55
Views
0
CrossRef citations to date
0
Altmetric
Review

Nutritional sensing and its utility in treating obesity

&
Pages 209-221 | Published online: 10 Jan 2014

References

  • World Health Organization. Obesity: preventing and managing the global epidemic: report of a WHO consultation. World Health Organization, Geneva, Switzerland (2000).
  • Raynor HA, Wing RR. Package unit size and amount of food: do both influence intake? Obesity15(9), 2311–2319 (2007).
  • Swinburn BA, Caterson I, Seidell JC, James WP. Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutr.7(1A), 123–146 (2004).
  • Golay A, Bobbioni E. The role of dietary fat in obesity. Int. J. Obes. Relat. Metab. Disord.21(Suppl. 3), S2–11 (1997).
  • Wang GJ, Volkow ND, Thanos PK, Fowler JS. Similarity between obesity and drug addiction as assessed by neurofunctional imaging: a concept review. J. Addict. Dis.23(3), 39–53 (2004).
  • Rogers PJ, Smit HJ. Food craving and food ‘addiction’: a critical review of the evidence from a biopsychosocial perspective. Pharmacol. Biochem. Behav.66(1), 3–14 (2000).
  • Lutter M, Nestler EJ. Homeostatic and hedonic signals interact in the regulation of food intake. J. Nutr.139(3), 629–632 (2009).
  • Stanley S, Wynne K, McGowan B, Bloom S. Hormonal regulation of food intake. Physiol. Rev.85(4), 1131–1158 (2005).
  • Chaudhri O, Small C, Bloom S. Gastrointestinal hormones regulating appetite. Philos. Trans. R. Soc. Lond. B. Biol. Sci.361(1471), 1187–1209 (2006).
  • Badman MK, Flier JS. The gut and energy balance: visceral allies in the obesity wars. Science307(5717), 1909–1914 (2005).
  • Chaudhri OB, Salem V, Murphy KG, Bloom SR. Gastrointestinal satiety signals. Annu Rev. Physiol.70, 239–255 (2008).
  • Furness JB, Jones C, Nurgali K, Clerc N. Intrinsic primary afferent neurons and nerve circuits within the intestine. Prog. Neurobiol.72(2), 143–164 (2004).
  • Furness JB, Kunze WA, Bertrand PP, Clerc N, Bornstein JC. Intrinsic primary afferent neurons of the intestine. Prog. Neurobiol.54(1), 1–18 (1998).
  • Berthoud HR, Blackshaw LA, Brookes SJ, Grundy D. Neuroanatomy of extrinsic afferents supplying the gastrointestinal tract. Neurogastroenterol. Motil.16(Suppl. 1), 28–33 (2004).
  • Wilkinson AR, Johnston D. Effect of truncal, selective and highly selective vagotomy on gastric emptying and intestinal transit of a food-barium meal in man. Ann. Surg.178(2), 190–193 (1973).
  • Roze C, Couturier D, Chariot J, Debray C. Inhibition of gastric electrical and mechanical activity by intraduodenal agents in pigs and the effects of vagotomy. Digestion15(6), 526–539 (1977).
  • Raybould HE, Holzer H. Dual capsaicin-sensitive afferent pathways mediate inhibition of gastric emptying in rat induced by intestinal carbohydrate. Neurosci. Lett.141(2), 236–238 (1992).
  • Schwartz GJ, Berkow G, McHugh PR, Moran TH. Gastric branch vagotomy blocks nutrient and cholecystokinin-induced suppression of gastric emptying. Am. J. Physiol.264(3 Pt 2), R630–R637 (1993).
  • Horowitz M, Dent J. Disordered gastric emptying: mechanical basis, assessment and treatment. Baillieres. Clin. Gastroenterol.5(2), 371–407 (1991).
  • Azpiroz F, Malagelada JR. Gastric tone measured by an electronic barostat in health and postsurgical gastroparesis. Gastroenterology92(4), 934–943 (1987).
  • Greenberg D, Smith GP, Gibbs J. Intraduodenal infusions of fats elicit satiety in sham-feeding rats. Am. J. Physiol.259(1 Pt 2), R110–R118 (1990).
  • Matzinger D, Degen L, Drewe J et al. The role of long chain fatty acids in regulating food intake and cholecystokinin release in humans. Gut46(5), 688–693 (2000).
