142
Views
73
CrossRef citations to date
0
Altmetric
Review

Neurobehavioral risk is associated with gestational exposure to stress hormones

&
Pages 445-459 | Published online: 10 Jan 2014

References

  • Barker DJP. Mothers, Babies and Health in Later Life. Churchill Livingstone, Edinburgh, UK (1998).
  • Kostovic I, Judas M, Rados M, Hrabac P. Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb. Cortex 12(5), 536–544 (2002).
  • Bourgeois JP, Goldman-Rakic PS, Rakic P. Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb. Cortex 4(1), 78–96 (1994).
  • Huttenlocher PR, Dabholkar AS. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387(2), 167–178 (1997).
  • Huttenlocher PR, de Courten C, Garey LJ, Van der Loos H. Synaptogenesis in human visual cortex–evidence for synapse elimination during normal development. Neurosci. Lett. 33(3), 247–252 (1982).
  • Becker LE, Armstrong DL, Chan F, Wood MM. Dendritic development in human occipital cortical neurons. Brain Res. 315(1), 117–124 (1984).
  • Levitt P. Structural and functional maturation of the developing primate brain. J. Pediatr. 143(Suppl. 4), S35–S45 (2003).
  • Sandman CA, Davis EP. Gestational stress influences cognition and behavior. Future Neurology 5(5), 675–690 (2010).
  • Denver RJ. Environmental stress as a developmental cue: corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis. Horm. Behav. 31(2), 169–179 (1997).
  • Crespi EJ, Denver RJ. Ancient origins of human developmental plasticity. Am. J. Hum. Biol. 17(1), 44–54 (2005).
  • Boorse GC, Denver RJ. Acceleration of Ambystoma tigrinum metamorphosis by corticotropin-releasing hormone. J. Exp. Zool. 293(1), 94–98 (2002).
  • Pike IL. Maternal stress and fetal responses: evolutionary perspectives on preterm delivery. Am. J. Hum. Biol. 17(1), 55–65 (2005).
  • Kuzawa CW. Fetal origins of developmental plasticity: are fetal cues reliable predictors of future nutritional environments? Am. J. Hum. Biol. 17(1), 5–21 (2005).
  • McLean M, Bisits A, Davies J, Woods R, Lowry P, Smith R. A placental clock controlling the length of human pregnancy. Nat. Med. 1(5), 460–463 (1995).
  • Sandman CA, Glynn L, Schetter CD et al. Elevated maternal cortisol early in pregnancy predicts third trimester levels of placental corticotropin releasing hormone (CRH): priming the placental clock. Peptides 27(6), 1457–1463 (2006).
  • Anderson P, Doyle LW; Victorian Infant Collaborative Study Group. Neurobehavioral outcomes of school-age children born extremely low birth weight or very preterm in the 1990s. JAMA 289(24), 3264–3272 (2003).
  • Peterson BS, Vohr B, Staib LH et al. Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. JAMA 284(15), 1939–1947 (2000).
  • Peterson BS, Anderson AW, Ehrenkranz R et al. Regional brain volumes and their later neurodevelopmental correlates in term and preterm infants. Pediatrics 111(5 Pt. 1), 939–948 (2003).
  • Davis EP, Buss C, Muftuler LT et al. Children’s brain development benefits from longer gestation. Front. Psychol. 2, 1 (2011).
  • Nosarti C, Al-Asadi MH, Frangou S, Stewart AL, Rifkin L, Murray RM. Adolescents who were born very preterm have decreased brain volumes. Brain 125(7), 1616–1623 (2000).
  • Cannon WB. Bodily Changes in Pain, Hunger, Fear, and Rage. D. Appleton and Co., NY, USA (1929).
  • Selye H. A syndrome produced by diverse nocuous agents. Nature 138, 32 (1936).
  • Selye H. The Stress of Life. McGraw-Hill, NY, USA (1956).
  • Vale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and β-endorphin. Science 213(4514), 1394–1397 (1981).
  • Chrousos GP. Regulation and dysregulation of the hypothalamic–pituitary–adrenal axis. The corticotropin-releasing hormone perspective. Endocrinol. Metab. Clin. North Am. 21(4), 833–858 (1992).
  • Avishai-Eliner S, Brunson KL, Sandman CA, Baram TZ. Stressed-out, or in (utero)? Trends Neurosci. 25(10), 518–524 (2002).
  • Knigge KM, Hays M. Evidence of inhibitive role of hippocampus in neural regulation of ACTH release. Proc. Soc. Exp. Biol. Med. 114, 67–69 (1963).
