354
Views
23
CrossRef citations to date
0
Altmetric
Review

Regulatory T cells in gastrointestinal tumors

&
Pages 489-501 | Published online: 10 Jan 2014

References

  • Wing K, Lindgren S, Kollberg G et al. CD4 T cell activation by myelin oligodendrocyte glycoprotein is suppressed by adult but not cord blood CD25+ T cells. Eur. J. Immunol.33(3), 579–587 (2003).
  • Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol.155(3), 1151–1164 (1995).
  • Gershon RK, Kondo K. Cell interactions in the induction of tolerance: the role of thymic lymphocytes. Immunology18(5), 723–737 (1970).
  • Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA. CD4+CD25high regulatory cells in human peripheral blood. J. Immunol.167(3), 1245–1253 (2001).
  • Wing K, Ekmark A, Karlsson H, Rudin A, Suri-Payer E. Characterization of human CD25+ CD4+ T cells in thymus, cord and adult blood. Immunology106(2), 190–199 (2002).
  • Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol.4(4), 330–336 (2003).
  • Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science299(5609), 1057–1061 (2003).
  • Brunkow ME, Jeffery EW, Hjerrild KA et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet.27(1), 68–73 (2001).
  • Bennett CL, Christie J, Ramsdell F et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3.Nat. Genet.27(1), 20–21 (2001).
  • McHugh RS, Whitters MJ, Piccirillo CA et al. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity16(2), 311–323 (2002).
  • Kanamaru F, Youngnak P, Hashiguchi M et al. Costimulation via glucocorticoid-induced TNF receptor in both conventional and CD25+ regulatory CD4+ T cells. J. Immunol.172(12), 7306–7314 (2004).
  • Wing K, Onishi Y, Prieto-Martin P et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science322(5899), 271–275 (2008).
  • Shimizu J, Yamazaki S, Takahashi T, Ishida Y, Sakaguchi S. Stimulation of CD25(+)CD4(+) regulatory T cells through GITR breaks immunological self-tolerance. Nat. Immunol.3(2), 135–142 (2002).
  • Stephens GL, McHugh RS, Whitters MJ et al. Engagement of glucocorticoid-induced TNFR family-related receptor on effector T cells by its ligand mediates resistance to suppression by CD4+CD25+ T cells. J. Immunol.173(8), 5008–5020 (2004).
  • Tone M, Tone Y, Adams E et al. Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells. Proc. Natl Acad. Sci. USA100(25), 15059–15064 (2003).
  • Cote AL, Zhang P, O’Sullivan JA et al. Stimulation of the glucocorticoid-induced TNF receptor family-related receptor on CD8 T cells induces protective and high-avidity T cell responses to tumor-specific antigens. J. Immunol.186(1), 275–283 (2011).
  • Yamaguchi T, Hirota K, Nagahama K et al. Control of immune responses by antigen-specific regulatory T cells expressing the folate receptor. Immunity27(1), 145–159 (2007).
  • Becher D, Deutscher ME, Simpfendorfer KR et al. Local recall responses in the stomach involving reduced regulation and expanded help mediate vaccine-induced protection against Helicobacter pylori in mice. Eur. J. Immunol.40(10), 2778–2790 (2010).
  • Wohlfert E, Belkaid Y. Role of endogenous and induced regulatory T cells during infections. J. Clin. Immunol.28(6), 707–715 (2008).
  • Miyara M, Wing K, Sakaguchi S. Therapeutic approaches to allergy and autoimmunity based on FoxP3+ regulatory T-cell activation and expansion. J Allergy Clin. Immunol.123(4), 749–755; quiz 756–747 (2009).
  • Sakaguchi S, Sakaguchi N, Shimizu J et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev.182, 18–32 (2001).
  • Fontenot JD, Dooley JL, Farr AG, Rudensky AY. Developmental regulation of Foxp3 expression during ontogeny. J. Exp. Med.202(7), 901–906 (2005).
  • Wirnsberger G, Hinterberger M, Klein L. Regulatory T-cell differentiation versus clonal deletion of autoreactive thymocytes. Immunol. Cell Biol.89(1), 45–53 (2011).