  • Raybould HE. Does your gut taste? Sensory transduction in the gastrointestinal tract. News. Physiol. Sci.13, 275–280 (1998).
  • Hofer D, Asan E, Drenckhahn D. Chemosensory perception in the gut. News Physiol. Sci.14, 18–23 (1999).
  • Koda S, Date Y, Murakami N et al. The role of the vagal nerve in peripheral PYY3–36-induced feeding reduction in rats. Endocrinology146(5), 2369–2375 (2005).
  • Date Y, Murakami N, Toshinai K et al. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology123(4), 1120–1128 (2002).
  • Abbott CR, Monteiro M, Small CJ et al. The inhibitory effects of peripheral administration of peptide YY(3–36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain. Res.1044(1), 127–131 (2005).
  • Moran TH, Baldessarini AR, Salorio CF, Lowery T, Schwartz GJ. Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin. Am. J. Physiol.272(4 Pt 2), R1245–R1251 (1997).
  • Blouet C, Schwartz GJ. Hypothalamic nutrient sensing in the control of energy homeostasis. Behav. Brain. Res.209(1), 1–12 (2010).
  • Gross LS, Li L, Ford ES, Liu S. Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: an ecologic assessment. Am. J. Clin. Nutr.79(5), 774–779 (2004).
  • Wright EM, Martin MG, Turk E. Intestinal absorption in health and disease – sugars. Best Pract. Res. Clin. Gastroenterol.17(6), 943–956 (2003).
  • Dyer J, Vayro S, King TP, Shirazi-Beechey SP. Glucose sensing in the intestinal epithelium. Eur. J. Biochem.270(16), 3377–3388 (2003).
  • Raybould HE. Sensing of glucose in the gastrointestinal tract. Auton. Neurosci.133(1), 86–90 (2007).
  • Lam CK, Chari M, Lam TK. CNS regulation of glucose homeostasis. Physiology (Bethesda)24, 159–170 (2009).
  • Berthoud HR. Multiple neural systems controlling food intake and body weight. Neurosci. Biobehav. Rev.26(4), 393–428 (2002).
  • Oomura Y, Yoshimatsu H. Neural network of glucose monitoring system. J. Auton. Nerv. Syst.10(3–4), 359–372 (1984).
  • Silver IA, Erecinska M. Glucose-induced intracellular ion changes in sugar-sensitive hypothalamic neurons. J. Neurophysiol.79(4), 1733–1745 (1998).
  • Melnick IV, Price CJ, Colmers WF. Glucosensing in parvocellular neurons of the rat hypothalamic paraventricular nucleus. Eur. J. Neurosci.34(2), 272–282 (2011).
  • Ibrahim N, Bosch MA, Smart JL et al. Hypothalamic proopiomelanocortin neurons are glucose responsive and express K(ATP) channels. Endocrinology144(4), 1331–1340 (2003).
  • Muroya S, Yada T, Shioda S, Takigawa M. Glucose-sensitive neurons in the rat arcuate nucleus contain neuropeptide Y. Neurosci. Lett.264(1–3), 113–116 (1999).
  • Mountjoy PD, Bailey SJ, Rutter GA. Inhibition by glucose or leptin of hypothalamic neurons expressing neuropeptide Y requires changes in AMP-activated protein kinase activity. Diabetologia50(1), 168–177 (2007).
  • Fioramonti X, Contie S, Song Z, Routh VH, Lorsignol A, Penicaud L. Characterization of glucosensing neuron subpopulations in the arcuate nucleus: integration in neuropeptide Y and pro-opio melanocortin networks? Diabetes56(5), 1219–1227 (2007).
  • Marty N, Dallaporta M, Thorens B. Brain glucose sensing, counterregulation, and energy homeostasis. Physiology (Bethesda)22, 241–251 (2007).
  • Mitrakou A, Ryan C, Veneman T et al. Hierarchy of glycemic thresholds for counterregulatory hormone secretion, symptoms, and cerebral dysfunction. Am. J. Physiol.260(1 Pt 1), E67–74 (1991).
  • Taborsky GJ Jr, Ahren B, Havel PJ. Autonomic mediation of glucagon secretion during hypoglycemia: implications for impaired alpha-cell responses in type 1 diabetes. Diabetes47(7), 995–1005 (1998).