  • Herman JP, Schäfer MK, Young EA et al. Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo–pituitary–adrenocortical axis. J. Neurosci. 9(9), 3072–3082 (1989).
  • Herman JP, Cullinan WE, Morano MI, Akil H, Watson SJ. Contribution of the ventral subiculum to inhibitory regulation of the hypothalamo–pituitary–adrenocortical axis. J. Neuroendocrinol. 7(6), 475–482 (1995).
  • Nettles KW, Pesold C, Goldman MB. Influence of the ventral hippocampal formation on plasma vasopressin, hypothalamic–pituitary–adrenal axis, and behavioral responses to novel acoustic stress. Brain Res. 858(1), 181–190 (2000).
  • Herman JP, Dolgas CM, Carlson SL. Ventral subiculum regulates hypothalamo–pituitary–adrenocortical and behavioural responses to cognitive stressors. Neuroscience 86(2), 449–459 (1998).
  • Meaney MJ, Diorio J, Francis D et al. Early environmental regulation of forebrain glucocorticoid receptor gene expression: implications for adrenocortical responses to stress. Dev. Neurosci. 18(1-2), 49–72 (1996).
  • Feldman S, Conforti N. Modifications of adrenocortical responses following frontal cortex simulation in rats with hypothalamic deafferentations and medial forebrain bundle lesions. Neuroscience 15(4), 1045–1047 (1985).
  • Bagley J, Moghaddam B. Temporal dynamics of glutamate efflux in the prefrontal cortex and in the hippocampus following repeated stress: effects of pretreatment with saline or diazepam. Neuroscience 77(1), 65–73 (1997).
  • Moghaddam B. Stress preferentially increases extraneuronal levels of excitatory amino acids in the prefrontal cortex: comparison to hippocampus and basal ganglia. J. Neurochem. 60(5), 1650–1657 (1993).
  • Murros K, Fogelholm R, Kettunen S, Vuorela AL. Serum cortisol and outcome of ischemic brain infarction. J. Neurol. Sci. 116(1), 12–17 (1993).
  • Shimizu E, Kodama K, Sakamoto T et al. Recovery from neuroendocrinological abnormalities and frontal hypoperfusion after remission in a case with rapid cycling bipolar disorder. Psychiatry Clin. Neurosci. 51(4), 207–212 (1997).
  • Diorio D, Viau V, Meaney MJ. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic–pituitary–adrenal responses to stress. J. Neurosci. 13(9), 3839–3847 (1993).
  • Akana SF, Chu A, Soriano L, Dallman MF. Corticosterone exerts site-specific and state-dependent effects in prefrontal cortex and amygdala on regulation of adrenocorticotropic hormone, insulin and fat depots. J. Neuroendocrinol. 13(7), 625–637 (2001).
  • Brunson KL, Grigoriadis DE, Lorang MT, Baram TZ. Corticotropin-releasing hormone (CRH) downregulates the function of its receptor (CRF1) and induces CRF1 expression in hippocampal and cortical regions of the immature rat brain. Exp. Neurol. 176(1), 75–86 (2002).
  • Lowry PJ. Corticotropin-releasing factor and its binding protein in human plasma. Ciba Found. Symp. 172, 108–15; discussion 115 (1993).
  • Frim DM, Emanuel RL, Robinson BG, Smas CM, Adler GK, Majzoub JA. Characterization and gestational regulation of corticotropin-releasing hormone messenger RNA in human placenta. J. Clin. Invest. 82(1), 287–292 (1988).
  • Campbell EA, Linton EA, Wolfe CD, Scraggs PR, Jones MT, Lowry PJ. Plasma corticotropin-releasing hormone concentrations during pregnancy and parturition. J. Clin. Endocrinol. Metab. 64(5), 1054–1059 (1987).
  • Chan EC, Smith R, Lewin T et al. Plasma corticotropin-releasing hormone, β-endorphin and cortisol inter-relationships during human pregnancy. Acta Endocrinol. 128(4), 339–344 (1993).
  • Goland RS, Conwell IM, Warren WB, Wardlaw SL. Placental corticotropin-releasing hormone and pituitary-adrenal function during pregnancy. Neuroendocrinol. 56(5), 742–749 (1992).
  • Wolfe CD, Patel SP, Linton EA et al. Plasma corticotrophin-releasing factor (CRF) in abnormal pregnancy. Br. J. Obstet. Gynaecol. 95(10), 1003–1006 (1988).
  • Sasaki A, Shinkawa O, Margioris AN et al. Immunoreactive corticotropin-releasing hormone in human plasma during pregnancy, labor, and delivery. J. Clin. Endocrinol. Metab. 64(2), 224–229 (1987).
