545
Views
95
CrossRef citations to date
0
Altmetric
Review

Update on the pathophysiology of liver fibrosis

&
Pages 459-472 | Published online: 10 Jan 2014

References

  • Poynard T, Bedossa P, Opolon P. Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups. Lancet349, 825–832 (1997).
  • Pinzani M, Rombouts K. Liver fibrosis: from the bench to clinical targets. Dig. Liver Dis.36, 231–242 (2004).
  • Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology134, 1655–1669 (2008).
  • Bataller R, Brenner DA. Liver fibrosis. J. Clin. Invest.115(2), 209–218 (2005).
  • Wynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J. Clin. Invest.117, 524–529 (2007).
  • Wake K. Perisinusoidal stellate cells (fat-storing cells, interstitial cells, lipocytes), their related structure in and around the liver sinusoids, and vitamin A-storing cells in extrahepatic organs. Int. Rev. Cytol.66, 303–353 (1980).
  • Schuppan D, Ruehl M, Somasundaram R, Hahn EG. Matrix as a modulator of hepatic fibrogenesis. Semin. Liver Dis.21, 351–372 (2001).
  • Cassiman D, Roskams T. Beauty is in the eye of the beholder: emerging concepts and pitfalls in hepatic stellate cell research. J. Hepatol.37, 527–535 (2002).
  • Bucala R, Spiegel LA, Chesney J, Hogan M, Cerami A. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Mol. Med.1, 71–81 (1994).
  • Quan TE, Cowper SE, Bucala R. The role of circulating fibrocytes in fibrosis. Curr. Rheumatol. Rep.8, 145–150 (2006).
  • Brittan M, Hunt T, Jeffery R et al. Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colon. Gut50, 752–757 (2002).
  • Russo FP, Alison MR, Bigger BW et al. The bone marrow functionally contributes to liver fibrosis. Gastroenterology130, 1807–1821 (2006).
  • Kisseleva T, Uchinami H, Feirt N et al. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J. Hepatol.45, 429–438 (2006).
  • Kalluri R, Neilson EG. Epithelial–mesenchymal transition and its implications for fibrosis. J. Clin. Invest.112, 1776–1784 (2003).
  • Willis BC, du Bois RM, Borok Z. Epithelial origin of myofibroblasts during fibrosis in the lung. Proc. Am. Thorac. Soc.3, 377–382 (2006).
  • Zeisberg EM, Tarnavski O, Zeisberg M et al. Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat. Med.13, 952–961 (2007).
  • Choi SS, Diehl AM. Epithelial-to-mesenchymal transition in the liver. Hepatology50, 2007–2013 (2009).
  • Zeisberg M, Yang C, Martino M et al. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J. Biol. Chem.282, 23337–23347 (2007).
  • Kaimori A, Potter J, Kaimori JY, Wang C, Mezey E, Koteish A. Transforming growth factor-β1 induces an epithelial-to-mesenchymal transition state in mouse hepatocytes in vitro. J. Biol. Chem.282, 22089–22101 (2007).
  • Omenetti A, Yang L, Li YX et al. Hedgehog-mediated mesenchymal–epithelial interactions modulate hepatic response to bile duct ligation. Lab. Invest.87, 499–514 (2007).
  • Omenetti A, Porrello A, Jung Y et al. Hedgehog signaling regulates epithelial–mesenchymal transition during biliary fibrosis in rodents and humans. J. Clin. Invest.118, 3331–3342 (2008).
  • Rygiel KA, Robertson H, Marshall HL et al. Epithelial–mesenchymal transition contributes to portal tract fibrogenesis during human chronic liver disease. Lab. Invest.88, 112–123 (2008).
  • Taura K, Miura K, Iwaisako K et al. Hepatocytes do not undergo epithelial–mesenchymal transition in liver fibrosis in mice. Hepatology51, 1027–1036 (2009).
  • Kumar V, Abbas AK, Fausto N. Tissue renewal and repair: regeneration, healing, and fibrosis. In: Pathologic Basis of Disease. Kumar V, Abbas AK, Fausto N (Eds). Elsevier Saunders, PA, USA, 87–118 (2005).
  • Wynn TA. Cellular and molecular mechanisms of fibrosis. J. Pathol.214, 199–210 (2008).
  • Calvaruso V, Maimone S, Gatt A et al. Coagulation and fibrosis in chronic liver disease. Gut57, 1722–1727 (2008).