  • Perseghin G, Regalia E, Battezzati A et al. Regulation of glucose homeostasis in humans with denervated livers. J. Clin. Invest.100(4), 931–941 (1997).
  • Lam TK, Gutierrez-Juarez R, Pocai A, Rossetti L. Regulation of blood glucose by hypothalamic pyruvate metabolism. Science309(5736), 943–947 (2005).
  • Davis JD, Wirtshafter D, Asin KE, Brief D. Sustained intracerebroventricular infusion of brain fuels reduces body weight and food intake in rats. Science212(4490), 81–83 (1981).
  • Panksepp J, Rossi J 3rd. d-glucose infusions into the basal ventromedial hypothalamus and feeding. Behav. Brain. Res.3(3), 381–392 (1981).
  • Xue B, Kahn BB. AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues. J. Physiol.574(Pt 1), 73–83 (2006).
  • Ren X, Zhou L, Terwilliger R, Newton SS, De Araujo IE. Sweet taste signaling functions as a hypothalamic glucose sensor. Front Integr. Neurosci.3, 12 (2009).
  • Levine AS, Kotz CM, Gosnell BA. Sugars: hedonic aspects, neuroregulation, and energy balance. Am. J. Clin. Nutr.78(4), 834S–842S (2003).
  • Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr.79(4), 537–543 (2004).
  • Johnson RJ, Segal MS, Sautin Y et al. Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am. J. Clin. Nutr.86(4), 899–906 (2007).
  • Pfannkuche H, Gabel G. Glucose, epithelium, and enteric nervous system: dialogue in the dark. J. Anim. Physiol. Anim. Nutr. (Berl)93(3), 277–286 (2009).
  • Raybould HE. Nutrient sensing in the gastrointestinal tract: possible role for nutrient transporters. J. Physiol. Biochem.64(4), 349–356 (2008).
  • Alpers DH. Nutrient sensing in the gastrointestinal tract. Curr. Opin. Gastroenterol.26(2), 134–139 (2010).
  • Drucker DJ. The biology of incretin hormones. Cell. Metab.3(3), 153–165 (2006).
  • Brubaker PL, Anini Y. Direct and indirect mechanisms regulating secretion of glucagon-like peptide-1 and glucagon-like peptide-2. Can. J. Physiol. Pharmacol.81(11), 1005–1012 (2003).
  • Schirra J, Katschinski M, Weidmann C et al. Gastric emptying and release of incretin hormones after glucose ingestion in humans. J. Clin. Invest.97(1), 92–103 (1996).
  • Herrmann C, Goke R, Richter G, Fehmann HC, Arnold R, Goke B. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion56(2), 117–126 (1995).
  • Roberge JN, Brubaker PL. Regulation of intestinal proglucagon-derived peptide secretion by glucose-dependent insulinotropic peptide in a novel enteroendocrine loop. Endocrinology133(1), 233–240 (1993).
  • Beglinger S, Drewe J, Schirra J, Goke B, D’amato M, Beglinger C. Role of fat hydrolysis in regulating glucagon-like Peptide-1 secretion. J. Clin. Endocrinol. Metab.95(2), 879–886 (2010).
  • Anini Y, Fu-Cheng X, Cuber JC, Kervran A, Chariot J, Roz C. Comparison of the postprandial release of peptide YY and proglucagon-derived peptides in the rat. Pflugers. Arch.438(3), 299–306 (1999).
  • Anini Y, Brubaker PL. Muscarinic receptors control glucagon-like peptide 1 secretion by human endocrine L cells. Endocrinology144(7), 3244–3250 (2003).
  • Lavin JH, Wittert GA, Andrews J et al. Interaction of insulin, glucagon-like peptide 1, gastric inhibitory polypeptide, and appetite in response to intraduodenal carbohydrate. Am. J. Clin. Nutr.68(3), 591–598 (1998).
  • Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS. Mammalian sweet taste receptors. Cell106(3), 381–390 (2001).
  • Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E. Human receptors for sweet and umami taste. Proc. Natl Acad. Sci. USA99(7), 4692–4696 (2002).