  • Sasaki A, Tempst P, Liotta AS et al. Isolation and characterization of a corticotropin-releasing hormone-like peptide from human placenta. J. Clin. Endocrinol. Metab. 67(4), 768–773 (1988).
  • Petraglia F, Sutton S, Vale W. Neurotransmitters and peptides modulate the release of immunoreactive corticotropin-releasing factor from cultured human placental cells. Am. J. Obstet. Gynecol. 160(1), 247–251 (1989).
  • King BR, Smith R, Nicholson RC. Novel glucocorticoid and cAMP interactions on the CRH gene promoter. Mol. Cell. Endocrinol. 194(1-2), 19–28 (2002).
  • Sandman CA, Wadhwa PD, Chicz-DeMet A, Porto M, Garite TJ. Maternal corticotropin-releasing hormone and habituation in the human fetus. Dev. Psychobiol. 34(3), 163–173 (1999).
  • Smith R, Mesiano S, McGrath S. Hormone trajectories leading to human birth. Regul. Pept. 108(2-3), 159–164 (2002).
  • Smith R, Nicholson RC. Corticotrophin releasing hormone and the timing of birth. Front. Biosci. 12, 912–918 (2007).
  • Tyson EK, Smith R, Read M. Evidence that corticotropin-releasing hormone modulates myometrial contractility during human pregnancy. Endocrinology 150(12), 5617–5625 (2009).
  • Glynn LM, Sandman CA. Prenatal origins of neurological development: a critical period for fetus and mother. Curr. Dir. Psycholog. Science 20, 384–389 (2011).
  • Schulkin J. Corticotropin-releasing hormone signals adversity in both the placenta and the brain: regulation by glucocorticoids and allostatic overload. J. Endocrinol. 161(3), 349–356 (1999).
  • Cheng YH, Nicholson RC, King B, Chan EC, Fitter JT, Smith R. Glucocorticoid stimulation of corticotropin-releasing hormone gene expression requires a cyclic adenosine 3′,5′-monophosphate regulatory element in human primary placental cytotrophoblast cells. J. Clin. Endocrinol. Metab. 85(5), 1937–1945 (2000).
  • Giles WB, McLean M, Davies JJ, Smith R. Abnormal umbilical artery Doppler waveforms and cord blood corticotropin-releasing hormone. Obstet. Gynecol. 87(1), 107–111 (1996).
  • Petraglia F, Sawchenko PE, Rivier J, Vale W. Evidence for local stimulation of ACTH secretion by corticotropin-releasing factor in human placenta. Nature 328(6132), 717–719 (1987).
  • Petraglia F, Volpe A, Genazzani AR, Rivier J, Sawchenko PE, Vale W. Neuroendocrinology of the human placenta. Front. Neuroendocrinol. 11, 6–37 (1990).
  • Marinoni E, Korebrits C, Di Iorio R, Cosmi EV, Challis JR. Effect of betamethasone in vivo on placental corticotropin-releasing hormone in human pregnancy. Am. J. Obstet. Gynecol. 178(4), 770–778 (1998).
  • Korebrits C, Yu DH, Ramirez MM, Marinoni E, Bocking AD, Challis JR. Antenatal glucocorticoid administration increases corticotrophin-releasing hormone in maternal plasma. Br. J. Obstet. Gynaecol. 105(5), 556–561 (1998).
  • You X, Yang R, Tang X, Gao L, Ni X. Corticotropin-releasing hormone stimulates estrogen biosynthesis in cultured human placental trophoblasts. Biol. Reprod. 74(6), 1067–1072 (2006).
  • Yang R, You X, Tang X, Gao L, Ni X. Corticotropin-releasing hormone inhibits progesterone production in cultured human placental trophoblasts. J. Mol. Endocrinol. 37(3), 533–540 (2006).
  • Smith R, Mesiano S, Chan EC, Brown S, Jaffe RB. Corticotropin-releasing hormone directly and preferentially stimulates dehydroepiandrosterone sulfate secretion by human fetal adrenal cortical cells. J. Clin. Endocrinol. Metab. 83(8), 2916–2920 (1998).
  • Smith R, Smith JI, Shen X et al. Patterns of plasma corticotropin-releasing hormone, progesterone, estradiol, and estriol change and the onset of human labor. J. Clin. Endocrinol. Metab. 94(6), 2066–2074 (2009).
  • Orth DN, Mount CD. Specific high-affinity binding protein for human corticotropin-releasing hormone in normal human plasma. Biochem. Biophys. Res. Commun. 143(2), 411–417 (1987).
