354
Views
49
CrossRef citations to date
0
Altmetric
Review

Microsatellite instability in the management of colorectal cancer

&
Pages 385-399 | Published online: 10 Jan 2014

References

  • Evaluation of Genomic Applications in Practice and Prevention (EGAPP) Working Group. Recommendations from the EGAPP Working Group: genetic testing strategies in newly diagnosed individuals with colorectal cancer aimed at reducing morbidity and mortality from Lynch syndrome in relatives. Genet. Med.11(1), 35–41 (2009).
  • Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology138(6), 2073–2087 (2010).
  • Lynch HT, Lynch PM, Lanspa SJ, Snyder CL, Lynch JF, Bland CR. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin. Genet.76(1), 1–18 (2006).
  • Imai K, Yamamoto H. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis29(4), 673–680 (2009).
  • Wang L, Cunningham JM, Winters JL et al. BRAF mutations in colon cancer are not likely attributable to defective DNA mismatch repair. Cancer Res.63(17), 5209–5212 (2003).
  • Svrcek M, El-Bchiri J, Chalastanis A et al. Specific clinical and biological features characterize inflammatory bowel disease associated colorectal cancers showing microsatellite instability. J. Clin. Oncol.25(27), 4231–4238 (2007).
  • Prolla TA, Pang Q, Alani E, Kolodner RD, Liskay RM. MLH1, PMS1, and MSH2 interactions during the initiation of DNA mismatch repair in yeast. Science265(5175), 1091–1093 (1994).
  • Fishel R, Ewel A, Lee S, Lescoe MK, Griffith J. Binding of mismatched microsatellite DNA sequences by the human MSH2 protein. Science266(5189), 1403–1405 (1994).
  • Kadyrov FA, Dzantiev L, Constantin N, Modrich P. Endonucleolytic function of MutLα in human mismatch repair. Cell126(2), 297–308 (2006).
  • Duval A, Hamelin R. Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res.62(9), 2447–2454 (2002).
  • Markowitz S, Wang J, Myeroff L et al. Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science268(5215), 1336–1338 (1995).
  • Rampino N, Yamamoto H, Ionov Y et al. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science275(5302), 967–969 (1997).
  • Sammalkorpi H, Alhopuro P, Lehtonen R et al. Background mutation frequency in microsatellite-unstable colorectal cancer. Cancer Res.67(12), 5691–5698 (2007).
  • Boland CR, Thibodeau SN, Hamilton SR et al. A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res.58(22), 5248–5257 (1998).
  • Perucho M. Correspondence re: C.R. Boland et al., A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res.,58: 5248–5257, 1998. Cancer Res.59(1), 249–256 (1999).
  • Loukola A, Eklin K, Laiho P et al. Microsatellite marker analysis in screening for hereditary nonpolyposis colorectal cancer (HNPCC). Cancer Res.61(11), 4545–4549 (2001).
  • Laiho P, Launonen V, Lahermo P et al. Low-level microsatellite instability in most colorectal carcinomas. Cancer Res.62(4), 1166–1170 (2002).
  • Suraweera N, Duval A, Reperant M et al. Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology123(6), 1804–1811 (2002).
  • Samowitz WS, Slattery ML, Potter JD, Leppert MF. BAT-26 and BAT-40 instability in colorectal adenomas and carcinomas and germline polymorphisms. Am. J. Pathol.154(6), 1637–1641 (1999).
  • Pyatt R, Chadwick RB, Johnson CK et al. Polymorphic variation at the BAT-25 and BAT-26 loci in individuals of African origin. Implications for microsatellite instability testing. Am. J. Pathol.155(2), 349–353 (1999).
  • Umar A, Boland CR, Terdiman JP et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J. Natl Cancer Inst.96(4), 261–268 (2004).
  • Bacher JW, Flanagan LA, Smalley RL et al. Development of a fluorescent multiplex assay for detection of MSI-high tumors. Dis. Markers20(4–5), 237–250 (2004).