  • Dyer J, Salmon KS, Zibrik L, Shirazi-Beechey SP. Expression of sweet taste receptors of the T1R family in the intestinal tract and enteroendocrine cells. Biochem. Soc. Trans.33(Pt 1), 302–305 (2005).
  • Bezencon C, Le Coutre J, Damak S. Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells. Chem. Senses32(1), 41–49 (2007).
  • Mace OJ, Lister N, Morgan E et al. An energy supply network of nutrient absorption coordinated by calcium and T1R taste receptors in rat small intestine. J. Physiol.587(Pt 1), 195–210 (2009).
  • Le Gall M, Tobin V, Stolarczyk E, Dalet V, Leturque A, Brot-Laroche E. Sugar sensing by enterocytes combines polarity, membrane bound detectors and sugar metabolism. J. Cell Physiol.213(3), 834–843 (2007).
  • Mace OJ, Affleck J, Patel N, Kellett GL. Sweet taste receptors in rat small intestine stimulate glucose absorption through apical GLUT2. J. Physiol.582(Pt 1), 379–392 (2007).
  • Margolskee RF, Dyer J, Kokrashvili Z et al. T1R3 and gustducin in gut sense sugars to regulate expression of Na+-glucose cotransporter 1. Proc. Natl Acad. Sci. USA104(38), 15075–15080 (2007).
  • Tolhurst G, Reimann F, Gribble FM. Nutritional regulation of glucagon-like peptide-1 secretion. J. Physiol.587(1), 27–32 (2009).
  • Jang H-J, Kokrashvili Z, Theodorakis MJ et al. Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1. Proc. Natl Acad. Sci. USA104(38), 15069–15074 (2007).
  • Kokrashvili Z, Mosinger B, Margolskee RF. Taste signaling elements expressed in gut enteroendocrine cells regulate nutrient-responsive secretion of gut hormones. Am. J. Clin. Nutr.90(3), 822S–825S (2009).
  • Abello J, Ye F, Bosshard A, Bernard C, Cuber JC, Chayvialle JA. Stimulation of glucagon-like peptide-1 secretion by muscarinic agonist in a murine intestinal endocrine cell line. Endocrinology134(5), 2011–2017 (1994).
  • Elliott RM, Morgan LM, Tredger JA, Deacon S, Wright J, Marks V. Glucagon-like peptide-1 (7–36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J. Endocrinol.138(1), 159–166 (1993).
  • Delzenne NM. Oligosaccharides: state of the art. Proc. Nutr. Soc.62(1), 177–182 (2003).
  • Cani PD, Dewever C, Delzenne NM. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br J. Nutr.92(3), 521–526 (2004).
  • Cani PD, Neyrinck AM, Maton N, Delzenne NM. Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like peptide-1. Obes. Res.13(6), 1000–1007 (2005).
  • Maurer AD, Eller LK, Hallam MC, Taylor K, Reimer RA. Consumption of diets high in prebiotic fiber or protein during growth influences the response to a high fat and sucrose diet in adulthood in rats. Nutr. Metab. (Lond)7, 77 (2010).
  • Parnell JA, Reimer RA. Prebiotic fibres dose-dependently increase satiety hormones and alter Bacteroidetes and Firmicutes in lean and obese JCR:LA-cp rats. Br. J. Nutr.107(4), 601–613 (2011).
  • Lam TK, Schwartz GJ, Rossetti L. Hypothalamic sensing of fatty acids. Nat. Neurosci.8(5), 579–584 (2005).
  • Caspi L, Wang PY, Lam TK. A balance of lipid-sensing mechanisms in the brain and liver. Cell. Metab.6(2), 99–104 (2007).
  • Wellendorph P, Johansen LD, Brauner-Osborne H. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients. Mol. Pharmacol.76(3), 453–465 (2009).
  • Briscoe CP, Tadayyon M, Andrews JL et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J. Biol. Chem.278(13), 11303–11311 (2003).
  • Ma D, Tao B, Warashina S et al. Expression of free fatty acid receptor GPR40 in the central nervous system of adult monkeys. Neurosci. Res.58(4), 394–401 (2007).
  • Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. Central administration of oleic acid inhibits glucose production and food intake. Diabetes51(2), 271–275 (2002).
  • Kamp F, Guo W, Souto R, Pilch PF, Corkey BE, Hamilton JA. Rapid flip-flop of oleic acid across the plasma membrane of adipocytes. J. Biol. Chem.278(10), 7988–7995 (2003).
  • McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes51(1), 7–18 (2002).
  • He W, Lam TK, Obici S, Rossetti L. Molecular disruption of hypothalamic nutrient sensing induces obesity. Nat. Neurosci.9(2), 227–233 (2006).
  • Lam TK, Yoshii H, Haber CA et al. Free fatty acid-induced hepatic insulin resistance: a potential role for protein kinase C-delta. Am. J. Physiol. Endocrinol. Metab.283(4), E682–E691 (2002).
  • Benoit SC, Kemp CJ, Elias CF et al. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J. Clin. Invest.119(9), 2577–2589 (2009).
  • Ross R, Wang PY, Chari M et al. Hypothalamic protein kinase C regulates glucose production. Diabetes57(8), 2061–2065 (2008).
  • Morgan K, Obici S, Rossetti L. Hypothalamic responses to long-chain fatty acids are nutritionally regulated. J. Biol. Chem.279(30), 31139–31148 (2004).
  • Pocai A, Obici S, Schwartz GJ, Rossetti L. A brain-liver circuit regulates glucose homeostasis. Cell. Metab.1(1), 53–61 (2005).
  • Lam TK, Pocai A, Gutierrez-Juarez R et al. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat. Med.11(3), 320–327 (2005).
  • Pocai A, Lam TK, Obici S et al. Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. J. Clin. Invest.116(4), 1081–1091 (2006).
  • Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell. Metab.1(1), 15–25 (2005).
  • Minokoshi Y, Alquier T, Furukawa N et al. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature428(6982), 569–574 (2004).
  • Lopez M, Lage R, Saha AK et al. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell. Metab.7(5), 389–399 (2008).
  • Kelley AE, Bakshi VP, Haber SN, Steininger TL, Will MJ, Zhang M. Opioid modulation of taste hedonics within the ventral striatum. Physiol. Behav.76(3), 365–377 (2002).
  • Pelchat ML, Johnson A, Chan R, Valdez J, Ragland JD. Images of desire: food-craving activation during fMRI. Neuroimage23(4), 1486–1493 (2004).
  • Hirasawa A, Tsumaya K, Awaji T et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat. Med.11(1), 90–94 (2005).
  • Miyauchi S, Hirasawa A, Iga T et al. Distribution and regulation of protein expression of the free fatty acid receptor GPR120. Naunyn. Schmiedebergs Arch. Pharmacol.379(4), 427–434 (2009).
  • Moran TH, Kinzig KP. Gastrointestinal satiety signals II. Cholecystokinin. Am. J. Physiol. Gastrointest. Liver Physiol.286(2), G183–188 (2004).
  • Stoeckel LE, Weller RE, Giddings M, Cox JE. Peptide YY levels are associated with appetite suppression in response to long-chain fatty acids. Physiol. Behav.93(1–2), 289–295 (2008).
  • Cheung GW, Kokorovic A, Lam TK. Upper intestinal lipids regulate energy and glucose homeostasis. Cell Mol. Life Sci.66(18), 3023–3027 (2009).
  • van de Wall EH, Duffy P, Ritter RC. CCK enhances response to gastric distension by acting on capsaicin-insensitive vagal afferents. Am. J. Physiol. Regul. Integr. Comp. Physiol.289(3), R695–R703 (2005).
  • Sidhu SS, Thompson DG, Warhurst G, Case RM, Benson RS. Fatty acid-induced cholecystokinin secretion and changes in intracellular Ca2+ in two enteroendocrine cell lines, STC-1 and GLUTag. J. Physiol.528 Pt 1, 165–176 (2000).
  • Covasa M, Grahn J, Ritter RC. Reduced hindbrain and enteric neuronal response to intestinal oleate in rats maintained on high-fat diet. Auton. Neurosci.84(1–2), 8–18 (2000).
  • Wang PY, Caspi L, Lam CK et al. Upper intestinal lipids trigger a gut–brain–liver axis to regulate glucose production. Nature452(7190), 1012–1016 (2008).
  • Lovejoy JC, Champagne CM, Smith SR et al. Relationship of dietary fat and serum cholesterol ester and phospholipid fatty acids to markers of insulin resistance in men and women with a range of glucose tolerance. Metabolism50(1), 86–92 (2001).
  • Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: the role of butyrate on colonic function. Aliment Pharmacol. Ther.27(2), 104–119 (2008).
  • Brown AJ, Goldsworthy SM, Barnes AA et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem.278(13), 11312–11319 (2003).
  • Le Poul E, Loison C, Struyf S et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem.278(28), 25481–25489 (2003).
  • Nilsson NE, Kotarsky K, Owman C, Olde B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun.303(4), 1047–1052 (2003).
  • Karaki S, Mitsui R, Hayashi H et al. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue. Res.324(3), 353–360 (2006).
  • Tso P, Sun W, Liu M. Gastrointestinal satiety signals IV. Apolipoprotein A-IV. Am. J. Physiol. Gastrointest. Liver Physiol.286(6), G885–G890 (2004).
  • Fujimoto K, Fukagawa K, Sakata T, Tso P. Suppression of food intake by apolipoprotein A-IV is mediated through the central nervous system in rats. J. Clin. Invest.91(4), 1830–1833 (1993).
  • Porrini M, Santangelo A, Crovetti R, Riso P, Testolin G, Blundell JE. Weight, protein, fat, and timing of preloads affect food intake. Physiol. Behav.62(3), 563–570 (1997).
  • Reid M, Hetherington M. Relative effects of carbohydrates and protein on satiety – a review of methodology. Neurosci. Biobehav. Rev.21(3), 295–308 (1997).
  • Trigazis L, Orttmann A, Anderson GH. Effect of a cholecystokinin-A receptor blocker on protein-induced food intake suppression in rats. Am. J. Physiol.272(6 Pt 2), R1826–R1833 (1997).
  • Bensaid A, Tome D, Gietzen D et al. Protein is more potent than carbohydrate for reducing appetite in rats. Physiol. Behav.75(4), 577–582 (2002).
  • Anderson GH, Moore SE. Dietary proteins in the regulation of food intake and body weight in humans. J. Nutr.134(4), 974S–979S (2004).
  • Halton TL, Hu FB. The effects of high protein diets on thermogenesis, satiety and weight loss: a critical review. J. Am. Coll. Nutr.23(5), 373–385 (2004).
  • Potier M, Darcel N, Tome D. Protein, amino acids and the control of food intake. Curr. Opin. Clin. Nutr. Metab. Care12(1), 54–58 (2009).
  • Harper AE, Peters JC. Protein intake, brain amino acid and serotonin concentrations and protein self-selection. J. Nutr.119(5), 677–689 (1989).
  • Jean C, Rome S, Mathe V et al. Metabolic evidence for adaptation to a high protein diet in rats. J. Nutr.131(1), 91–98 (2001).
  • Morens C, Gaudichon C, Metges CC et al. A high-protein meal exceeds anabolic and catabolic capacities in rats adapted to a normal protein diet. J. Nutr.130(9), 2312–2321 (2000).
  • Morens C, Gaudichon C, Fromentin G et al. Daily delivery of dietary nitrogen to the periphery is stable in rats adapted to increased protein intake. Am. J. Physiol. Endocrinol Metab281(4), E826–E836 (2001).
  • Hannah JS, Dubey AK, Hansen BC. Postingestional effects of a high-protein diet on the regulation of food intake in monkeys. Am. J. Clin. Nutr.52(2), 320–325 (1990).
  • Kinzig KP, Hargrave SL, Hyun J, Moran TH. Energy balance and hypothalamic effects of a high-protein/low-carbohydrate diet. Physiol. Behav.92(3), 454–460 (2007).
  • Tome D, Schwarz J, Darcel N, Fromentin G. Protein, amino acids, vagus nerve signaling, and the brain. Am. J. Clin. Nutr.90(3), 838S–843S (2009).
  • Cota D, Proulx K, Smith KA et al. Hypothalamic mTOR signaling regulates food intake. Science312(5775), 927–930 (2006).
  • Nair KS, Schwartz RG, Welle S. Leucine as a regulator of whole body and skeletal muscle protein metabolism in humans. Am. J. Physiol.263(5 Pt 1), E928–E934 (1992).
  • Kimball SR, Jefferson LS. New functions for amino acids: effects on gene transcription and translation. Am. J. Clin. Nutr.83(2), 500S–507S (2006).