  • Petraglia F, Potter E, Cameron VA et al. Corticotropin-releasing factor-binding protein is produced by human placenta and intrauterine tissues. J. Clin. Endocrinol. Metab. 77(4), 919–924 (1993).
  • Petraglia F, Florio P, Nappi C, Genazzani AR. Peptide signaling in human placenta and membranes: autocrine, paracrine, and endocrine mechanisms. Endocr. Rev. 17(2), 156–186 (1996).
  • Linton EA, Perkins AV, Woods RJ et al. Corticotropin releasing hormone-binding protein (CRH-BP): plasma levels decrease during the third trimester of normal human pregnancy. J. Clin. Endocrinol. Metab. 76(1), 260–262 (1993).
  • Ho JT, Lewis JG, O’Loughlin P et al. Reduced maternal corticosteroid-binding globulin and cortisol levels in pre-eclampsia and gamete recipient pregnancies. Clin. Endocrinol. 66(6), 869–877 (2007).
  • Sun K, Adamson SL, Yang K, Challis JR. Interconversion of cortisol and cortisone by 11β-hydroxysteroid dehydrogenases type 1 and 2 in the perfused human placenta. Placenta 20(1), 13–19 (1999).
  • Ma XH, Wu WX, Nathanielsz PW. Gestation-related and betamethasone-induced changes in 11β-hydroxysteroid dehydrogenase types 1 and 2 in the baboon placenta. Am. J. Obstet. Gynecol. 188(1), 13–21 (2003).
  • Murphy VE, Clifton VL. Alterations in human placental 11β-hydroxysteroid dehydrogenase type 1 and 2 with gestational age and labour. Placenta 24(7), 739–744 (2003).
  • O’Donnell KJ, Bugge Jensen A, Freeman L, Khalife N, O’Connor TG, Glover V. Maternal prenatal anxiety and downregulation of placental 11β-HSD2. Psychoneuroendocrinol. 37(6), 818–826 (2012).
  • Bloom SL, Sheffield JS, McIntire DD, Leveno KJ. Antenatal dexamethasone and decreased birth weight. Obstet. Gynecol. 97(4), 485–490 (2001).
  • Thorp JA, Jones PG, Knox E, Clark RH. Does antenatal corticosteroid therapy affect birth weight and head circumference? Obstet. Gynecol. 99(1), 101–108 (2002).
  • French NP, Hagan R, Evans SF, Godfrey M, Newnham JP. Repeated antenatal corticosteroids: size at birth and subsequent development. Am. J. Obstet. Gynecol. 180(1 Pt 1), 114–121 (1999).
  • Crowther CA, Haslam RR, Hiller JE, Doyle LW, Robinson JS; Australasian Collaborative Trial of Repeat Doses of Steroids (ACTORDS) Study Group. Neonatal respiratory distress syndrome after repeat exposure to antenatal corticosteroids: a randomised controlled trial. Lancet 367(9526), 1913–1919 (2006).
  • Piazze J, Ruozi-Berretta A, Di Cioccio A, Anceschi M. Neonatal length and cranial circumference are reduced in human pregnancies at term after antepartum administration of betamethasone. J. Perinat. Med. 33(5), 463–464 (2005).
  • Davis EP, Waffarn F, Uy C, Hobel CJ, Glynn LM, Sandman CA. Effect of prenatal glucocorticoid treatment on size at birth among infants born at term gestation. J. Perinatol. 29(11), 731–737 (2009).
  • Davis EP, Townsend EL, Gunnar MR et al. Effects of prenatal betamethasone exposure on regulation of stress physiology in healthy premature infants. Psychoneuroendocrinol. 29(8), 1028–1036 (2004).
  • Chen XK, Lougheed J, Lawson ML et al. Effects of repeated courses of antenatal corticosteroids on somatic development in children 6 to 10 years of age. Am. J. Perinatol. 25(1), 21–28 (2008).
  • de Vries A, Holmes MC, Heijnis A et al. Prenatal dexamethasone exposure induces changes in nonhuman primate offspring cardiometabolic and hypothalamic–pituitary–adrenal axis function. J. Clin. Invest. 117(4), 1058–1067 (2007).
  • Chen XK, Lougheed J, Lawson ML et al. Effects of repeated courses of antenatal corticosteroids on somatic development in children 6 to 10 years of age. Am. J. Perinatol. 25(1), 21–28 (2008).
  • Trautman PD, Meyer-Bahlburg HF, Postelnek J, New MI. Effects of early prenatal dexamethasone on the cognitive and behavioral development of young children: results of a pilot study. Psychoneuroendocrinol. 20(4), 439–449 (1995).