  • Xicola RM, Llor X, Pons E et al. Performance of different microsatellite marker panels for detection of mismatch repair-deficient colorectal tumors. J. Natl. Cancer Inst.99(3), 244–252 (2007).
  • Malesci A, Laghi L, Bianchi P et al. Reduced likelihood of metastases in patients with microsatellite-unstable colorectal cancer. Clin. Cancer Res.13(13), 3831–3839 (2007).
  • Hatch SB, Lightfoot HM, Garwacki CP et al. Microsatellite instability testing in colorectal carcinoma: choice of markers affects sensitivity of detection of mismatch repair-deficient tumors. Clin. Cancer Res.11(6), 2180–2187 (2005).
  • Laghi L, Bianchi P, Malesci A. Differences and evolution of the methods for the assessment of microsatellite instability. Oncogene27(49), 6313–6321 (2008).
  • Findeisen P, Kloor M, Merx S et al. T25 repeat in the 3´ untranslated region of the CASP2 gene: a sensitive and specific marker for microsatellite instability in colorectal cancer. Cancer Res.65(18), 8072–8078 (2005).
  • Bianchi F, Galizia E, Catalani R et al. CAT25 is a mononucleotide marker to identify HNPCC patients. J. Mol. Diagn.11(3), 248–252 (2009).
  • Shia J. Immunohistochemistry versus microsatellite instability testing for screening colorectal cancer patients at risk for hereditary nonpolyposis colorectal cancer syndrome: part I. The utility of immunohistochemistry. J. Mol. Diagn.10(4), 293–300 (2008).
  • De Jong AE, Van Puijenbroek M, Hendriks Y et al. Microsatellite instability, immunohistochemistry, and additional PMS2 staining in suspected hereditary nonpolyposis colorectal cancer. Clin. Cancer Res.10(3), 972–980 (2004).
  • Palomaki GE, McClain MR, Melillo S, Hampel HL, Thibodeau SN. EGAPP supplementary evidence review: DNA testing strategies aimed at reducing morbidity and mortality from Lynch syndrome. Genet. Med.11(1), 42–65 (2009).
  • Bessa X, Ballesté B, Andreu M et al. A prospective, multicenter, population based study of BRAF mutational analysis for Lynch syndrome screening. Clin. Gastroenterol. Hepatol.6(2), 206–214 (2008).
  • Deng G, Bell I, Crawley S et al. BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clin. Cancer Res.10(1), 191–195 (2004).
  • Domingo E, Niessen RC, Oliveira C et al. BRAF-V600E is not involved in the colorectal tumorigenesis of HNPCC in patients with functional MLH1 and MSH2 genes. Oncogene24(24), 3995–3998 (2005).
  • Vasen HF, Mecklin JP, Khan PM, Lynch HT. The international collaborative group on hereditary non-polyposis colorectal cancer (ICG-HNPCC). Dis. Colon Rectum34(5), 424–425 (1991).
  • Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the international collaborative group on HNPCC. Gastroenterology116(6), 1453–1456 (1999).
  • Rodriguez-Bigas MA, Boland CR, Hamilton SR et al. A National Cancer Institute workshop on hereditary nonpolyposis colorectal cancer syndrome: meeting highlights and Bethesda Guidelines. J. Natl Cancer Inst.89(23), 1758–1762 (1997).
  • Umar A, Boland CR, Terdiman JP et al. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J. Natl Cancer Inst.96(4), 261–268 (2004).
  • Järvinen HJ, Aarnio M, Mustonen H et al. Controlled 15-year trial on screening for colorectal cancer in families with hereditary nonpolyposis colorectal cancer. Gastroenterology118(5), 829–834 (2000).
  • Vasen HF, Möslein G, Alonso A et al. Guidelines for the clinical management of Lynch syndrome (hereditary non-polyposis cancer). J. Med. Genet.44(6), 353–362 (2007).
  • National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Colorectal Cancer Screening. Version 1.2010. National Comprehensive Cancer Network, Rockledge, PA, USA (2009).