  • Marra F. Chemokines in liver inflammation and fibrosis. Front. Biosci.7, d1899–d1914 (2002).
  • Karlmark KR, Wasmuth HE, Trautwein C, Tacke F. Chemokine-directed immune cell infiltration in acute and chronic liver disease. Expert Rev. Gastroenterol. Hepatol.2(2), 233–242 (2008).
  • Bataller R, Schwabe RF, Choi YH et al. NADPH oxidase signal transduces angiotensin II in hepatic stellate cells and is critical in hepatic fibrosis. J. Clin. Invest.112, 1383–1394 (2003).
  • Oakley F, Teoh V, Ching-A-Sue G et al. Angiotensin II activates ikb kinase phosphorylation of RelA at Ser(536) to promote myofibroblast survival and liver fibrosis. Gastroenterology136, 2334–2344 (2009).
  • Pinzani M. Unraveling the spider web of hepatic stellate cell apoptosis. Gastroenterology136, 2061–2063 (2009).
  • Novo E, Marra F, Zamara E et al. Overexpression of Bcl-2 by activated human hepatic stellate cells: resistance to apoptosis as a mechanism of progressive hepatic fibrogenesis in humans. Gut55, 1174–1182 (2006).
  • Moreno M, Gonzalo T, Kok RJ et al. Reduction of advanced liver fibrosis by short-term targeted delivery of an angiotensin receptor blocker to hepatic stellate cells in rats. Hepatology51(3), 942–952 (2010).
  • Novo E, Parola M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair1, 5 (2008).
  • Chang CY, Argo CK, Al-Osaimi AM, Caldwell SH. Therapy of NAFLD: antioxidants and cytoprotective agents. J. Clin. Gastroenterol.40, S51–S60 (2006).
  • De Alwis NMW, Day CP. Non-alcoholic fatty liver: the mist gradually clear. J. Hepatol.48, S105–S112 (2008).
  • Sokol RJ, McKim JM Jr, Goff MC et al. Vitamin E reduces oxidant injury to mitochondria and the hepatotoxicity of taurochenodeoxycholic acid in the rat. Gastroenterology114(1), 164–174 (1998).
  • Sokol RJ, Dahl R, Devereaux MW, Yerushalmi B, Kobak GE, Gumpricht E. Human hepatic mitochondria generate reactive oxygen species and undergo the permeability transition in response to hydrophobic bile acids. J. Pediatr. Gastroenterol. Nutr.41(2), 235–243 (2005).
  • Serviddio G, Pereda J, Pallardó FV et al. Ursodeoxycholic acid protects against secondary biliary cirrhosis in rats by preventing mitochondrial oxidative stress. Hepatology39(3), 711–720 (2004).
  • Mitchell C, Robin MA, Mayeuf A et al. Protection against hepatocyte mitochondrial dysfunction delays fibrosis progression in mice. Am J. Pathol.175(5), 1929–1937 (2009).
  • Sanyal AJ, Chalasani N, Kowdley KV. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med.362(18), 1675–1685 (2010).
  • Arseneau KO, Tamagawa H, Pizarro TT, Cominelli F. Innate and adaptive immune responses related to IBD pathogenesis. Curr. Gastroenterol. Rep.9, 508–512 (2007).
  • Meneghin MD, Hogaboam C. Infectious disease, the innate immune response, and fibrosis. J. Clin. Invest.117, 530–538 (2007).
  • Akira S, Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol.4(7), 499–511 (2004).
  • Otte JM, Rosenberg IM, Podolsky DK. Intestinal myofibroblasts in innate immune responses of the intestine. Gastroenterology124(7), 1866–1878 (2003).
  • Coelho AL, Hogaboam CM, Kunkel SL. Chemokines provide the sustained inflammatory bridge between innate and acquired immunity. Cytokine Growth Factor Rev.16, 553–560 (2005).
  • Brun P, Castagliuolo I, Pinzani M, Palu G, Martines D. Exposure to bacterial cell wall products triggers an inflammatory phenotype in hepatic stellate cells. Am. J. Physiol. Gastrointest. Liver Physiol.289, G571–G578 (2005).
  • Brun P, Castagliuolo I, Di Leo V et al. Increased intestinal permeability in obese mice: new evidences in the pathogenesis of nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol.292, G518–G525 (2007).
  • Seki E, Brenner DA. Toll-like receptors and adaptor molecules in liver disease: update. Hepatology48, 322–335 (2008).