  • Hirvikoski T, Nordenström A, Lindholm T et al. Cognitive functions in children at risk for congenital adrenal hyperplasia treated prenatally with dexamethasone. J. Clin. Endocrinol. Metab. 92(2), 542–548 (2007).
  • Hauser J, Dettling-Artho A, Pilloud S et al. Effects of prenatal dexamethasone treatment on postnatal physical, endocrine, and social development in the common marmoset monkey. Endocrinology 148(4), 1813–1822 (2007).
  • Nagano M, Ozawa H, Suzuki H. Prenatal dexamethasone exposure affects anxiety-like behaviour and neuroendocrine systems in an age-dependent manner. Neurosci. Res. 60(4), 364–371 (2008).
  • MacArthur BA, Howie RN, Dezoete JA, Elkins J. School progress and cognitive development of 6-year-old children whose mothers were treated antenatally with betamethasone. Pediatrics 70(1), 99–105 (1982).
  • Spinillo A, Viazzo F, Colleoni R, Chiara A, Maria Cerbo R, Fazzi E. Two-year infant neurodevelopmental outcome after single or multiple antenatal courses of corticosteroids to prevent complications of prematurity. Am. J. Obstet. Gynecol. 191(1), 217–224 (2004).
  • Setiawan E, Jackson MF, MacDonald JF, Matthews SG. Effects of repeated prenatal glucocorticoid exposure on long-term potentiation in the juvenile guinea-pig hippocampus. J. Physiol. 581(Pt 3), 1033–1042 (2007).
  • Antonow-Schlorke I, Kühn B, Müller T et al. Antenatal betamethasone treatment reduces synaptophysin immunoreactivity in presynaptic terminals in the fetal sheep brain. Neurosci. Lett. 297(3), 147–150 (2001).
  • Raschke C, Schmidt S, Schwab M, Jirikowski G. Effects of betamethasone treatment on central myelination in fetal sheep: an electron microscopical study. Anat. Histol. Embryol. 37(2), 95–100 (2008).
  • Uno H, Lohmiller L, Thieme C et al. Brain damage induced by prenatal exposure to dexamethasone in fetal macaques. I. Hippocampus. Brain Res. Dev. Brain Res. 53, 157–167 (1990).
  • Moss TJ, Doherty DA, Nitsos I, Sloboda DM, Harding R, Newnham JP. Effects into adulthood of single or repeated antenatal corticosteroids in sheep. Am. J. Obstet. Gynecol. 192(1), 146–152 (2005).
  • Coe CL, Lubach GR. Developmental consequences of antenatal dexamethasone treatment in nonhuman primates. Neurosci. Biobehav. Rev. 29(2), 227–235 (2005).
  • Williams MT, Hennessy MB, Davis HN. CRF administered to pregnant rats alters offspring behavior and morphology. Pharmacol. Biochem. Behav. 52(1), 161–167 (1995).
  • Avishai-Eliner S, Yi SJ, Baram TZ. Developmental profile of messenger RNA for the corticotropin-releasing hormone receptor in the rat limbic system. Brain Res. Dev. Brain Res. 91(2), 159–163 (1996).
  • Sirianni R, Rehman KS, Carr BR, Parker CR Jr, Rainey WE. Corticotropin-releasing hormone directly stimulates cortisol and the cortisol biosynthetic pathway in human fetal adrenal cells. J. Clin. Endocrinol. Metab. 90(1), 279–285 (2005).
  • Maecker H, Desai A, Dash R, Rivier J, Vale W, Sapolsky R. Astressin, a novel and potent CRF antagonist, is neuroprotective in the hippocampus when administered after a seizure. Brain Res. 744(1), 166–170 (1997).
  • Strijbos PJ, Relton JK, Rothwell NJ. Corticotrophin-releasing factor antagonist inhibits neuronal damage induced by focal cerebral ischaemia or activation of NMDA receptors in the rat brain. Brain Res. 656(2), 405–408 (1994).
  • Baram TZ, Hatalski CG. Neuropeptide-mediated excitability: a key triggering mechanism for seizure generation in the developing brain. Trends Neurosci. 21(11), 471–476 (1998).
  • Baram TZ, Ribak CE. Peptide-induced infant status epilepticus causes neuronal death and synaptic reorganization. Neuroreport 6(2), 277–280 (1995).
  • Brunson KL, Eghbal-Ahmadi M, Bender R, Chen Y, Baram TZ. Long-term, progressive hippocampal cell loss and dysfunction induced by early-life administration of corticotropin-releasing hormone reproduce the effects of early-life stress. Proc. Natl Acad. Sci. USA 98(15), 8856–8861 (2001).
