78
Views
3
CrossRef citations to date
0
Altmetric
Review

Developments in understanding bile acid metabolism

, &
Pages 59-69 | Published online: 10 Jan 2014

References

  • Hofmann AF. Biliary secretion and excretion in health and disease: current concepts. Ann. Hepatol. 6(1), 15–27 (2007).
  • Gupta S, Stravitz RT, Dent P, Hylemon PB. Down-regulation of cholesterol 7a-hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-Jun N-terminal kinase pathway. J. Biol. Chem. 276(19), 15816–15822 (2001).
  • Maruyama T, Miyamoto Y, Nakamura T et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem. Biophys. Res. Commun. 298(5), 714–719 (2002).
  • Makishima M, Okamoto AY, Repa JJ et al. Identification of a nuclear receptor for bile acids. Science 284(5418), 1362–1365 (1999).
  • Parks DJ, Blanchard SG, Bledsoe RK et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 284(5418), 1365–1368 (1999).
  • Forman BM, Goode E, Chen J et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 81(5), 687–693 (1995).
  • Scotti E, Gilardi F, Godio C et al. Bile acids and their signaling pathways: eclectic regulators of diverse cellular functions. Cell. Mol. Life Sci. 64(19–20), 2477–2491 (2007).
  • Vassileva G, Golovko A, Markowitz L et al. Targeted deletion of Gpbar1 protects mice from cholesterol gallstone formation. Biochem. J. 398(3), 423–430 (2006).
  • Watanabe M, Houten SM, Mataki C et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439(7075), 484–489 (2006).
  • Keitel V, Reinehr R, Gatsios P et al. The G-protein-coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology 45(3), 695–704 (2007).
  • Garg A, Grundy SM. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. A short-term, double-blind, crossover trial. Ann. Intern. Med. 121(6), 416–422 (1994).
  • Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. EMBO J. 25(7), 1419–1425 (2006).
  • Strautnieks SS, Byrne JA, Pawlikowska L et al. Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families. Gastroenterology 134(4), 1203–1214 (2008).
  • Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102(6), 731–744 (2000).
  • Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 72, 137–174 (2003).
  • Brendel C, Schoonjans K, Botrugno OA, Treuter E, Auwerx J. The small heterodimer partner interacts with the liver X receptor a and represses its transcriptional activity. Mol. Endocrinol. 16(9), 2065–2076 (2002).
  • Lu TT, Makishima M, Repa JJ et al. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell 6(3), 507–515 (2000).
  • Holt JA, Luo G, Billin AN et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev. 17(13), 1581–1591 (2003).
  • Inagaki T, Choi M, Moschetta A et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2(4), 217–225 (2005).
  • Maruyama T, Tanaka K, Suzuki J et al. Targeted disruption of G protein-coupled bile acid receptor 1 (Gpbar1/M-Bar) in mice. J. Endocrinol. 191(1), 197–205 (2006).
  • Vassileva G, Golovko A, Markowitz L et al. Targeted deletion of Gpbar1 protects mice from cholesterol gallstone formation. Biochem. J. 398(3), 423–430 (2006).
  • Plass JR, Mol O, Heegsma J et al. Farnesoid X receptor and bile salts are involved in transcriptional regulation of the gene encoding the human bile salt export pump. Hepatology 35(3), 589–596 (2002).
  • Huang L, Zhao A, Lew JL et al. Farnesoid X receptor activates transcription of the phospholipid pump MDR3. J. Biol. Chem. 278(51), 51085–51090 (2003).
  • Kast HR, Goodwin B, Tarr PT et al. Regulation of multidrug resistance-associated protein 2 (ABCC2) by the nuclear receptors pregnane X receptor, farnesoid X-activated receptor, and constitutive androstane receptor. J. Biol. Chem. 277(4), 2908–2915 (2002).
  • Häussinger D, Hallbrucker C, Saha N, Lang F, Gerok W. Cell volume and bile acid excretion. Biochem. J. 288(Pt 2), 681–689 (1992).
  • Kubitz R, D’urso D, Keppler D, Häussinger D. Osmodependent dynamic localization of the multidrug resistance protein 2 in the rat hepatocyte canalicular membrane. Gastroenterology 113(5), 1438–1442 (1997).
  • Schmitt M, Kubitz R, Lizun S, Wettstein M, Häussinger D. Regulation of the dynamic localization of the rat Bsep gene-encoded bile salt export pump by anisoosmolarity. Hepatology 33(3), 509–518 (2001).
  • Noé B, Schliess F, Wettstein M, Heinrich S, Häussinger D. Regulation of taurocholate excretion by a hypo-osmolarity-activated signal transduction pathway in rat liver. Gastroenterology 110(3), 858–865 (1996).