  • Thornton AM, Korty PE, Tran DQ et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol.184(7), 3433–3441 (2010).
  • Groux H, O’Garra A, Bigler M et al. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature389(6652), 737–742 (1997).
  • Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK. Interleukin-10-secreting type 1 regulatory T cells in rodents and humans. Immunol. Rev.212, 28–50 (2006).
  • Maynard CL, Harrington LE, Janowski KM et al. Regulatory T cells expressing interleukin 10 develop from Foxp3+ and Foxp3- precursor cells in the absence of interleukin 10. Nat. Immunol.8(9), 931–941 (2007).
  • Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell75(2), 263–274 (1993).
  • Powrie F, Correa-Oliveira R, Mauze S, Coffman RL. Regulatory interactions between CD45RBhigh and CD45RBlow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J. Exp. Med.179(2), 589–600 (1994).
  • Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med.190(7), 995–1004 (1999).
  • Chen Y, Inobe J, Weiner HL. Inductive events in oral tolerance in the TCR transgenic adoptive transfer model. Cell Immunol.178(1), 62–68 (1997).
  • Sporn MB, Roberts AB. Transforming growth factor-β: recent progress and new challenges. J. Cell Biol.119(5), 1017–1021 (1992).
  • Sun JB, Raghavan S, Sjoling A, Lundin S, Holmgren J. Oral tolerance induction with antigen conjugated to cholera toxin B subunit generates both Foxp3+CD25+ and Foxp3-CD25- CD4+ regulatory T cells. J. Immunol.177(11), 7634–7644 (2006).
  • Pillai V, Ortega SB, Wang CK, Karandikar NJ. Transient regulatory T-cells: a state attained by all activated human T-cells. Clin. Immunol.123(1), 18–29 (2007).
  • Chen W, Jin W, Hardegen N et al. Conversion of peripheral CD4+CD25- naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med.198(12), 1875–1886 (2003).
  • Rao PE, Petrone AL, Ponath PD. Differentiation and expansion of T cells with regulatory function from human peripheral lymphocytes by stimulation in the presence of TGF-{β}. J. Immunol.174(3), 1446–1455 (2005).
  • Shevach EM, Tran DQ, Davidson TS, Andersson J. The critical contribution of TGF-β to the induction of Foxp3 expression and regulatory T cell function. Eur. J. Immunol.38(4), 915–917 (2008).
  • Jaensson E, Uronen-Hansson H, Pabst O et al. Small intestinal CD103+ dendritic cells display unique functional properties that are conserved between mice and humans. J. Exp. Med.205(9), 2139–2149 (2008).
  • Fox JG, Wang TC. Inflammation, atrophy, and gastric cancer. J. Clin. Invest.117(1), 60–69 (2007).
  • Lagergren J, Bergstrom R, Lindgren A, Nyren O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N. Engl. J. Med.340(11), 825–831 (1999).
  • Ekbom A. Risk of cancer in ulcerative colitis. J. Gastrointest. Surg.2(4), 312–313 (1998).
  • Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu. Rev. Immunol.27, 451–483 (2009).
  • Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res.66(2), 605–612 (2006).
  • Cursiefen C, Chen L, Borges LP et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J. Clin. Invest.113(7), 1040–1050 (2004).
  • Schoppmann SF, Birner P, Stockl J et al. Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. Am. J. Pathol.161(3), 947–956 (2002).
  • Sica A, Larghi P, Mancino A et al. Macrophage polarization in tumour progression. Semin. Cancer Biol.18(5), 349–355 (2008).
  • Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol. Rev.222, 162–179 (2008).
  • Hoechst B, Ormandy LA, Ballmaier M et al. A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4(+)CD25(+)Foxp3(+) T cells. Gastroenterology135(1), 234–243 (2008).
  • Curiel TJ, Coukos G, Zou L et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med.10(9), 942–949 (2004).
  • Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin. Cancer Res.12(18), 5423–5434 (2006).
  • Kobayashi N, Hiraoka N, Yamagami W et al. FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin. Cancer Res.13(3), 902–911 (2007).
  • Fu J, Xu D, Liu Z et al. Increased regulatory T cells correlate with CD8 T-cell impairment and poor survival in hepatocellular carcinoma patients. Gastroenterology132(7), 2328–2339 (2007).