  • Hollrigel GS, Chen K, Baram TZ, Soltesz I. The pro-convulsant actions of corticotropin-releasing hormone in the hippocampus of infant rats. Neuroscience 84(1), 71–79 (1998).
  • Chen Y, Dubé CM, Rice CJ, Baram TZ. Rapid loss of dendritic spines after stress involves derangement of spine dynamics by corticotropin-releasing hormone. J. Neurosci. 28(11), 2903–2911 (2008).
  • Ehlers CL, Henriksen SJ, Wang M, Rivier J, Vale W, Bloom FE. Corticotropin releasing factor produces increases in brain excitability and convulsive seizures in rats. Brain Res. 278(1–2), 332–336 (1983).
  • Baram TZ, Chalmers DT, Chen C, Koutsoukos Y, De Souza EB. The CRF1 receptor mediates the excitatory actions of corticotropin releasing factor (CRF) in the developing rat brain: in vivo evidence using a novel, selective, non-peptide CRF receptor antagonist. Brain Res. 770(1–2), 89–95 (1997).
  • Baram TZ, Hirsch E, Snead OC 3rd, Schultz L. Corticotropin-releasing hormone-induced seizures in infant rats originate in the amygdala. Ann. Neurol. 31(5), 488–494 (1992).
  • Sandman CA, Davis EP, Buss C, Glynn LM. Exposure to prenatal psychobiological stress exerts programming influences on the mother and her fetus. Neuroendocrinol. 95, 1–3 (2011).
  • Sandman CA, Davis EP, Buss C, Glynn LM. Prenatal programming of human neurological function. Int. J. Pept. 2011, 837596 (2011).
  • Sandman CA, Kastin AJ. Intraventricular administration of MSH induces hyperalgesia in rats. Peptides 2(2), 231–233 (1981).
  • Beckwith BE, Sandman CA, Hothersall D, Kastin AJ. Influence of neonatal injections of alpha-MSH on learning, memory and attention in rats. Physiol. Behav. 18(1), 63–71 (1977).
  • Sandman CA, O’Halloran JP. Pro-opiomelanocortin, learning, memory and attention. In: Encyclopedia on Pharmacology and Therapeutics. Dewied D, Gispen WH, Van Wimersma Greidanus TB (Eds). Pergamon Press, Oxford, UK, 397–420 (1986).
  • Moldow RL, Kastin AJ, Hollander CS, Coy DH, Sandman CA. Brain β-endorphin-like immunoreactivity in adult rats given β-endorphin neonatally. Brain Res. Bull. 7(6), 683–686 (1981).
  • Sandman CA, Yessaian N. Persisting subsensitivity of the striatal dopamine system after fetal exposure to β-endorphin. Life Sci. 39(19), 1755–1763 (1986).
  • Davis EP, Waffarn F, Sandman CA. Prenatal treatment with glucocorticoids sensitizes the HPA axis response to stress among full-term infants. Dev. Psychobiol. 53(2), 175–183 (2011).
  • Sandman CA, Wadhwa PD, Chicz-DeMet A, Dunkel-Schetter C, Porto M. Maternal stress, HPA activity, and fetal/infant outcome. Ann. NY Acad. Sci. 814, 266–275 (1997).
  • Sandman CA, Glynn L, Wadhwa PD, Chicz-DeMet A, Porto M, Garite T. Maternal hypothalamic–pituitary–adrenal disregulation during the third trimester influences human fetal responses. Dev. Neurosci. 25(1), 41–49 (2003).
  • Class QA, Buss C, Davis EP et al. Low levels of corticotropin-releasing hormone during early pregnancy are associated with precocious maturation of the human fetus. Dev. Neurosci. 30(6), 419–426 (2008).
  • Markovic D, Vatish M, Gu M et al. The onset of labor alters corticotropin-releasing hormone type 1 receptor variant expression in human myometrium: putative role of interleukin-1β. Endocrinology 148(7), 3205–3213 (2007).
  • Sandman CA, Davis EP, Glynn LM. Psychobiological stress and preterm birth. In: Preterm Birth: Mother and Child. Morrison JC (Ed). Intech Publishing, Rijeka, Croatia (2012).
  • Barker DJ, Osmond C, Simmonds SJ, Wield GA. The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. BMJ 306(6875), 422–426 (1993).
  • McCormack VA, dos Santos Silva I, De Stavola BL, Mohsen R, Leon DA, Lithell HO. Fetal growth and subsequent risk of breast cancer: results from long term follow up of Swedish cohort. BMJ 326(7383), 248 (2003).
