76
Views
8
CrossRef citations to date
0
Altmetric
Review

Role of transient receptor potential channels in adipocyte biology

, , , &
Pages 173-182 | Published online: 10 Jan 2014

References

  • Burden: mortality, morbidity and risk factors. WHO Report 1, 9–31 (2008).
  • International Diabetes Federation. Diabetes Atlas 2000. International Diabetes Federation, Brussels, Belgium (2001).
  • Padwal RS, Majumdar SR. Drug treatments for obesity: orlistat, sibutramine, and rimonabant. Lancet 369(9555), 71–77 (2007).
  • Fong TM, Heymsfield SB. Cannabinoid-1 receptor inverse agonists: current understanding of mechanism of action and unanswered questions. Int. J. Obes. (Lond.) 33(9), 947–955 (2009).
  • Heal DJ, Aspley S, Prow MR, Jackson HC, Martin KF, Cheetham SC. Sibutramine: a novel anti-obesity drug. A review of the pharmacological evidence to differentiate it from d-amphetamine and d-fenfluramine. Int. J. Obes. Relat. Metab. Disord. 22(Suppl. 1), S18–28; discussion S29 (1998).
  • Pommier A, Pons M, Kocienski P. The first total synthesis of (-)-lipstatin. J. Org. Chem. 60(22), 7334–7339 (1995).
  • Goldenberg MM. Pharmaceutical approval update. P T 37(9), 499–502 (2012).
  • Poulos SP, Dodson MV, Hausman GJ. Cell line models for differentiation: preadipocytes and adipocytes. Exp. Biol. Med. (Maywood) 235(10), 1185–1193 (2010).
  • Niemelä S, Miettinen S, Sarkanen JR et al. Adipose tissue and adipocyte differentiation: molecular and cellular aspects and tissue engineering applications. In: Topics in Tissue Engineering (Volume 4). Ashammakhi N, Reis R, Chiellini F (Eds). ExpertIssues (2008).
  • Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol. Rev. 78(3), 783–809 (1998).
  • Galica S, Oakhilla JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol. Cell. Endocrinol. 316, 29–139 (2010).
  • Sethi JK, Vidal-Puig AJ. Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J. Lipid Res. 48(6), 1253–1262 (2007).
  • Bernlohr DA, Jenkins AE, Bennaars AA. Adipose tissue and lipid metabolism. In: Biochemistry of Lipids, Lipoproteins and Membranes (4th Edition). Vance DE, Vance JE (Eds). Elsevier, Amsterdam, The Netherlands 263–289 (2002).
  • Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11(2), 85–97 (2011).
  • Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (adipose most abundant gene transcript 1). Biochem. Biophys. Res. Commun. 221(2), 286–289 (1996).
  • Jiang Y, Jo AY, Graff JM. SnapShot: adipocyte life cycle. Cell 150(1), 234–234.e2 (2012).
  • Ouchi N, Ohashi K, Shibata R, Murohara T. Adipocytokines and obesity-linked disorders. Nagoya J. Med. Sci. 74(1–2), 19–30 (2012).
  • Ye L, Kleiner S, Wu J et al. TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell 151(1), 96–110 (2012).
  • Sukumar P, Sedo A, Li J et al. Constitutively active TRPC channels of adipocytes confer a mechanism for sensing dietary fatty acids and regulating adiponectin. Circ. Res. 111(2), 191–200 (2012).
  • Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu. Rev. Physiol. 68, 619–647 (2006).
  • Wu LJ, Sweet TB, Clapham DE. International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol. Rev. 62(3), 381–404 (2010).
  • Nilius B, Owsianik G. The transient receptor potential family of ion channels. Genome Biol. 12(3), 218 (2011).
  • Nilius B, Owsianik G. Transient receptor potential channelopathies. Pflugers Arch. 460(2), 437–450 (2010).
  • Clapham DE. Calcium signaling. Cell 131(6), 1047–1058 (2007).
  • Hu H, He ML, Tao R et al. Characterization of ion channels in human preadipocytes. J. Cell. Physiol. 218(2), 427–435 (2009).