  • de Vos tot Nederveen Cappel WH, Nagengast FM, Griffioen G et al. Surveillance for hereditary nonpolyposis colorectal cancer: a long-term study on 114 families. Dis. Colon Rectum45(12), 1588–1594 (2002).
  • Dove-Edwin I, Boks D, Goff S et al. The outcome of endometrial carcinoma surveillance by ultrasound scan in women at risk of hereditary nonpolyposis colorectal carcinoma and familial colorectal carcinoma. Cancer94(6), 1708–1712 (2002).
  • Rijcken FE, Mourits MJ, Kleibeuker JH, Hollema H, van der Zee AG. Gynecologic screening in hereditary nonpolyposis colorectal cancer. Gynecol. Oncol.91(1), 74–80 (2003).
  • Renkonen-Sinisalo L, Bützow R, Leminen A, Lehtovirta P, Mecklin JP, Järvinen HJ. Surveillance for endometrial cancer in hereditary nonpolyposis colorectal cancer syndrome. Int. J. Cancer120(4), 821–824 (2007).
  • Goecke T, Schulmann K, Engel C et al. Genotype-phenotype comparison of German MLH1 and MSH2 mutation carriers clinically affected with Lynch syndrome: a report by the German HNPCC Consortium. J. Clin. Oncol.24(26), 4285–4292 (2006).
  • Vasen HF, Möslein G, Alonso A et al. Recommendations to improve identification of hereditary and familial colorectal cancer in Europe. Fam. Cancer9(2), 109–115 (2010).
  • Lindor NM, Rabe K, Petersen GM et al. Lower cancer incidence in Amsterdam-I criteria families without mismatch repair deficiency: familial colorectal cancer type X. JAMA293(16), 1979–1985 (2005).
  • Llor X, Pons E, Xicola RM et al. Differential features of colorectal cancers fulfilling Amsterdam criteria without involvement of the mutator pathway. Clin. Cancer Res.11(20), 7304–7310 (2005).
  • Barnetson RA, Tenesa A, Farrington SM et al. Identification and survival of carriers of mutations in DNA mismatch-repair genes in colon cancer. N. Engl. J. Med.354, 2751–2763 (2006).
  • Hampel H, Frankel WL, Martin E et al. Screening for the Lynch syndrome (hereditary nonpolyposis colorectal cancer). N. Engl. J. Med.352(18), 1851–1860 (2005).
  • Casey G, Lindor NM, Papadopoulos N et al. Conversion analysis for mutation detection in MLH1 and MSH2 in patients with colorectal cancer. JAMA293(7), 799–809 (2005).
  • Pino MS, Mino-Kenudson M, Wildemore BM et al. Deficient DNA mismatch repair is common in Lynch syndrome-associated colorectal adenomas. J. Mol. Diagn.11(3), 238–247 (2009).
  • Mvundura M, Grosse SD, Hampel H, Palomaki GE. The cost–effectiveness of genetic testing strategies for Lynch syndrome among newly diagnosed patients with colorectal cancer. Genet. Med.12(2), 93–104 (2010).
  • Chen S, Wang W, Lee S et al. Prediction of germline mutations and cancer risk in the Lynch syndrome. JAMA296(12), 1479–1487 (2006).
  • Balmana J, Stockwell DH, Steyerberg EW et al. Prediction of MLH1 and MSH2 mutations in Lynch syndrome. JAMA296(12), 1469–1478 (2006).
  • Barnetson RA, Tenesa A, Farrington SM et al. Identification and survival of carriers of mutations in DNA mismatch-repair genes in colon cancer. N. Engl. J. Med.354(26), 2751–2763 (2006).
  • Pouchet CJ, Wong N, Chong G et al. A comparison of models used to predict MLH1, MSH2 and MSH6 mutation carriers. Ann. Oncol.20(4), 681–688 (2009).
  • Boland CR. Clinical uses of microsatellite instability testing in colorectal cancer: an ongoing challenge. J. Clin. Oncol.25(7), 754–756 (2007).