  • Roseboom TJ, van der Meulen JH, Osmond C et al. Coronary heart disease after prenatal exposure to the Dutch famine, 1944-45. Heart 84(6), 595–598 (2000).
  • Richards M, Hardy R, Kuh D, Wadsworth ME. Birth weight and cognitive function in the British 1946 birth cohort: longitudinal population based study. BMJ 322(7280), 199–203 (2001).
  • Tita AT, Landon MB, Spong CY et al.; Eunice Kennedy Shriver NICHD Maternal-Fetal Medicine Units Network. Timing of elective repeat cesarean delivery at term and neonatal outcomes. N. Engl. J. Med. 360(2), 111–120 (2009).
  • Davis EP, Glynn LM, Waffarn F, Sandman CA. Prenatal maternal stress programs infant stress regulation. J. Child Psychol. Psychiatry. 52(2), 119–129 (2011).
  • Davis EP, Glynn LM, Dunkel-Schetter C, Hobel C, Chicz-Demet A, Sandman CA. Corticotropin-releasing hormone during pregnancy is associated with infant temperament. Dev. Neurosci. 27(5), 299–305 (2005).
  • Davis EP, Glynn LM, Schetter CD, Hobel C, Chicz-Demet A, Sandman CA. Prenatal exposure to maternal depression and cortisol influences infant temperament. J. Am. Acad. Child Adolesc. Psychiatry 46(6), 737–746 (2007).
  • Kagan J, Snidman N, Arcus D. Childhood derivatives of high and low reactivity in infancy. Child Dev. 69(6), 1483–1493 (1998).
  • Pfeifer M, Goldsmith HH, Davidson RJ, Rickman M. Continuity and change in inhibited and uninhibited children. Child Dev. 73(5), 1474–1485 (2002).
  • Schwartz CE, Snidman N, Kagan J. Adolescent social anxiety as an outcome of inhibited temperament in childhood. J. Am. Acad. Child Adolesc. Psychiatry 38(8), 1008–1015 (1999).
  • Blair MM, Glynn LM, Sandman CA, Davis EP. Prenatal maternal anxiety and early childhood temperament. Stress 14(6), 644–651 (2011).
  • Davis EP, Sandman CA. Prenatal psychobiological predictors of anxiety risk in preadolescent children. Psychoneuroendocrinol. 37, 1224–1233 (2012).
  • Kapoor M, Liu S, Huh K, Parapuram S, Kennedy L, Leask A. Connective tissue growth factor promoter activity in normal and wounded skin. Fibrogenesis Tissue Repair 1(1), 3 (2008).
  • Seckl JR. Glucocorticoids, developmental ‘programming’ and the risk of affective dysfunction. Prog. Brain Res. 167, 17–34 (2008).
  • de Weerth C, van Hees Y, Buitelaar JK. Prenatal maternal cortisol levels and infant behavior during the first 5 months. Early Hum. Dev. 74(2), 139–151 (2003).
  • Herman JP, Cullinan WE. Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci. 20(2), 78–84 (1997).
  • Joëls M, Baram TZ. The neuro-symphony of stress. Nat. Rev. Neurosci. 10(6), 459–466 (2009).
  • Rodrigues SM, LeDoux JE, Sapolsky RM. The influence of stress hormones on fear circuitry. Annu. Rev. Neurosci. 32, 289–313 (2009).
  • Schulkin J. Angst and the amygdala. Dialogues Clin. Neurosci. 8(4), 407–416 (2006).
  • Kapoor A, Dunn E, Kostaki A, Andrews MH, Matthews SG. Fetal programming of hypothalamo-pituitary-adrenal function: prenatal stress and glucocorticoids. J. Physiol. 572(Pt 1), 31–44 (2006).
  • Cratty MS, Ward HE, Johnson EA, Azzaro AJ, Birkle DL. Prenatal stress increases corticotropin-releasing factor (CRF) content and release in rat amygdala minces. Brain Res. 675(1-2), 297–302 (1995).
  • Mueller BR, Bale TL. Sex-specific programming of offspring emotionality after stress early in pregnancy. J. Neurosci. 28(36), 9055–9065 (2008).
  • Salm AK, Pavelko M, Krouse EM, Webster W, Kraszpulski M, Birkle DL. Lateral amygdaloid nucleus expansion in adult rats is associated with exposure to prenatal stress. Brain Res. Dev. Brain Res. 148(2), 159–167 (2004).
