senba E. Stress-induced hyperalgesia: animal models and putative mechanisms. Front. Biosci. 11, 2179–2192 (2006).
  • Ryan S. Fibromyalgia: an overview and comparison of treatment options. Br. J. Nurs. 20(16), 991–992, 994–995 (2011)
  • Wolfe F, Clauw DJ, Fitzcharles MA et al. Fibromyalgia criteria and severity scales for clinical and epidemiological studies: a modification of the ACR Preliminary Diagnostic Criteria for Fibromyalgia. J. Rheumatol. 38(6), 1113–1122 (2011).
  • Branco JC, Bannwarth B, Failde I et al. Prevalence of fibromyalgia: a survey in five European countries. Semin. Arthritis Rheum. 39(6), 448–453 (2010).
  • McBeth J, Jones K. Epidemiology of chronic musculoskeletal pain. Best Pract. Res. Clin. Rheumatol. 21(3), 403–425 (2007).
  • Fukuda K, Straus SE, Hickie I, Sharpe MC, Dobbins JG, Komaroff A. The chronic fatigue syndrome: a comprehensive approach to its definition and study. International Chronic Fatigue Syndrome Study Group. Ann. Intern. Med. 121(12), 953–959 (1994).
  • Skapinakis P, Lewis G, Meltzer H. Clarifying the relationship between unexplained chronic fatigue and psychiatric morbidity: results from a community survey in Great Britain. Am. J. Psychiatry 157(9), 1492–1498 (2000).
  • Fries E, Hesse J, Hellhammer J, Hellhammer DH. A new view on hypocortisolism. Psychoneuroendocrinology 30(10), 1010–1016 (2005).
  • Heim C, Ehlert U, Hellhammer DH. The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology 25(1), 1–35 (2000).
  • Björntorp P. Do stress reactions cause abdominal obesity and comorbidities? Obes. Rev. 2(2), 73–86 (2001).
  • Björntorp P. Heart and soul: stress and the metabolic syndrome. Scand. Cardiovasc. J. 35(3), 172–177 (2001).
  • Bujalska IJ, Kumar S, Stewart PM. Does central obesity reflect ‘Cushing's disease of the omentum’? Lancet 349(9060), 1210–1213 (1997).
  • Chrousos GP, Gold PW. A healthy body in a healthy mind – and vice versa – the damaging power of ‘uncontrollable’ stress. J. Clin. Endocrinol. Metab. 83(6), 1842–1845 (1998).
  • Roitman A, Bruchis S, Bauman B, Kaufman H, Laron Z. Total deficiency of corticosteroid-binding globulin. Clin. Endocrinol. 21(5), 541–548 (1984).
  • Emptoz-Bonneton A, Cousin P, Seguchi K et al. Novel human corticosteroid-binding globulin variant with low cortisol-binding affinity. J. Clin. Endocrinol. Metab. 85(1), 361–367 (2000).
  • Brunner E, Baima J, Vieira TC, Vieira JG, Abucham J. Hereditary corticosteroid-binding globulin deficiency due to a missense mutation (Asp367Asn, CBG Lyon) in a Brazilian kindred. Clin. Endocrinol. 58(6), 756–762 (2003).
  • Buss C, Schuelter U, Hesse J et al. Haploinsufficiency of the SERPINA6 gene is associated with severe muscle fatigue: a de novo mutation in corticosteroid-binding globulin deficiency. J. Neural Transm. 114(5), 563–569 (2007).
  • Perogamvros I, Underhill C, Henley DE et al. Novel corticosteroid-binding globulin variant that lacks steroid binding activity. J. Clin. Endocrinol. Metab. 95(10), E142–E150 (2010).
  • Torpy DJ, Lundgren BA, Ho JT, Lewis JG, Scott HS, Mericq V. CBG Santiago: a novel CBG mutation. J. Clin. Endocrinol. Metab. 97(1), E151–E155 (2012).
  • Muller HJ. Changing genes: their effects on evolution. Bull. At. Sci. 3(9), 267–271 (1947).
  • Nielsen CS, Stubhaug A, Price DD, Vassend O, Czajkowski N, Harris JR. Individual differences in pain sensitivity: genetic and environmental contributions. Pain 136(1–2), 21–29 (2008).
  • Cizza G Bernardi L Smirne N et al. Clinical manifestations of highly prevalent corticosteroid binding globulin mutations in a village in southern Italy. J. Clin. Endocrinol. Metab. 96(10), E1684–E1693 (2011).
  • Torpy DJ, Bachmann AW, Gartside M et al. Association between chronic fatigue syndrome and the corticosteroid-binding globulin gene ALA SER224 polymorphism. Endocr. Res. 30(3), 417–429 (2004).
  • Holliday KL, Nicholl BI, Macfarlane GJ, Thomson W, Davies KA, McBeth J. Genetic variation in the hypothalamic–pituitary–adrenal stress axis influences susceptibility to musculoskeletal pain: results from the EPIFUND study. Ann. Rheum. Dis. 69(3), 556–560 (2010).
  • Vollmayr B, Henn FA. Learned helplessness in the rat: improvements in validity and reliability. Brain Res. Brain Res. Protoc. 8(1), 1–7 (2001).
  • Henn FA, Vollmayr B. Stress models of depression: forming genetically vulnerable strains. Neurosci. Biobehav. Rev. 29(4–5), 799–804 (2005).
  • Richard EM, Helbling JC, Tridon C et al. Plasma transcortin influences endocrine and behavioral stress responses in mice. Endocrinology 151(2), 649–659 (2010).
  • Moisan MP. Genotype–phenotype associations in understanding the role of corticosteroid-binding globulin in health and disease animal models. Mol. Cell. Endocrinol. 316(1), 35–41 (2010).
  • Grasa MM, Cabot C, Fernández-López JA, Remesar X, Alemany M. Modulation of corticosterone availability to white adipose tissue of lean and obese Zucker rats by corticosteroid-binding globulin. Horm. Metab. Res. 33(7), 407–411 (2001).
  • Barat P, Duclos M, Gatta B, Roger P, Mormede P, Moisan MP. Corticosteroid binding globulin gene polymorphism influences cortisol driven fat distribution in obese women. Obes. Res. 13(9), 1485–1490 (2005).
  • Vogeser M, Halser B, Baron A, Jacob K, Demant T. Corticosteroid-binding globulin and unbound serum cortisol in women with polycystic ovary syndrome. Clin. Biochem. 33(2), 157–159 (2000).
  • Emptoz-Bonneton A, Crave JC, LeJeune H, Brébant C, Pugeat M. Corticosteroid-binding globulin synthesis regulation by cytokines and glucocorticoids in human hepatoblastoma-derived (HepG2) cells. J. Clin. Endocrinol. Metab. 82(11), 3758–3762 (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.