  • Henquin JC, Dufrane D, Nenquin M. Nutrient control of insulin secretion in isolated normal human islets. Diabetes55(12), 3470–3477 (2006).
  • Brosnan JT, Brosnan ME. Branched-chain amino acids: enzyme and substrate regulation. J. Nutr.136(1 Suppl.), 207S–211S (2006).
  • Kanamori K, Ross BD, Kondrat RW. Rate of glutamate synthesis from leucine in rat brain measured in vivo by 15N NMR. J. Neurochem.70(3), 1304–1315 (1998).
  • Proud CG. mTOR-mediated regulation of translation factors by amino acids. Biochem. Biophys. Res. Commun.313(2), 429–436 (2004).
  • Kuang D, Yao Y, Lam J, Tsushima RG, Hampson DR. Cloning and characterization of a Family C orphan G-protein coupled receptor. J. Neurochem.93(2), 383–391 (2005).
  • Wellendorph P, Burhenne N, Christiansen B, Walter B, Schmale H, Brauner-Osborne H. The rat GPRC6A: cloning and characterization. Gene396(2), 257–267 (2007).
  • Wellendorph P, Brauner-Osborne H. Molecular cloning, expression, and sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor. Gene335, 37–46 (2004).
  • Pi M, Faber P, Ekema G et al. Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J. Biol. Chem.280(48), 40201–40209 (2005).
  • Pi M, Chen L, Huang MZ et al. GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS One3(12), e3858 (2008).
  • Ruat M, Molliver ME, Snowman AM, Snyder SH. Calcium sensing receptor: molecular cloning in rat and localization to nerve terminals. Proc. Natl Acad. Sci. USA92(8), 3161–3165 (1995).
  • Yano S, Brown EM, Chattopadhyay N. Calcium-sensing receptor in the brain. Cell Calcium35(3), 257–264 (2004).
  • Brown EM, Gamba G, Riccardi D et al. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature366(6455), 575–580 (1993).
  • Dufner MM, Kirchhoff P, Remy C et al. The calcium-sensing receptor acts as a modulator of gastric acid secretion in freshly isolated human gastric glands. Am. J. Physiol. Gastrointest. Liver Physiol.289(6), G1084–G1090 (2005).
  • Canaff L, Petit JL, Kisiel M, Watson PH, Gascon-Barre M, Hendy GN. Extracellular calcium-sensing receptor is expressed in rat hepatocytes. coupling to intracellular calcium mobilization and stimulation of bile flow. J. Biol. Chem.276(6), 4070–4079 (2001).
  • Squires PE, Harris TE, Persaud SJ, Curtis SB, Buchan AM, Jones PM. The extracellular calcium-sensing receptor on human beta-cells negatively modulates insulin secretion. Diabetes49(3), 409–417 (2000).
  • Conigrave AD, Quinn SJ, Brown EM. l-amino acid sensing by the extracellular Ca2+-sensing receptor. Proc. Natl Acad. Sci. USA97(9), 4814–4819 (2000).
  • Peuhkuri K, Sihvola N, Korpela R. Dietary proteins and food-related reward signals. Food. Nutr. Res. doi:10.3402/fnr.v55i0.5955 (2011) (Epub ahead of print).
  • Hall WL, Millward DJ, Long SJ, Morgan LM. Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite. Br J. Nutr.89(2), 239–248 (2003).
  • Calbet JA, Holst JJ. Gastric emptying, gastric secretion and enterogastrone response after administration of milk proteins or their peptide hydrolysates in humans. Eur. J. Nutr.43(3), 127–139 (2004).
  • Nilsson M, Stenberg M, Frid AH, Holst JJ, Bjorck IM. Glycemia and insulinemia in healthy subjects after lactose-equivalent meals of milk and other food proteins: the role of plasma amino acids and incretins. Am. J. Clin. Nutr.80(5), 1246–1253 (2004).
  • Batterham RL, Heffron H, Kapoor S et al. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell. Metab.4(3), 223–233 (2006).
  • Ray JM, Squires PE, Curtis SB, Meloche MR, Buchan AM. Expression of the calcium-sensing receptor on human antral gastrin cells in culture. J. Clin. Invest.99(10), 2328–2333 (1997).