  • Seki E, De Minicis S, Osterreicher CH et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat. Med.13, 1324–1332 (2007).
  • Huang H, Shiffman ML, Friedman S et al. A 7 gene signature identifies the risk of developing cirrhosis in patients with chronic hepatitis C. Hepatology46, 297–306 (2007).
  • Li Y, Chang M, Abar O et al. Multiple variants in toll-like receptor 4 gene modulate risk of liver fibrosis in Caucasians with chronic hepatitis C infection. J. Hepatol.51, 750–757 (2009).
  • Watanabe A, Hashmi A, Gomes DA et al. Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via toll like receptor 9. Hepatology46, 1509–1518 (2007).
  • Gabele E, Muhlbauer M, Dorn C et al. Role of TLR9 in hepatic stellate cells and experimental liver fibrosis. Biochem. Biophys. Res. Commun.376, 271–276 (2008).
  • Miura K, Kodama Y, Inokuchi S et al. Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1b in mice. Gastroenterology DOI: 10.1053/j.gastro.2010.03.052 (2010) (Epub ahead of print).
  • Mencin A, Kluwe J, Schwabe RF. Toll-like receptors as targets in chronic liver diseases. Gut58, 704–720 (2009).
  • Gao B, Radaeva S, Park O. Liver natural killer and natural killer T cells: immunobiology and emerging roles in liver diseases. J. Leukoc. Biol.86(3), 513–528 (2009).
  • Jeong WI, Park O, Radaeva S, Gao B. STAT1 inhibits liver fibrosis in mice by inhibiting stellate cell proliferation and stimulating NK cell cytotoxicity. Hepatology44(6), 1441–1451 (2006).
  • Melhem A, Muhanna N, Bishara A et al. Anti-fibrotic activity of NK cells in experimental liver injury through killing of activated HSC. J. Hepatol.45(1), 60–71 (2006).
  • Jeong WI, Park O, Gao B. Abrogation of the antifibrotic effects of natural killer cells/interferon-g contributes to alcohol acceleration of liver fibrosis. Gastroenterology134(1), 248–258 (2008).
  • Radaeva S, Sun R, Jaruga B, Nguyen VT, Tian Z, Gao B. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology130(2), 435–452 (2006).
  • Chen Y, Wei H, Sun R, Dong Z, Zhang J, Tian Z. Increased susceptibility to liver injury in hepatitis B virus transgenic mice involves NKG2D–ligand interaction and natural killer cells. Hepatology46(3), 706–715 (2007).
  • Safadi R, Zigmond E, Pappo O, Shalev Z, Ilan Y. Amelioration of hepatic fibrosis via β-glucosylceramide mediated immune modulation is associated with altered CD8 and NKT lymphocyte distribution. Int. Immunol.19, 1021–1029 (2007).
  • Kimura K, Nagaki M, Matsuura T, Moriwaki H, Kakimi K. Pathological role of CD44 on NKT cells in carbon tetrachloride-mediated liver injury. Hepatol. Res.39, 93–105 (2009).
  • Park O, Jeong WI, Wang L et al. Diverse roles of invariant natural killer T cells in liver injury and fibrosis induced by carbon tetrachloride. Hepatology49, 1683–1694 (2009).
  • Connolly MK, Bedrosian AS, Mallen-St Clair J et al. In liver fibrosis, dendritic cells govern hepatic inflammation in mice via TNF-a. J. Clin. Invest.119(11), 3213–3225 (2009).
  • Bataller R, Paik YH, Lindquist JN, Lemasters JJ, Brenner DA. Hepatitis C virus core and nonstructural proteins induce fibrogenic effects in hepatic stellate cells. Gastroenterology126(2), 529–540 (2004).
  • Mazzocca A, Sciammetta SC, Carloni V et al. Binding of hepatitis C virus envelope protein E2 to CD81 up-regulates matrix metalloproteinase-2 in human hepatic stellate cells. J. Biol. Chem.280(12), 11329–11339 (2005).
  • Bruno R, Galastri S, Sacchi P et al. The HIV envelope protein GP120 modulates the biology of human hepatic stellate cells: a link between HIV infection and liver fibrogenesis. Gut59(4), 513–520 (2010).
  • Tilg H, Hotamisligil GS. Nonalcoholic fatty liver disease: cytokine–adipokine interplay and regulation of insulin resistance. Gastroenterology131, 934–945 (2006).