  • Gryfe R, Kim H, Hsieh ET et al. Tumor microsatellite instability and clinical outcome in young patients with colorectal cancer. N. Engl. J. Med.342(2), 69–77 (2000).
  • Benatti P, Gafà R, Barana D et al. Microsatellite instability and colorectal cancer prognosis. Clin. Cancer Res.11(23), 8332–8340 (2005).
  • Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J. Clin. Oncol.23(3), 609–618 (2005).
  • Koopman M, Kortman GA, Mekenkamp L et al. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br. J. Cancer100(2), 266–273 (2009).
  • Braun MS, Richman SD, Quirke P et al. Predictive biomarkers of chemotherapy efficacy in colorectal cancer: results from the UK MRC FOCUS trial. J. Clin. Oncol.26(16), 2690–2698 (2008).
  • Jover R, Zapater P, Castells A et al. The efficacy of adjuvant chemotherapy with 5-fluorouracil in colorectal cancer depends on the mismatch repair status. Eur. J. Cancer.45(3), 365–373 (2009).
  • Kim GP, Colangelo LH, Wieand HS et al. Prognostic and predictive roles of high-degree microsatellite instability in colon cancer: a National Cancer Institute-National Surgical Adjuvant Breast and Bowel Project Collaborative Study. J. Clin. Oncol.25(7), 767–772 (2007).
  • Klump B, Nehls O, Okech T et al. Molecular lesions in colorectal cancer: impact on prognosis? Original data and review of the literature. Int. J. Colorectal Dis.19(1), 23–42 (2004).
  • Schwitalle Y, Kloor M, Eiermann S et al. Immune response against frameshift-induced neopeptides in HNPCC patients and healthy HNPCC mutation carriers. Gastroenterology134(4), 988–997 (2008).
  • Ogino S, Nosho K, Irahara N et al. Lymphocytic reaction to colorectal cancer is associated with longer survival, independent of lymph node count, microsatellite instability, and CpG island methylator phenotype. Clin. Cancer Res.15(20), 6412–6420 (2009).
  • Nosho K, Baba Y, Tanaka N et al. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J. Pathol.222(4), 350–366 (2010).
  • Pino MS, Kikuchi H, Zeng M et al. Epithelial to mesenchymal transition is impaired in colon cancer cells with microsatellite instability. Gastroenterology138(4), 1406–1417 (2010).
  • Carethers JM, Chauhan DP, Fink D et al. Mismatch repair proficiency and in vitro response to 5-fluorouracil. Gastroenterology117(1), 123–131 (1999).
  • Elsaleh H, Joseph D, Grieu F, Zeps N, Spry N, Iacopetta B. Association of tumour site and sex with survival benefit from adjuvant chemotherapy in colorectal cancer. Lancet355(9217), 1745–1750 (2000).
  • Hemminki A, Mecklin JP, Järvinen H, Aaltonen LA, Joensuu H. Microsatellite instability is a favorable prognostic indicator in patients with colorectal cancer receiving chemotherapy. Gastroenterology119(4), 921–928 (2000).
  • Liang JT, Huang KC, Lai HS et al. High-frequency microsatellite instability predict better chemosensitivity to high-dose 5-fluorouracil plus leucovorin chemotherapy for stage IV sporadic colorectal cancer after palliative bowel resection. Int. J. Cancer.101(6), 519–525 (2002).
  • Ribic CM, Sargent DJ, Moore MJ et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med.349(3), 247–257 (2003).
  • Storojeva I, Boulay JL, Heinimann K et al. Prognostic and predictive relevance of microsatellite instability in colorectal cancer. Oncol. Rep.14(1), 241–249 (2005).
  • Jover R, Zapater P, Castells A et al. Mismatch repair status in the prediction of benefit from adjuvant fluorouracil chemotherapy in colorectal cancer. Gut55(6), 848–855 (2006).
  • Lanza G, Gafà R, Santini A, Maestri I, Guerzoni L, Cavazzini L. Immunohistochemical test for MLH1 and MSH2 expression predicts clinical outcome in stage II and III colorectal cancer patients. J. Clin. Oncol.24(15), 2359–2367 (2006).