  • Kurz AK, Graf D, Schmitt M, Vom Dahl S, Häussinger D. Tauroursodesoxycholate-induced choleresis involves p38(MAPK) activation and translocation of the bile salt export pump in rats. Gastroenterology 121(2), 407–419 (2001).
  • Neimark E, Chen F, Li X, Shneider BL. Bile acid-induced negative feedback regulation of the human ileal bile acid transporter. Hepatology 40(1), 149–156 (2004).
  • Grober J, Zaghini I, Fujii H et al. Identification of a bile acid-responsive element in the human ileal bile acid-binding protein gene. Involvement of the farnesoid X receptor/9-cis-retinoic acid receptor heterodimer. J. Biol. Chem. 274(42), 29749–29754 (1999).
  • Kok T, Hulzebos CV, Wolters H et al. Enterohepatic circulation of bile salts in farnesoid X receptor-deficient mice: efficient intestinal bile salt absorption in the absence of ileal bile acid-binding protein. J. Biol. Chem. 278(43), 41930–41937 (2003).
  • Keitel V, Kubitz R, Häussinger D. Endocrine and paracrine role of bile acids. World J. Gastroenterol. 14(37), 5620–5629 (2008).
  • Jung D, Hagenbuch B, Fried M, Meier PJ, Kullak-Ublick GA. Role of liver-enriched transcription factors and nuclear receptors in regulating the human, mouse, and rat NTCP gene. Am. J. Physiol. Gastrointest. Liver Physiol. 286(5), G752–G761 (2004).
  • Jung D, Kullak-Ublick GA. Hepatocyte nuclear factor 1 a: a key mediator of the effect of bile acids on gene expression. Hepatology 37(3), 622–631 (2003).
  • Jung D, Podvinec M, Meyer UA et al. Human organic anion transporting polypeptide 8 promoter is transactivated by the farnesoid X receptor/bile acid receptor. Gastroenterology 122(7), 1954–1966 (2002).
  • Keitel V, Burdelski M, Warskulat U et al. Expression and localization of hepatobiliary transport proteins in progressive familial intrahepatic cholestasis. Hepatology 41(5), 1160–1172 (2005).
  • Denk GU, Soroka CJ, Takeyama Y, Chen WS, Schuetz JD, Boyer JL. Multidrug resistance-associated protein 4 is up-regulated in liver but down-regulated in kidney in obstructive cholestasis in the rat. J. Hepatol. 40(4), 585–591 (2004).
  • Pircher PC, Kitto JL, Petrowski ML et al. Farnesoid X receptor regulates bile acid-amino acid conjugation. J. Biol. Chem. 278(30), 27703–27711 (2003).
  • Song CS, Echchgadda I, Baek BS et al. Dehydroepiandrosterone sulfotransferase gene induction by bile acid activated farnesoid X receptor. J. Biol. Chem. 276(45), 42549–42556 (2001).
  • Barbier O, Torra IP, Sirvent A et al. FXR induces the UGT2B4 enzyme in hepatocytes: a potential mechanism of negative feedback control of FXR activity. Gastroenterology 124(7), 1926–1940 (2003).
  • Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47(2), 241–259 (2006).
  • Setchell KD, Lawson AM, Tanida N, Sjövall J. General methods for the analysis of metabolic profiles of bile acids and related compounds in feces. J. Lipid Res. 24(8), 1085–1100 (1983).
  • Yamagata K, Daitoku H, Shimamoto Y et al. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxo1. J. Biol. Chem. 279(22), 23158–23165 (2004).
  • Yamagata K, Yoshimochi K, Daitoku H, Hirota K, Fukamizu A. Bile acid represses the peroxisome proliferator-activated receptor-g coactivator-1 promoter activity in a small heterodimer partner-dependent manner. Int. J. Mol. Med. 19(5), 751–756 (2007).
  • Ma K, Saha PK, Chan L, Moore DD. Farnesoid X receptor is essential for normal glucose homeostasis. J. Clin. Invest. 116(4), 1102–1109 (2006).
  • Stayrook KR, Bramlett KS, Savkur RS et al. Regulation of carbohydrate metabolism by the farnesoid X receptor. Endocrinology 146(3), 984–991 (2005).
  • Zhang Y, Lee FY, Barrera G et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc. Natl Acad. Sci. USA 103(4), 1006–1011 (2006).
  • Watanabe M, Horai Y, Houten SM et al. Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure. J. Biol. Chem. 286(30), 26913–26920 (2011).