  • Putney JW Jr. Recent breakthroughs in the molecular mechanism of capacitative calcium entry (with thoughts on how we got here). Cell Calcium 42(2), 103–110 (2007).
  • Shi H, Halvorsen YD, Ellis PN, Wilkison WO, Zemel MB. Role of intracellular calcium in human adipocyte differentiation. Physiol. Genomics 3(2), 75–82 (2000).
  • Jensen B, Farach-Carson MC, Kenaley E, Akanbi KA. High extracellular calcium attenuates adipogenesis in 3T3-L1 preadipocytes. Exp. Cell Res. 301(2), 280–292 (2004).
  • Neal JW, Clipstone NA. Calcineurin mediates the calcium-dependent inhibition of adipocyte differentiation in 3T3-L1 cells. J. Biol. Chem. 277(51), 49776–49781 (2002).
  • Szabo E, Qiu Y, Baksh S, Michalak M, Opas M. Calreticulin inhibits commitment to adipocyte differentiation. J. Cell Biol. 182(1), 103–116 (2008).
  • He YH, He Y, Liao XL et al. The calcium-sensing receptor promotes adipocyte differentiation and adipogenesis through PPARγ pathway. Mol. Cell. Biochem. 361(1-2), 321–328 (2012).
  • Worrall DS, Olefsky JM. The effects of intracellular calcium depletion on insulin signaling in 3T3-L1 adipocytes. Mol. Endocrinol. 16(2), 378–389 (2002).
  • Cammisotto PG, Bukowiecki LJ. Role of calcium in the secretion of leptin from white adipocytes. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287(6), R1380–R1386 (2004).
  • Vriens J, Nilius B, Vennekens R. Herbal compounds and toxins modulating TRP channels. Curr. Neuropharmacol. 6(1), 79–96 (2008).
  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389(6653), 816–824 (1997).
  • Rutter AR, Ma QP, Leveridge M, Bonnert TP. Heteromerization and colocalization of TrpV1 and TrpV2 in mammalian cell lines and rat dorsal root ganglia. Neuroreport 16(16), 1735–1739 (2005).
  • Smith GD, Gunthorpe MJ, Kelsell RE et al. TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418(6894), 186–190 (2002).
  • Liapi A, Wood JN. Extensive co-localization and heteromultimer formation of the vanilloid receptor-like protein TRPV2 and the capsaicin receptor TRPV1 in the adult rat cerebral cortex. Eur. J. Neurosci. 22(4), 825–834 (2005).
  • Kawada T, Watanabe T, Takaishi T, Tanaka T, Iwai K. Capsaicin-induced beta-adrenergic action on energy metabolism in rats: influence of capsaicin on oxygen consumption, the respiratory quotient, and substrate utilization. Proc. Soc. Exp. Biol. Med. 183(2), 250–256 (1986).
  • Shin KO, Moritani T. Alterations of autonomic nervous activity and energy metabolism by capsaicin ingestion during aerobic exercise in healthy men. J. Nutr. Sci. Vitaminol. 53(2), 124–132 (2007).
  • Wahlqvist ML, Wattanapenpaiboon N. Hot foods – unexpected help with energy balance? Lancet 358(9279), 348–349 (2001).
  • Ahuja KD, Robertson IK, Geraghty DP, Ball MJ. Effects of chili consumption on postprandial glucose, insulin, and energy metabolism. Am. J. Clin. Nutr. 84(1), 63–69 (2006).
  • Inoue N, Matsunaga Y, Satoh H, Takahashi M. Enhanced energy expenditure and fat oxidation in humans with high BMI scores by the ingestion of novel and non-pungent capsaicin analogues (capsinoids). Biosci. Biotechnol. Biochem. 71(2), 380–389 (2007).
  • Snitker S, Fujishima Y, Shen H et al. Effects of novel capsinoid treatment on fatness and energy metabolism in humans: possible pharmacogenetic implications. Am. J. Clin. Nutr. 89(1), 45–50 (2009).
  • Suri A, Szallasi A. The emerging role of TRPV1 in diabetes and obesity. Trends Pharmacol. Sci. 29(1), 29–36 (2008).