  • Lamberti C, Lundin S, Bogdanow M et al. Microsatellite instability did not predict individual survival of unselected patients with colorectal cancer. Int. J. Colorectal Dis.22(2), 145–152 (2007).
  • Des Guetz G, Schischmanoff O, Nicolas P, Perret GY, Morere JF, Uzzan B. Does microsatellite instability predict the efficacy of adjuvant chemotherapy in colorectal cancer? A systematic review with meta-analysis. Eur. J. Cancer.45(10), 1890–1896 (2009).
  • Bertagnolli MM, Niedzwiecki D, Compton CC et al. Microsatellite instability predicts improved response to adjuvant therapy with irinotecan, fluorouracil, and leucovorin in stage III colon cancer: Cancer and Leukemia Group B Protocol 89803. J. Clin. Oncol.27(11), 1814–1821 (2009).
  • Sargent DJ, Marsoni S, Monges G et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J. Clin. Oncol.28(20), 3219–3226 (2010).
  • Koi M, Umar A, Chauhan DP et al. Human chromosome 3 corrects mismatch repair deficiency and microsatellite instability and reduces N-methyl-N’-nitro-N-nitrosoguanidine tolerance in colon tumor cells with homozygous hMLH1 mutation. Cancer Res.54(16), 4308–4312 (1994).
  • Hawn MT, Umar A, Carethers JM et al. Evidence for a connection between the mismatch repair system and the G2 cell cycle checkpoint. Cancer Res.55(17), 3721–3725 (1995).
  • Carethers JM, Hawn MT, Chauhan DP et al. Competency in mismatch repair prohibits clonal expansion of cancer cells treated with N-methyl-N’-nitro-N-nitrosoguanidine. J. Clin. Invest.98(1), 199–206 (1996).
  • Fink D, Nebel S, Aebi S et al. The role of DNA mismatch repair in platinum drug resistance. Cancer Res.56(21), 4881–4886 (1996).
  • Aebi S, Fink D, Gordon R et al. Resistance to cytotoxic drugs in DNA mismatch repair-deficient cells. Clin. Cancer Res.3(10), 1763–1767 (1997).
  • Meyers M, Wagner MW, Hwang HS, Kinsella TJ, Boothman DA. Role of the hMLH1 DNA mismatch repair protein in fluoropyrimidine-mediated cell death and cell cycle responses. Cancer Res.61(13), 5193–5201 (2001).
  • Meyers M, Wagner MW, Mazurek A, Schmutte C, Fishel R, Boothman DA. DNA mismatch repair-dependent response to fluoropyrimidine-generated damage. J. Biol. Chem.280(7), 5516–5526 (2005).
  • Arnold CN, Goel A, Boland CR. Role of hMLH1 promoter hypermethylation in drug resistance to 5-fluorouracil in colorectal cancer cell lines. Int. J. Cancer.106(1), 66–73 (2003).
  • Tajima A, Hess MT, Cabrera BL, Kolodner RD, Carethers JM. The mismatch repair complex hMutS α recognizes 5-fluorouracil-modified DNA: implications for chemosensitivity and resistance. Gastroenterology127(6), 1678–1684 (2004).
  • Vilar E, Scaltriti M, Balmaña J et al. Microsatellite instability due to hMLH1 deficiency is associated with increased cytotoxicity to irinotecan in human colorectal cancer cell lines. Br. J. Cancer.99(10), 1607–1612 (2008).
  • Magrini R, Bhonde MR, Hanski ML et al. Cellular effects of CPT-11 on colon carcinoma cells: dependence on p53 and hMLH1 status. Int. J. Cancer101(1), 23–31 (2002).
  • Jacob S, Aguado M, Fallik D, Praz F. The role of the DNA mismatch repair system in the cytotoxicity of the topoisomerase inhibitors camptothecin and etoposide to human colorectal cancer cells. Cancer Res.61(17), 6555–6562 (2001).