  • Duran-Sandoval D, Mautino G, Martin G et al. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes 53(4), 890–898 (2004).
  • Katsuma S, Hirasawa A, Tsujimoto G. Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem. Biophys. Res. Commun. 329(1), 386–390 (2005).
  • Thomas C, Gioiello A, Noriega L et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 10(3), 167–177 (2009).
  • Thomas C, Auwerx J, Schoonjans K. Bile acids and the membrane bile acid receptor TGR5 – connecting nutrition and metabolism. Thyroid 18(2), 167–174 (2008).
  • Poole DP, Godfrey C, Cattaruzza F et al. Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system. Neurogastroenterol. Motil. 22(7), 814–25, e227 (2010).
  • Sato H, Genet C, Strehle A et al. Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochem. Biophys. Res. Commun. 362(4), 793–798 (2007).
  • Patti ME, Houten SM, Bianco AC et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring) 17(9), 1671–1677 (2009).
  • Müssig K, Staiger H, Machicao F et al. Preliminary report: genetic variation within the GPBAR1 gene is not associated with metabolic traits in white subjects at an increased risk for Type 2 diabetes mellitus. Metab. Clin. Exp. 58(12), 1809–1811 (2009).
  • Nakatani H, Kasama K, Oshiro T, Watanabe M, Hirose H, Itoh H. Serum bile acid along with plasma incretins and serum high-molecular weight adiponectin levels are increased after bariatric surgery. Metabolism 58(10), 1400–1407 (2009).
  • Zhang H, DiBaise JK, Zuccolo A et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl Acad. Sci. USA 106(7), 2365–2370 (2009).
  • Suzuki T, Oba K, Igari Y et al. Colestimide lowers plasma glucose levels and increases plasma glucagon-like peptide-1 (7-36) levels in patients with Type 2 diabetes mellitus complicated by hypercholesterolemia. J. Nippon Med. Sch. 74(5), 338–343 (2007).
  • Harach T, Pols TW, Nomura M et al. TGR5 potentiates GLP-1 secretion in response to anionic exchange resins. Sci. Rep. 2, 430 (2012).
  • Watanabe M, Morimoto K, Houten SM et al. Bile acid binding resin improves metabolic control through the induction of energy expenditure. PLoS ONE 7(8), e38286 (2012).
  • Fromm H, Eschler A, Töllner D, Canzler H, Schmidt FW. [In vivo dissolving of gall-stones: the effect of chenodeoxycholic acid.] (author’s transl). Dtsch. Med. Wochenschr. 100(32), 1619–1624 (1975).
  • Watanabe M, Houten SM, Wang L et al. Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J. Clin. Invest. 113(10), 1408–1418 (2004).
  • Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J. Clin. Invest. 109(9), 1125–1131 (2002).
  • Kast HR, Nguyen CM, Sinal CJ et al. Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids. Mol. Endocrinol. 15(10), 1720–1728 (2001).
  • Ginsberg HN, Le NA, Goldberg IJ et al. Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CIII and AI. Evidence that apolipoprotein CIII inhibits catabolism of triglyceride-rich lipoproteins by lipoprotein lipase in vivo. J. Clin. Invest. 78(5), 1287–1295 (1986).
  • Claudel T, Inoue Y, Barbier O et al. Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology 125(2), 544–555 (2003).
  • Inaba T, Matsuda M, Shimamura M et al. Angiopoietin-like protein 3 mediates hypertriglyceridemia induced by the liver X receptor. J. Biol. Chem. 278(24), 21344–21351 (2003).
  • Hirokane H, Nakahara M, Tachibana S, Shimizu M, Sato R. Bile acid reduces the secretion of very low density lipoprotein by repressing microsomal triglyceride transfer protein gene expression mediated by hepatocyte nuclear factor-4. J. Biol. Chem. 279(44), 45685–45692 (2004).
  • Lambert G, Amar MJ, Guo G, Brewer HB Jr, Gonzalez FJ, Sinal CJ. The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J. Biol. Chem. 278(4), 2563–2570 (2003).
  • Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat. Med. 10(4), 355–361 (2004).
  • Pineda Torra I, Claudel T, Duval C, Kosykh V, Fruchart JC, Staels B. Bile acids induce the expression of the human peroxisome proliferator-activated receptor a gene via activation of the farnesoid X receptor. Mol. Endocrinol. 17(2), 259–272 (2003).
  • Savkur RS, Bramlett KS, Michael LF, Burris TP. Regulation of pyruvate dehydrogenase kinase expression by the farnesoid X receptor. Biochem. Biophys. Res. Commun. 329(1), 391–396 (2005).
