57
Views
6
CrossRef citations to date
0
Altmetric
Review

Recent developments in bone anabolic therapy for osteoporosis

, , , , , , , , & show all
Pages 677-685 | Published online: 10 Jan 2014

References

  • Bliziotes M, Sibonga JD, Turner RT, Orwoll E. Periosteal remodeling at the femoral neck in nonhuman primates. J. Bone Miner. Res. 21(7), 1060–1067 (2006).
  • Orwoll ES. Toward an expanded understanding of the role of the periosteum in skeletal health. J. Bone Miner. Res. 18(6), 949–954 (2003).
  • Boivin G, Farlay D, Bala Y, Doublier A, Meunier PJ, Delmas PD. Influence of remodeling on the mineralization of bone tissue. Osteoporos. Int. 20(6), 1023–1026 (2009).
  • Hollick RJ, Reid DM. Role of bisphosphonates in the management of postmenopausal osteoporosis: an update on recent safety anxieties. Menopause Int. 17(2), 66–72 (2011).
  • Schilcher J, Michaëlsson K, Aspenberg P. Bisphosphonate use and atypical fractures of the femoral shaft. N. Engl. J. Med. 364(18), 1728–1737 (2011).
  • Dempster DW, Cosman F, Parisien M, Shen V, Lindsay R. Anabolic actions of parathyroid hormone on bone. Endocr. Rev. 14(6), 690–709 (1993).
  • Hodsman AB, Bauer DC, Dempster DW et al. Parathyroid hormone and teriparatide for the treatment of osteoporosis: a review of the evidence and suggested guidelines for its use. Endocr. Rev. 26(5), 688–703 (2005).
  • Jilka RL. Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40(6), 1434–1446 (2007).
  • Wang Y, Nishida S, Boudignon BM et al. IGF-I receptor is required for the anabolic actions of parathyroid hormone on bone. J. Bone Miner. Res. 22(9), 1329–1337 (2007).
  • Bikle DD, Sakata T, Leary C et al. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone. J. Bone Miner. Res. 17(9), 1570–1578 (2002).
  • Bringhurst FR. PTH receptors and apoptosis in osteocytes. J. Musculoskelet. Neuronal Interact. 2(3), 245–251 (2002).
  • Black DM, Greenspan SL, Ensrud KE et al.; PaTH Study Investigators. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N. Engl. J. Med. 349(13), 1207–1215 (2003).
  • Neer RM, Arnaud CD, Zanchetta JR et al. Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. 344(19), 1434–1441 (2001).
  • Schafer AL, Sellmeyer DE, Palermo L et al. Six months of parathyroid hormone (1–84) administered concurrently versus sequentially with monthly ibandronate over two years: the PTH and Ibandronate Combination Study (PICS) Randomized trial. J. Clin. Endocrinol. Metab. 97(10), 3522–3529 (2012).
  • Drake MT, Srinivasan B, Mödder UI et al. Effects of intermittent parathyroid hormone treatment on osteoprogenitor cells in postmenopausal women. Bone 49(3), 349–355 (2011).
  • Vahle JL, Sato M, Long GG et al. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1-34) for 2 years and relevance to human safety. Toxicol. Pathol. 30(3), 312–321 (2002).
  • Finkelstein JS, Wyland JJ, Lee H, Neer RM. Effects of teriparatide, alendronate, or both in women with postmenopausal osteoporosis. J. Clin. Endocrinol. Metab. 95(4), 1838–1845 (2010).
  • Compston J. The use of combination therapy in the treatment of postmenopausal osteoporosis. Endocrine 41(1), 11–18 (2012).
  • Stewart AF, Cain RL, Burr DB, Jacob D, Turner CH, Hock JM. Six-month daily administration of parathyroid hormone and parathyroid hormone-related protein peptides to adult ovariectomized rats markedly enhances bone mass and biomechanical properties: a comparison of human parathyroid hormone 1–34, parathyroid hormone-related protein 1–36, and SDZ-parathyroid hormone 893. J. Bone Miner. Res. 15(8), 1517–1525 (2000).
  • Saidak Z, Brazier M, Kamel S, Mentaverri R. Agonists and allosteric modulators of the calcium-sensing receptor and their therapeutic applications. Mol. Pharmacol. 76(6), 1131–1144 (2009).
  • Fitzpatrick LA, Dabrowski CE, Cicconetti G et al. The effects of ronacaleret, a calcium-sensing receptor antagonist, on bone mineral density and biochemical markers of bone turnover in postmenopausal women with low bone mineral density. J. Clin. Endocrinol. Metab. 96(8), 2441–2449 (2011).
  • Little RD, Recker RR, Johnson ML. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med. 347(12), 943–944; author reply 943 (2002).