  • Rodriguez R, Hansen LT, Phear G et al. Thymidine selectively enhances growth suppressive effects of camptothecin/irinotecan in MSI+ cells and tumors containing a mutation of MRE11. Clin. Cancer. Res.14(17), 5476–5483 (2008).
  • Saltz LB, Niedzwiecki D, Hollis D et al. Irinotecan fluorouracil plus leucovorin is not superior to fluorouracil plus leucovorin alone as adjuvant treatment for stage III colon cancer: results of CALGB 89803. J. Clin. Oncol.25(23), 3456–3461 (2007).
  • Van Cutsem E, Labianca R, Bodoky G et al. Randomized Phase III trial comparing biweekly infusional fluorouracil/leucovorin alone or with irinotecan in the adjuvant treatment of stage III colon cancer: PETACC-3. J. Clin. Oncol.27(19), 3117–3125 (2009).
  • Fallik D, Borrini F, Boige V et al. Microsatellite instability is a predictive factor of the tumor response to irinotecan in patients with advanced colorectal cancer. Cancer Res.63(18), 5738–5744 (2003).
  • Tejpar S, Bosman F, Delorenzi M et al. Microsatellite instability (MSI) in stage II and III colon cancer treated with 5FU-LV or 5FU-LV and irinotecan (PETACC 3-EORTC 40993-SAKK 60/00 trial) [abstract 4001]. J. Clin. Oncol.27(Suppl. 15), S169 (2009).
  • Quasar Collaborative Group; Gray R, Barnwell J, McConkey C, Hills RK, Williams NS, Kerr DJ. Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet370(9604), 2020–2029 (2007).
  • André T, Boni C, Navarro M et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J. Clin. Oncol.27(19), 3109–3116 (2009).
  • des Guetz G, Mariani P, Cucherousset J et al. Microsatellite instability and sensitivitiy to FOLFOX treatment in metastatic colorectal cancer. Anticancer Res.27(4C), 2715–2719 (2007).
  • Kim ST, Lee J, Park SH et al. Clinical impact of microsatellite instability in colon cancer following adjuvant FOLFOX therapy. Cancer Chemother. Pharmacol.66(4), 659–667 (2010).
  • Kim ST, Lee J, Park SH et al. The effect of DNA mismatch repair (MMR) status on oxaliplatin-based first-line chemotherapy as in recurrent or metastatic colon cancer. Med. Oncol.27(4), 1277–1285 (2010).
  • Zaanan A, Cuilliere-Dartigues P, Guilloux A et al. Impact of p53 expression and microsatellite instability on stage III colon cancer disease-free survival in patients treated by 5-fluorouracil and leucovorin with or without oxaliplatin. Ann. Oncol.21(4), 772–780 (2010).
  • Kaelin WG Jr. The concept of synthetic lethality in the context of anticancer therapy. Nat. Rev. Cancer5(9), 689–698 (2005).
  • Ashworth A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J. Clin. Oncol.26(22), 3785–3790 (2008).
  • Miquel C, Jacob S, Grandjouan S et al. Frequent alteration of DNA damage signalling and repair pathways in human colorectal cancers with microsatellite instability. Oncogene26(40), 5919–5926 (2007).
  • Vilar Sanchez E, Chow A, Raskin L, Iniesta MD, Mukherjee B, Grube SB. Preclinical testing of the PARP inhibitor ABT-888 in microsatellite instable colorectal cancer. J. Clin. Oncol.27(15 Suppl.), Abstract 11028 (2009).
  • Vilar E, Mukherjee B, Kuick R et al. Gene expression patterns in mismatch repair-deficient colorectal cancers highlights the potential therapeutic role of inhibitors of the phosphatidylinositol 3-kinase–AKT–mammalian target of rapamycin pathway. Clin. Cancer Res.15(8), 2829–2839 (2009).
  • Swanton C, Marani M, Pardo O et al. Regulators of mitotic arrest and ceramide metabolism are determinants of sensitivity to paclitaxel and other chemotherapeutic drugs. Cancer Cell11(6), 498–512 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.