  • Cohade C, Mourtzikos KA, Wahl RL. ‘USA-Fat’: prevalence is related to ambient outdoor temperature-evaluation with 18F-FDG PET/CT. J. Nucl. Med. 44(8), 1267–1270 (2003).
  • Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-Hagen J, von Schulthess GK. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur. J. Nucl. Med. Mol. Imaging 29(10), 1393–1398 (2002).
  • Seale P, Bjork B, Yang W et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454(7207), 961–967 (2008).
  • Wu J, Boström P, Sparks LM et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150(2), 366–376 (2012).
  • Yoon JH, Higuchi H, Werneburg NW, Kaufmann SH, Gores GJ. Bile acids induce cyclooxygenase-2 expression via the epidermal growth factor receptor in a human cholangiocarcinoma cell line. Gastroenterology 122(4), 985–993 (2002).
  • Wu T. Cyclooxygenase-2 and prostaglandin signaling in cholangiocarcinoma. Biochim. Biophys. Acta 1755(2), 135–150 (2005).
  • Park YY, Choi HS, Lee JS. Systems-level analysis of gene expression data revealed NR0B2/SHP as potential tumor suppressor in human liver cancer. Mol. Cell. 30(5), 485–491 (2010).
  • Wang YD, Chen WD, Wang M, Yu D, Forman BM, Huang W. Farnesoid X receptor antagonizes nuclear factor kB in hepatic inflammatory response. Hepatology 48(5), 1632–1643 (2008).
  • Lee JY, Lee KT, Lee JK et al. Farnesoid X receptor, overexpressed in pancreatic cancer with lymph node metastasis promotes cell migration and invasion. Br. J. Cancer 104(6), 1027–1037 (2011).
  • De Gottardi A, Dumonceau JM, Bruttin F et al. Expression of the bile acid receptor FXR in Barrett’s esophagus and enhancement of apoptosis by guggulsterone in vitro. Mol. Cancer 5, 48 (2006).
  • De Gottardi A, Touri F, Maurer CA et al. The bile acid nuclear receptor FXR and the bile acid binding protein IBABP are differently expressed in colon cancer. Dig. Dis. Sci. 49(6), 982–989 (2004).
  • Maran RR, Thomas A, Roth M et al. Farnesoid X receptor deficiency in mice leads to increased intestinal epithelial cell proliferation and tumor development. J. Pharmacol. Exp. Ther. 328(2), 469–477 (2009).
  • Smith DL, Keshavan P, Avissar U, Ahmed K, Zucker SD. Sodium taurocholate inhibits intestinal adenoma formation in APCMin/+ mice, potentially through activation of the farnesoid X receptor. Carcinogenesis 31(6), 1100–1109 (2010).
  • Koutsounas I, Giaginis C, Theocharis S. Farnesoid X receptor (FXR) from normal to malignant state. Histol. Histopathol. 27(7), 835–853 (2012).
  • Keitel V, Donner M, Winandy S, Kubitz R, Häussinger D. Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem. Biophys. Res. Commun. 372(1), 78–84 (2008).
  • Calmus Y, Guechot J, Podevin P, Bonnefis MT, Giboudeau J, Poupon R. Differential effects of chenodeoxycholic and ursodeoxycholic acids on interleukin 1, interleukin 6 and tumor necrosis factor-a production by monocytes. Hepatology 16(3), 719–723 (1992).
  • Funaoka M, Komatsu M, Toyoshima I et al. Tauroursodeoxycholic acid enhances phagocytosis of the cultured rat Kupffer cell. J. Gastroenterol. Hepatol. 14(7), 652–658 (1999).
  • Scott-Conner CE, Grogan JB. The pathophysiology of biliary obstruction and its effect on phagocytic and immune function. J. Surg. Res. 57(2), 316–336 (1994).
  • Pols TW, Nomura M, Harach T et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab. 14(6), 747–757 (2011).
  • Inagaki T, Moschetta A, Lee YK et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc. Natl Acad. Sci. USA 103(10), 3920–3925 (2006).
  • Vavassori P, Mencarelli A, Renga B, Distrutti E, Fiorucci S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J. Immunol. 183(10), 6251–6261 (2009).
  • Keitel V, Reinehr R, Gatsios P et al. The G-protein-coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology 45(3), 695–704 (2007).
  • Reinehr R, Häussinger D. Inhibition of bile salt-induced apoptosis by cyclic AMP involves serine/threonine phosphorylation of CD95. Gastroenterology 126(1), 249–262 (2004).
  • Huang W, Ma K, Zhang J et al. Nuclear receptor-dependent bile acid signaling is required for normal liver regeneration. Science 312(5771), 233–236 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.