  • Marra F, Aleffi S, Bertolani C, Petrai I, Vizzutti F. Adipokines and liver fibrosis. Eur. Rev. Med. Pharmacol. Sci.9(5), 279–284 (2005).
  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature372, 425–432 (1994).
  • Potter JJ, Womack L, Mezey E, Anania FA. Transdifferentiation of rat hepatic stellate cells results in leptin expression. Biochem. Biophys. Res. Commun.244, 178–182 (1998).
  • Ikejima K, Honda H, Yoshikawa M et al. Leptin augments inflammatory and profibrogenic responses in the murine liver induced by hepatotoxic chemicals. Hepatology34, 288–297 (2001).
  • Honda H, Ikejima K, Hirose M et al. Leptin is required for fibrogenic responses induced by thioacetamide in the murine liver. Hepatology36, 12–21 (2002).
  • Saxena NK, Ikeda K, Rockey DC, Friedman SL, Anania FA. Leptin in hepatic fibrosis: evidence for increased collagen production in stellate cells and lean littermates of ob/ob mice. Hepatology35, 762–771 (2002).
  • Ding X, Saxena NK, Lin S, Xu A, Srinivasan S, Anania FA. The roles of leptin and adiponectin: a novel paradigm in adipocytokine regulation of liver fibrosis and stellate cell biology. Am J. Pathol.166, 1655–1669 (2005).
  • Leclercq IA, Farrell GC, Schriemer R, Robertson GR. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J. Hepatol.37, 206–213 (2002).
  • Potter JJ, Mezey E. Leptin deficiency reduces but does not eliminate the development of hepatic fibrosis in mice infected with Schistosoma mansoni. Liver22, 173–177 (2002).
  • Bugianesi E, Manzini P, D’Antico S et al. Relative contribution of iron burden, HFE mutations, and insulin resistance to fibrosis in nonalcoholic fatty liver. Hepatology39, 179–187 (2004).
  • Adams LA, Sanderson S, Lindor KD, Angulo P. The histological course of nonalcoholic fatty liver disease: a longitudinal study of 103 patients with sequential liver biopsies. J. Hepatol.42, 132–138 (2005).
  • Steppan CM, Bailey ST, Bhat S et al. The hormone resistin links obesity to diabetes. Nature409, 307–312 (2001).
  • Bertolani C, Sancho-Bru P, Failli P et al. Resistin as an intrahepatic cytokine: overexpression during chronic injury and induction of proinflammatory actions in hepatic stellate cells. Am J. Pathol.169(6), 2042–2053 (2006).
  • Matsuzawa Y. Therapy insight: adipocytokines in metabolic syndrome and related cardiovascular disease. Nat. Clin. Pract. Cardiovasc. Med.3, 35–42 (2006).
  • Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ. The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J. Clin. Invest.112, 91–100 (2003).
  • Kamada Y, Tamura S, Kiso S et al. Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin. Gastroenterology125, 1796–1807 (2003).
  • Yamauchi T, Kamon J, Minokoshi Y et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med.8, 1288–1295 (2002).
  • Hardie DG. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status. Endocrinology144, 5179–5183 (2003).
  • Caligiuri A, Bertolani C, Guerra CT et al. Adenosine monophosphate-activated protein kinase modulates the activated phenotype of hepatic stellate cells. Hepatology47(2), 668–676 (2008).
  • Caraceni P, Domenicali M, Giannone F, Bernardi M. The role of the endocannabinoid system in liver diseases. Best Pract. Res. Clin. Endocrinol. Metab.23(1), 65–77 (2009).
  • Parfieniuk A, Flisiak R. Role of cannabinoids in chronic liver diseases. World J. Gastroenterol.14(40), 6109–6114 (2008).
  • Siegmund SV, Shwabe RF. Endocannabinoids in the pathogenesis and treatment of liver fibrosis. Am. J. Physiol. Gastrointest. Liver Physiol.294, G357–G362 (2008).
  • Teixeira-Clerc F, Julien B, Grenard P et al. CB1 cannabinoid receptor antagonism: a new strategy for the treatment of liver fibrosis. Nat. Med.12, 671–676 (2006).
  • Julien B, Grenard P, Texeira-Clerc F et al. Antifibrogenic role of the cannabinoid receptor CB2 in the liver. Gastroenterology128, 742–755 (2005).