  • Buss C, Davis EP, Shahbaba B, Pruessner JC, Head K, Sandman CA. Maternal cortisol over the course of pregnancy and subsequent child amygdala and hippocampus volumes and affective problems. Proc. Natl Acad. Sci. 109, E1312–E1319 (2012).
  • Ellman LM, Schetter CD, Hobel CJ, Chicz-Demet A, Glynn LM, Sandman CA. Timing of fetal exposure to stress hormones: effects on newborn physical and neuromuscular maturation. Dev. Psychobiol. 50(3), 232–241 (2008).
  • Davis EP, Sandman CA. The timing of prenatal exposure to maternal cortisol and psychosocial stress is associated with human infant cognitive development. Child Dev. 81(1), 131–148 (2010).
  • Buss C, Davis EP, Hobel CJ, Sandman CA. Maternal pregnancy-specific anxiety is associated with child executive function at 6-9 years age. Stress 14(6), 665–676 (2011).
  • Buss C, Davis EP, Muftuler LT, Head K, Sandman CA. High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6-9-year-old children. Psychoneuroendocrinol. 35(1), 141–153 (2010).
  • Connolly JD, Goodale MA, Menon RS, Munoz DP. Human fMRI evidence for the neural correlates of preparatory set. Nat. Neurosci. 5(12), 1345–1352 (2002).
  • Squire LR, Stark CE, Clark RE. The medial temporal lobe. Annu. Rev. Neurosci. 27, 279–306 (2004).
  • Höistad M, Barbas H. Sequence of information processing for emotions through pathways linking temporal and insular cortices with the amygdala. Neuroimage 40(3), 1016–1033 (2008).
  • Nakamura K, Kubota K. The primate temporal pole: its putative role in object recognition and memory. Behav. Brain Res. 77(1–2), 53–77 (1996).
  • Ahmad Z, Balsamo LM, Sachs BC, Xu B, Gaillard WD. Auditory comprehension of language in young children: neural networks identified with fMRI. Neurology 60(10), 1598–1605 (2003).
  • Mestres-Missé A, Càmara E, Rodriguez-Fornells A, Rotte M, Münte TF. Functional neuroanatomy of meaning acquisition from context. J. Cogn. Neurosci. 20(12), 2153–2166 (2008).
  • Bale TL. Neuroendocrine and immune influences on the CNS: it’s a matter of sex. Neuron 64(1), 13–16 (2009).
  • Lin Y, Ter Horst GJ, Wichmann R et al. Sex differences in the effects of acute and chronic stress and recovery after long-term stress on stress-related brain regions of rats. Cereb. Cortex 19(9), 1978–1989 (2009).
  • Boukouvalas G, Gerozissis K, Markaki E, Kitraki E. High-fat feeding influences the endocrine responses of pubertal rats to an acute stress. Neuroendocrinol. 92(4), 235–245 (2010).
  • Goel N, Bale TL. Identifying early behavioral and molecular markers of future stress sensitivity. Endocrinology 148(10), 4585–4591 (2007).
  • Gabory A, Attig L, Junien C. Sexual dimorphism in environmental epigenetic programming. Mol. Cell. Endocrinol. 304(1–2), 8–18 (2009).
  • Buss C, Davis EP, Class QA et al. Maturation of the human fetal startle response: evidence for sex-specific maturation of the human fetus. Early Hum. Dev. 85(10), 633–638 (2009).
  • Glynn LM, Sandman CA. Sex moderates associations between prenatal glucocorticoid exposure and human fetal neurological development. Dev. Science (2012) (In Press).
  • Bernardes J, Gonçalves H, Ayres-de-Campos D, Rocha AP. Linear and complex heart rate dynamics vary with sex in relation to fetal behavioural states. Early Hum. Dev. 84(7), 433–439 (2008).
  • DiPietro JA, Costigan KA, Shupe AK, Pressman EK, Johnson TR. Fetal neurobehavioral development: associations with socioeconomic class and fetal sex. Dev. Psychobiol. 33(1), 79–91 (1998).
  • Kesler SR, Reiss AL, Vohr B et al. Brain volume reductions within multiple cognitive systems in male preterm children at age twelve. J. Pediatr. 152(4), 513–520 (2008).
  • Clifton VL. Review: sex and the human placenta: mediating differential strategies of fetal growth and survival. Placenta 31, S33–S39 (2010).
  • Gluckman PD, Hanson MA. Developmental origins of disease paradigm: a mechanistic and evolutionary perspective. Pediatr. Res. 56(3), 311–317 (2004).
  • Sandman CA, Davis EP, Glynn LM. Prescient human fetuses thrive. Psychol. Sci. 23(1), 93–100 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.