  • Gong Y, Slee RB, Fukai N et al.; Osteoporosis-Pseudoglioma Syndrome Collaborative Group. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107(4), 513–523 (2001).
  • Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. β-catenin is a target for the ubiquitin–proteasome pathway. EMBO J. 16(13), 3797–3804 (1997).
  • Gaur T, Lengner CJ, Hovhannisyan H et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J. Biol. Chem. 280(39), 33132–33140 (2005).
  • Semënov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J. Biol. Chem. 280(29), 26770–26775 (2005).
  • van Bezooijen RL, Svensson JP, Eefting D et al. Wnt but not BMP signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J. Bone Miner. Res. 22(1), 19–28 (2007).
  • Ellies DL, Viviano B, McCarthy J et al. Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J. Bone Miner. Res. 21(11), 1738–1749 (2006).
  • Loots GG, Kneissel M, Keller H et al. Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res. 15(7), 928–935 (2005).
  • Li X, Ominsky MS, Warmington KS et al. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J. Bone Miner. Res. 24(4), 578–588 (2009).
  • Padhi D, Jang G, Stouch B, Fang L, Posvar E. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J. Bone Miner. Res. 26(1), 19–26 (2011).
  • Paszty C, Turner CH, Robinson MK. Sclerostin: a gem from the genome leads to bone-building antibodies. J. Bone Miner. Res. 25(9), 1897–1904 (2010).
  • Boyden LM, Mao J, Belsky J et al. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med. 346(20), 1513–1521 (2002).
  • Li J, Sarosi I, Cattley RC et al. Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 39(4), 754–766 (2006).
  • Morvan F, Boulukos K, Clément-Lacroix P et al. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J. Bone Miner. Res. 21(6), 934–945 (2006).
  • Diarra D, Stolina M, Polzer K et al. Dickkopf-1 is a master regulator of joint remodeling. Nat. Med. 13(2), 156–163 (2007).
  • Heath DJ, Chantry AD, Buckle CH et al. Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. J. Bone Miner. Res. 24(3), 425–436 (2009).
  • Glantschnig H, Scott K, Hampton R et al. A rate-limiting role for Dickkopf-1 in bone formation and the remediation of bone loss in mouse and primate models of postmenopausal osteoporosis by an experimental therapeutic antibody. J. Pharmacol. Exp. Ther. 338(2), 568–578 (2011).
  • Heiland GR, Zwerina K, Baum W et al. Neutralisation of Dkk-1 protects from systemic bone loss during inflammation and reduces sclerostin expression. Ann. Rheum. Dis. 69(12), 2152–2159 (2010).
  • Fulciniti M, Tassone P, Hideshima T et al. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 114(2), 371–379 (2009).
  • Shi Y, Massagué J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113(6), 685–700 (2003).
  • Miyazono K, Maeda S, Imamura T. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev. 16(3), 251–263 (2005).
  • Zawel L, Dai JL, Buckhaults P et al. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol. Cell 1(4), 611–617 (1998).
  • Zhang YW, Yasui N, Ito K et al. A RUNX2/PEBP2α A/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc. Natl Acad. Sci. USA 97(19), 10549–10554 (2000).
  • Valentin-Opran A, Wozney J, Csimma C, Lilly L, Riedel GE. Clinical evaluation of recombinant human bone morphogenetic protein-2. Clin. Orthop. Relat. Res. 395, 110–120 (2002).
  • Bragdon B, D’Angelo A, Gurski L et al. Altered plasma membrane dynamics of bone morphogenetic protein receptor type Ia in a low bone mass mouse model. Bone 50(1), 189–199 (2012).
  • Gazzerro E, Pereira RC, Jorgetti V, Olson S, Economides AN, Canalis E. Skeletal overexpression of gremlin impairs bone formation and causes osteopenia. Endocrinology 146(2), 655–665 (2005).
  • Gazzerro E, Smerdel-Ramoya A, Zanotti S et al. Conditional deletion of gremlin causes a transient increase in bone formation and bone mass. J. Biol. Chem. 282(43), 31549–31557 (2007).
  • Devlin RD, Du Z, Pereira RC et al. Skeletal overexpression of noggin results in osteopenia and reduced bone formation. Endocrinology 144(5), 1972–1978 (2003).
  • Alanay A, Chen C, Lee S et al. The adjunctive effect of a binding peptide on bone morphogenetic protein enhanced bone healing in a rodent model of spinal fusion. Spine 33(16), 1709–1713 (2008).
  • Rosen V, Wozney JM. Bone morphogenetic protein. In: Principles of Bone Biology (2nd Edition). Bilezikian JP, Rasisz LG, Rodan GA et al. (Eds). Academic Press, NY, USA, 661–671 (2002).
  • Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. Chem. Biol. 8(8), 739–758 (2001).
  • Garrett IR, Chen D, Gutierrez G et al. Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro. J. Clin. Invest. 111(11), 1771–1782 (2003).
  • Li RF, Shang Y, Liu D, Ren ZS, Chang Z, Sui SF. Differential ubiquitination of Smad1 mediated by CHIP: implications in the regulation of the bone morphogenetic protein signaling pathway. J. Mol. Biol. 374(3), 777–790 (2007).
  • Myung J, Kim KB, Crews CM. The ubiquitin–proteasome pathway and proteasome inhibitors. Med. Res. Rev. 21(4), 245–273 (2001).
  • Lu K, Yin X, Weng T et al. Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1. Nat. Cell Biol. 10(8), 994–1002 (2008).
  • Guo B, Zhang B, Wu H et al. Highly expressed CKIP-1 and lowly expressed Smad1/5 in aged callus specimen. Presented at: 2nd Asia–Pacific Osteoporosis and Bone Meeting. Shenzhen, China, 28–31 October 2011.
  • Serra R, Chang C. TGF-β signaling in human skeletal and patterning disorders. Birth Defects Res. C Embryo Today 69(4), 333–351 (2003).
  • ten Dijke P, Hill CS. New insights into TGF-β-Smad signalling. Trends Biochem. Sci. 29(5), 265–273 (2004).
  • Janssens K, Vanhoenacker F, Bonduelle M et al. Camurati–Engelmann disease: review of the clinical, radiological, and molecular data of 24 families and implications for diagnosis and treatment. J. Med. Genet. 43(1), 1–11 (2006).
  • Marie P. Growth factors and bone formation in osteoporosis: roles for IGF-I and TGF-β. Rev. Rhum. Engl. Ed. 64(1), 44–53 (1997).
  • Landin-Wilhelmsen K, Nilsson A, Bosaeus I, Bengtsson BA. Growth hormone increases bone mineral content in postmenopausal osteoporosis: a randomized placebo-controlled trial. J. Bone Miner. Res. 18(3), 393–405 (2003).
  • He Z, Sontheimer EJ. ‘siRNAs and miRNAs’: a meeting report on RNA silencing. RNA 10(8), 1165–1173 (2004).
  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669), 806–811 (1998).
  • Achenbach TV, Brunner B, Heermeier K. Oligonucleotide-based knockdown technologies: antisense versus RNA interference. Chembiochem 4(10), 928–935 (2003).
  • Novina CD, Sharp PA. The RNAi revolution. Nature 430(6996), 161–164 (2004).
  • Hammond SM, Bernstein E, Beach D, Hannon GJ. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404(6775), 293–296 (2000).
  • Geisbert TW, Lee AC, Robbins M et al. Postexposure protection of non-human primates against a lethal Ebola virus challenge with RNA interference: a proof-of-concept study. Lancet 375(9729), 1896–1905 (2010).
  • Davidson BL, McCray PB Jr. Current prospects for RNA interference-based therapies. Nat. Rev. Genet. 12(5), 329–340 (2011).
  • Howard KA, Paludan SR, Behlke MA, Besenbacher F, Deleuran B, Kjems J. Chitosan/siRNA nanoparticle-mediated TNF-α knockdown in peritoneal macrophages for anti-inflammatory treatment in a murine arthritis model. Mol. Ther. 17(1), 162–168 (2009).
  • Kramer PR, Puri J, Bellinger LL. Knockdown of Fcg receptor III in an arthritic temporomandibular joint reduces the nociceptive response in rats. Arthritis Rheum. 62(10), 3109–3118 (2010).
  • Wang Y, Grainger DW. siRNA knock-down of RANK signaling to control osteoclast-mediated bone resorption. Pharm. Res. 27(7), 1273–1284 (2010).
  • Wang Y, Grainger DW. RNA therapeutics targeting osteoclast-mediated excessive bone resorption. Adv. Drug Deliv. Rev. 64(12), 1341–1357 (2012).
  • Buckbinder L, Crawford DT, Qi H et al. Proline-rich tyrosine kinase 2 regulates osteoprogenitor cells and bone formation, and offers an anabolic treatment approach for osteoporosis. Proc. Natl Acad. Sci. USA 104(25), 10619–10624 (2007).
  • Ke HZ, Richards WG, Li X, Ominsky MS. Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr. Rev. 33(5), 747–783 (2012).
  • Baert F, Noman M, Vermeire S et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N. Engl. J. Med. 348(7), 601–608 (2003).
  • Uematsu K, He B, You L, Xu Z, McCormick F, Jablons DM. Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene 22(46), 7218–7221 (2003).