  • Munoz-Luque J, Ros J, Fernandez-Varo G et al. Regression of fibrosis after chronic stimulation of cannabinoid CB2 receptor in cirrhotic rats. J. Pharmacol. Exp. Ther.324, 475–483 (2008).
  • Hézode C, Zafrani ES, Roudot-Thoraval F et al. Daily cannabis use: a novel risk factor of steatosis severity in patients with chronic hepatitis C. Gastroenterology134(2), 432–439 (2008).
  • Duffield JS, Forbes SJ, Constandinou CM et al. Selective depletion of macrophages reveals distinct, opposing roles during liver injury and repair. J. Clin. Invest.115, 56–65 (2005).
  • Fallowfield JA, Mizuno M, Kendall TJ et al. Scar-associated macrophages are a major source of hepatic matrix metalloproteinase-13 and facilitate the resolution of murine hepatic fibrosis. J. Immunol.178, 5288–5295 (2007).
  • Mitchell C, Couton D, Couty JP et al. Dual role of CCR2 in the constitution and the resolution of liver fibrosis in mice. Am. J. Pathol.174, 1766–1775 (2009).
  • Pesce JT, Ramalingam TR, Mentink-Kane MM et al. Arginase-1-expressing macrophages suppress Th2 cytokine-driven inflammation and fibrosis. PLoS Pathog.5(4), e1000371 (2009).
  • Thompson RW, Pesce JT, Ramalingam T. Cationic amino acid transporter-2 regulates immunity by modulating arginase activity. PLoS Pathog.4(3), e1000023 (2008).
  • Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med.6, 389–395 (2000).
  • Medina J, Arroyo AG, Sanchez-Madrid F, Moreno-Otero R. Angiogenesis in chronic inflammatory liver disease. Hepatology39, 1185–1195 (2004).
  • Cassiman D, Libbrecht L, Desmet V, Denef C, Roskams T. Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers. J. Hepatol.36, 200–209 (2002).
  • Corpechot C, Barbu V, Wendum D et al. Hypoxia-induced VEGF and collagen I expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology35, 1010–1021 (2002).
  • Yoshiji H, Kuriyama S, Yoshii J et al. Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis. Gut52, 1347–1354 (2003).
  • Medina J, Caveda L, Sanz-Cameno P et al. Hepatocyte growth factor activates endothelial pro-angiogenic mechanisms relevant in chronic hepatitis C-associated neoangiogenesis. J. Hepatol.38, 660–667 (2003).
  • Shimoda K, Mori M, Shibuta K, Banner B, Barnard G. Vascular endothelial growth factor/vascular permeability factor mRNA expression in patients with chronic hepatitis C and hepatocellular carcinoma. Int. J. Oncol.14, 353–359 (1999).
  • Medina J, Sanz-Cameno P, Garcia-Buey L, Martin-Vilchez S, Lopez-Cabrera M, Moreno-Otero R. Evidence of angiogenesis in primary biliary cirrhosis: an immunohistochemical descriptive study. J. Hepatol.42, 124–131 (2005).
  • DeLeve LD, Wang X, Hu L, McCuskey MK, McCuskey RS. Rat liver sinusoidal endothelial cell phenotype is maintained by paracrine and autocrine regulation. Am. J. Physiol. Gastrointest. Liver Physiol.287, G757–G763 (2004).
  • Novo E, Cannito S, Zamara E et al. Proangiogenic cytokines as hypoxia-dependent factors stimulating migration of human hepatic stellate cells. Am. J. Pathol.170(6), 1942–1953 (2007).
  • Aleffi S, Petrai I, Bertolani C et al. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology42, 1339–1348 (2005).
  • Ricard-Blum S, Bresson-Hadni S, Vuitton DA, Ville G, Grimaud JA. Hydroxypyridinium collagen cross-links in human liver fibrosis: study of alveolar echinococcosis. Hepatology15, 599–602 (1992).
  • Hayasaka A, Ilda S, Suzuki N, Kondo F, Miyazaki M, Yonemitsu H. Pyridinoline collagen cross-links in patients with chronic viral hepatitis and cirrhosis. J. Hepatol.24, 692–698 (1996).
  • Issa R, Zhou X, Constandinou CM et al. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology126, 1795–1808 (2004).
  • Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J. Clin. Invest.117(3), 539–548 (2007).
  • Mallet V, Gilgenkrantz H, Serpaggi J et al. Brief communication: the relationship of regression of cirrhosis to outcome in chronic hepatitis C. Ann. Intern. Med.149(6), 399–403 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.