  • Sheinin Y, Kallay E, Wrba F, Kriwanek S, Peterlik M, Cross HS. Immunocytochemical localization of the extracellular calcium-sensing receptor in normal and malignant human large intestinal mucosa. J. Histochem. Cytochem.48(5), 595–602 (2000).
  • Bandyopadhyay S, Tfelt-Hansen J, Chattopadhyay N. Diverse roles of extracellular calcium-sensing receptor in the central nervous system. J. Neurosci. Res.88(10), 2073–2082 (2010).
  • Busque SM, Kerstetter JE, Geibel JP, Insogna K. l-type amino acids stimulate gastric acid secretion by activation of the calcium-sensing receptor in parietal cells. Am. J. Physiol. Gastrointest. Liver Physiol.289(4), G664–G669 (2005).
  • Hira T, Nakajima S, Eto Y, Hara H. Calcium-sensing receptor mediates phenylalanine-induced cholecystokinin secretion in enteroendocrine STC-1 cells. FEBS Journal275(18), 4620–4626 (2008).
  • San Gabriel A, Uneyama H, Maekawa T, Torii K. The calcium-sensing receptor in taste tissue. Biochem. Biophys. Res. Commun.378(3), 414–418 (2009).
  • Ho C, Conner DA, Pollak MR et al. A mouse model of human familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Nat. Genet.11(4), 389–394 (1995).
  • Nelson G, Chandrashekar J, Hoon MA et al. An amino-acid taste receptor. Nature416(6877), 199–202 (2002).
  • Reimann F, Williams L, Da Silva Xavier G, Rutter GA, Gribble FM. Glutamine potently stimulates glucagon-like peptide-1 secretion from GLUTag cells. Diabetologia47(9), 1592–1601 (2004).
  • Zhao GQ, Zhang Y, Hoon MA et al. The receptors for mammalian sweet and umami taste. Cell115(3), 255–266 (2003).
  • Choi S, Lee M, Shiu AL, Yo SJ, Aponte GW. Identification of a protein hydrolysate responsive G protein-coupled receptor in enterocytes. Am. J. Physiol. Gastrointest. Liver Physiol.292(1), G98–G112 (2007).
  • Nemoz-Gaillard E, Bernard C, Abello J, Cordier-Bussat M, Chayvialle JA, Cuber JC. Regulation of cholecystokinin secretion by peptones and peptidomimetic antibiotics in STC-1 cells. Endocrinology139(3), 932–938 (1998).
  • Nishi T, Hara H, Hira T, Tomita F. Dietary protein peptic hydrolysates stimulate cholecystokinin release via direct sensing by rat intestinal mucosal cells. Exp. Biol. Med. (Maywood)226(11), 1031–1036 (2001).
  • Choi S, Lee M, Shiu AL, Yo SJ, Hallden G, Aponte GW. GPR93 activation by protein hydrolysate induces CCK transcription and secretion in STC-1 cells. Am. J. Physiol. Gastrointest. Liver Physiol.292(5), G1366–G1375 (2007).
  • Astrup A. The role of calcium in energy balance and obesity: the search for mechanisms. Am. J. Clin. Nutr.88(4), 873–874 (2008).
  • Zemel MB. Role of dietary calcium and dairy products in modulating adiposity. Lipids38(2), 139–146 (2003).
  • Read NW, Sugden K. Gastrointestinal dynamics and pharmacology for the optimum design of controlled-release oral dosage forms. Crit. Rev. Ther. Drug Carrier Syst4(3), 221–263 (1988).
  • Ueno N, Inui A, Iwamoto M et al. Decreased food intake and body weight in pancreatic polypeptide-overexpressing mice. Gastroenterology117(6), 1427–1432 (1999).
  • Iakoubov R, Izzo A, Yeung A, Whiteside CI, Brubaker PL. Protein kinase Czeta is required for oleic acid-induced secretion of glucagon-like peptide-1 by intestinal endocrine L cells. Endocrinology148(3), 1089–1098 (2007).
  • Burns AA, Livingstone MB, Welch RW et al. Short-term effects of yoghurt containing a novel fat emulsion on energy and macronutrient intakes in non-obese subjects. Int. J. Obes. Relat. Metab. Disord.24(11), 1419–1425 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.