  • Yoneshiro T, Aita S, Kawai Y, Iwanaga T, Saito M. Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. Am. J. Clin. Nutr. 95(4), 845–850 (2012).
  • Kawada T, Hagihara K, Iwai K. Effects of capsaicin on lipid metabolism in rats fed a high fat diet. J. Nutr. 116(7), 1272–1278 (1986).
  • Kim KM, Kawada T, Ishihara K, Inoue K, Fushiki T. Increase in swimming endurance capacity of mice by capsaicin-induced adrenal catecholamine secretion. Biosci. Biotechnol. Biochem. 61(10), 1718–1723 (1997).
  • Zhu Z, Luo Z, Ma S, Liu D. TRP channels and their implications in metabolic diseases. Pflugers Arch. 461(2), 211–223 (2011).
  • Zhang LL, Yan Liu D, Ma LQ et al. Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ. Res. 100(7), 1063–1070 (2007).
  • Joo JI, Kim DH, Choi JW, Yun JW. Proteomic analysis for antiobesity potential of capsaicin on white adipose tissue in rats fed with a high fat diet. J. Proteome Res. 9(6), 2977–2987 (2010).
  • Marshall NJ, Liang L, Bodkin J et al. A role for TRPV1 in influencing the onset of cardiovascular disease in obesity. Hypertension 61(1), 246–252 (2013).
  • Hsu CL, Yen GC. Effects of capsaicin on induction of apoptosis and inhibition of adipogenesis in 3T3-L1 cells. J. Agric. Food Chem. 55(5), 1730–1736 (2007).
  • Hwang JT, Park IJ, Shin JI et al. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem. Biophys. Res. Commun. 338(2), 694–699 (2005).
  • Masuda Y, Haramizu S, Oki K et al. Upregulation of uncoupling proteins by oral administration of capsiate, a nonpungent capsaicin analog. J. Appl. Physiol. 95(6), 2408–2415 (2003).
  • Melnyk A, Himms-Hagen J. Resistance to aging-associated obesity in capsaicin-desensitized rats one year after treatment. Obes. Res. 3(4), 337–344 (1995).
  • Cui J, Himms-Hagen J. Long-term decrease in body fat and in brown adipose tissue in capsaicin-desensitized rats. Am. J. Physiol. 262(4 Pt 2), R568–R573 (1992).
  • Motter AL, Ahern GP. TRPV1-null mice are protected from diet-induced obesity. FEBS Lett. 582(15), 2257–2262 (2008).
  • Bratz IN, Dick GM, Tune JD et al. Impaired capsaicin-induced relaxation of coronary arteries in a porcine model of the metabolic syndrome. Am. J. Physiol. Heart Circ. Physiol. 294(6), H2489–H2496 (2008).
  • Wang X, Miyares RL, Ahern GP. Oleoylethanolamide excites vagal sensory neurones, induces visceral pain and reduces short-term food intake in mice via capsaicin receptor TRPV1. J. Physiol. (Lond.) 564(Pt 2), 541–547 (2005).
  • Luo XJ, Peng J, Li YJ. Recent advances in the study on capsaicinoids and capsinoids. Eur. J. Pharmacol. 650(1), 1–7 (2011).
  • Reinbach HC, Smeets A, Martinussen T, Møller P, Westerterp-Plantenga MS. Effects of capsaicin, green tea and CH-19 sweet pepper on appetite and energy intake in humans in negative and positive energy balance. Clin. Nutr. 28(3), 260–265 (2009).
  • Faraut B, Giannesini B, Matarazzo V et al. Capsiate administration results in an uncoupling protein-3 downregulation, an enhanced muscle oxidative capacity and a decreased abdominal fat content in vivo. Int. J. Obes. (Lond.) 33(12), 1348–1355 (2009).
  • Kawabata F, Inoue N, Masamoto Y et al. Non-pungent capsaicin analogs (capsinoids) increase metabolic rate and enhance thermogenesis via gastrointestinal TRPV1 in mice. Biosci. Biotechnol. Biochem. 73(12), 2690–2697 (2009).
  • Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat. Cell Biol. 2(10), 695–702 (2000).