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2), 281–297 (2004).
  • Carthew RW, Sontheimer EJ. Origins and Mechanisms of miRNAs and siRNAs. Cell 136(4), 642–655 (2009).
  • Laneve P, Di Marcotullio L, Gioia U et al. The interplay between microRNAs and the neurotrophin receptor tropomyosin-related kinase C controls proliferation of human neuroblastoma cells. Proc. Natl Acad. Sci. USA 104(19), 7957–7962 (2007).
  • Song G, Zhang Y, Wang L. MicroRNA-206 targets notch3, activates apoptosis, and inhibits tumor cell migration and focus formation. J. Biol. Chem. 284(46), 31921–31927 (2009).
  • Wang X, Tang S, Le SY et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 3(7), e2557 (2008).
  • Zeng Y, Yi R, Cullen BR. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl Acad. Sci. USA 100(17), 9779–9784 (2003).
  • Hornstein E, Mansfield JH, Yekta S et al. The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development. Nature 438(7068), 671–674 (2005).
  • Nie X, Wang Q, Jiao K. Dicer activity in neural crest cells is essential for craniofacial organogenesis and pharyngeal arch artery morphogenesis. Mech. Dev. 128(3–4), 200–207 (2011).
  • Li Z, Hassan MQ, Volinia S et al. A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc. Natl Acad. Sci. USA 105(37), 13906–13911 (2008).
  • Gao J, Yang T, Han J et al. MicroRNA expression during osteogenic differentiation of human multipotent mesenchymal stromal cells from bone marrow. J. Cell. Biochem. 112(7), 1844–1856 (2011).
  • Oskowitz AZ, Lu J, Penfornis P et al. Human multipotent stromal cells from bone marrow and microRNA: regulation of differentiation and leukemia inhibitory factor expression. Proc. Natl Acad. Sci. USA 105(47), 18372–18377 (2008).
  • Huang J, Zhao L, Xing L, Chen D. MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem Cells 28(2), 357–364 (2010).
  • Luzi E, Marini F, Sala SC, Tognarini I, Galli G, Brandi ML. Osteogenic differentiation of human adipose tissue-derived stem cells is modulated by the miR-26a targeting of the SMAD1 transcription factor. J. Bone Miner. Res. 23(2), 287–295 (2008).
  • Krützfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068), 685–689 (2005).
  • Davis S, Lollo B, Freier S, Esau C. Improved targeting of miRNA with antisense oligonucleotides. Nucleic Acids Res. 34(8), 2294–2304 (2006).
  • Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4(9), 721–726 (2007).
  • Liang ZJ, Zhuang H, Wang GX et al. MiRNA-140 is a negative feedback regulator of MMP-13 in IL-1b-stimulated human articular chondrocyte C28/I2 cells. Inflamm. Res. 61(5), 503–509 (2012).
  • Li H, Xie H, Liu W et al. A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J. Clin. Invest. 119(12), 3666–3677 (2009).
  • Castanotto D, Rossi JJ. The promises and pitfalls of RNA-interference-based therapeutics. Nature 457(7228), 426–433 (2009).
  • Reischl D, Zimmer A. Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomedicine 5(1), 8–20 (2009).
  • Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell. Mol. Life Sci. 66(17), 2873–2896 (2009).
  • Kwon YJ. Before and after Endosomal escape: roles of stimuli-converting siRNA/polymer interactions in determining gene silencing efficiency. Acc. Chem. Res. 45(7), 1077–1088 (2012).
  • Zhang G, Guo B, Wu H et al. A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy. Nat. Med. 18(2), 307–314 (2012).
  • Sims NA, Gooi JH. Bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption. Semin. Cell Dev. Biol. 19(5), 444–451 (2008).
  • McNamara JO 2nd, Andrechek ER, Wang Y et al. Cell type-specific delivery of siRNAs with aptamer–siRNA chimeras. Nat. Biotechnol. 24(8), 1005–1015 (2006).
  • Chen T, Shukoor MI, Chen Y et al. Aptamer-conjugated nanomaterials for bioanalysis and biotechnology applications. Nanoscale 3(2), 546–556 (2011).
  • Vavvas D, D’Amico DJ. Pegaptanib (Macugen): treating neovascular age-related macular degeneration and current role in clinical practice. Ophthalmol. Clin. North Am. 19(3), 353–360 (2006).
  • Bunka DH, Stockley PG. Aptamers come of age – at last. Nat. Rev. Microbiol. 4(8), 588–596 (2006).
  • Shum KT, Chan C, Leung CM, Tanner JA. Identification of a DNA aptamer that inhibits sclerostin’s antagonistic effect on Wnt signalling. Biochem. J. 434(3), 493–501 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.