  • Watanabe H, Davis JB, Smart D et al. Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J. Biol. Chem. 277(16), 13569–13577 (2002).
  • Suzuki M, Mizuno A, Kodaira K, Imai M. Impaired pressure sensation in mice lacking TRPV4. J. Biol. Chem. 278(25), 22664–22668 (2003).
  • Cohen DM. TRPV4 and the mammalian kidney. Pflugers Arch. 451(1), 168–175 (2005).
  • Nilius B, Droogmans G, Wondergem R. Transient receptor potential channels in endothelium: solving the calcium entry puzzle? Endothelium 10(1), 5–15 (2003).
  • Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424(6947), 434–438 (2003).
  • Kusudo T, Wang Z, Mizuno A, Suzuki M, Yamashita H. TRPV4 deficiency increases skeletal muscle metabolic capacity and resistance against diet-induced obesity. J. Appl. Physiol. 112(7), 1223–1232 (2012).
  • Liu DY, Scholze A, Kreutz R et al. Monocytes from spontaneously hypertensive rats show increased store-operated and second messenger-operated calcium influx mediated by transient receptor potential canonical Type 3 channels. Am. J. Hypertens. 20(10), 1111–1118 (2007).
  • Liu D, Yang D, He H et al. Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats. Hypertension 53(1), 70–76 (2009).
  • Adebiyi A, Thomas-Gatewood CM, Leo MD, Kidd MW, Neeb ZP, Jaggar JH. An elevation in physical coupling of type 1 inositol 1,4,5-trisphosphate (IP3) receptors to transient receptor potential 3 (TRPC3) channels constricts mesenteric arteries in genetic hypertension. Hypertension 60(5), 1213–1219 (2012).
  • McKemy DD, Neuhausser WM, Julius D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416(6876), 52–58 (2002).
  • Peier AM, Reeve AJ, Andersson DA et al. A heat-sensitive TRP channel expressed in keratinocytes. Science 296(5575), 2046–2049 (2002).
  • Vanden Abeele F, Zholos A, Bidaux G et al. Ca2+-independent phospholipase A2-dependent gating of TRPM8 by lysophospholipids. J. Biol. Chem. 281(52), 40174–40182 (2006).
  • Ma S, Yu H, Zhao Z et al. Activation of the cold-sensing TRPM8 channel triggers UCP1-dependent thermogenesis and prevents obesity. J. Mol. Cell Biol. 4(2), 88–96 (2012).
  • Tajino K, Hosokawa H, Maegawa S, Matsumura K, Dhaka A, Kobayashi S. Cooling-sensitive TRPM8 is thermostat of skin temperature against cooling. PLoS ONE 6(3), e17504 (2011).
  • Tajino K, Matsumura K, Kosada K et al. Application of menthol to the skin of whole trunk in mice induces autonomic and behavioral heat-gain responses. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293(5), R2128–R2135 (2007).
  • Bishnoi M, Kondepudi KK, Gupta A et al. Expression of multiple transient receptor potential channel genes in murine 3T3-L1 cell lines and adipose tissue. Pharmacol. Rep. (2013) (In Press).
  • Fu Y, Luo N, Klein RL, Garvey WT. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J. Lipid Res. 46(7), 1369–1379 (2005).
  • Larsson KP, Peltonen HM, Bart G et al. Orexin-A-induced Ca2+ entry: evidence for involvement of trpc channels and protein kinase C regulation. J. Biol. Chem. 280(3), 1771–1781 (2005).
  • Näsman J, Bart G, Larsson K, Louhivuori L, Peltonen H, Akerman KE. The orexin OX1 receptor regulates Ca2+ entry via diacylglycerol-activated channels in differentiated neuroblastoma cells. J. Neurosci. 26(42), 10658–10666 (2006).
  • Poteser M, Graziani A, Eder P et al. Identification of a rare subset of adipose tissue-resident progenitor cells, which express CD133 and TRPC3 as a VEGF-regulated Ca2+ entry channel. FEBS Lett. 582(18), 2696–2702 (2008).
  • Watanabe T, Iwasaki Y, Kobata K et al. Food components activating TRPA1. In: Recent Researches in Modern Medicine. 460–462 (2011).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.