  • Petersen RP, Campa MJ, Sperlazza J et al. Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer107(12), 2866–2872 (2006).
  • Ladoire S, Arnould L, Apetoh L et al. Pathologic complete response to neoadjuvant chemotherapy of breast carcinoma is associated with the disappearance of tumor-infiltrating Foxp3+ regulatory T cells. Clin. Cancer Res.14(8), 2413–2420 (2008).
  • Sasada T, Kimura M, Yoshida Y, Kanai M, Takabayashi A. CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression. Cancer98(5), 1089–1099 (2003).
  • Enarsson K, Lundgren A, Kindlund B et al. Function and recruitment of mucosal regulatory T cells in human chronic Helicobacter pylori infection and gastric adenocarcinoma. Clin. Immunol.121(3), 358–368 (2006).
  • Shen Z, Zhou S, Wang Y et al. Higher intratumoral infiltrated Foxp3+ Treg numbers and Foxp3+/CD8+ ratio are associated with adverse prognosis in resectable gastric cancer. J. Cancer Res. Clin. Oncol.136(10), 1585–1595 (2010).
  • Mizukami Y, Kono K, Kawaguchi Y et al. Localisation pattern of Foxp3+ regulatory T cells is associated with clinical behaviour in gastric cancer. Br. J. Cancer98(1), 148–153 (2008).
  • Yuan XL, Chen L, Li MX et al. Elevated expression of Foxp3 in tumor-infiltrating Treg cells suppresses T-cell proliferation and contributes to gastric cancer progression in a COX-2-dependent manner. Clin. Immunol.134(3), 277–288 (2010).
  • Kono K, Kawaida H, Takahashi A et al. CD4(+)CD25high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers. Cancer Immunol. Immunother.55(9), 1064–1071 (2006).
  • Menetrier-Caux C, Gobert M, Caux C. Differences in tumor regulatory T-cell localization and activation status impact patient outcome. Cancer Res.69(20), 7895–7898 (2009).
  • Xue L, Lu HQ, He J et al. Expression of FOXP3 in esophageal squamous cell carcinoma relating to the clinical data. Dis. Esophagus23(4), 340–346 (2010).
  • Maruyama T, Kono K, Izawa S et al. CCL17 and CCL22 chemokines within tumor microenvironment are related to infiltration of regulatory T cells in esophageal squamous cell carcinoma. Dis. Esophagus23(5), 422–429 (2010).
  • Zingg U, Montani M, Frey DM et al. Tumour-infiltrating lymphocytes and survival in patients with adenocarcinoma of the oesophagus. Eur. J. Surg. Oncol.36(7), 670–677 (2010).
  • Zingg U, Montani M, Frey DM, Dirnhofer S, Went P, Oertli D. Influence of neoadjuvant radio-chemotherapy on tumor-infiltrating lymphocytes in squamous esophageal cancer. Eur. J. Surg. Oncol.35(12), 1268–1272 (2009).
  • Yoshioka T, Miyamoto M, Cho Y et al. Infiltrating regulatory T cell numbers is not a factor to predict patient’s survival in oesophageal squamous cell carcinoma. Br. J. Cancer98(7), 1258–1263 (2008).
  • Salama P, Phillips M, Grieu F et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J. Clin. Oncol.27(2), 186–192 (2009).
  • Le Gouvello S, Bastuji-Garin S, Aloulou N et al. High prevalence of Foxp3 and IL17 in MMR-proficient colorectal carcinomas. Gut57(6), 772–779 (2008).
  • Clarke SL, Betts GJ, Plant A et al. CD4+CD25+FOXP3+ regulatory T cells suppress anti-tumor immune responses in patients with colorectal cancer. PLoS ONE1, E129 (2006).
  • Ling KL, Pratap SE, Bates GJ et al. Increased frequency of regulatory T cells in peripheral blood and tumour infiltrating lymphocytes in colorectal cancer patients. Cancer Immun.7, 7 (2007).
  • Michel S, Benner A, Tariverdian M et al. High density of FOXP3-positive T cells infiltrating colorectal cancers with microsatellite instability. Br. J. Cancer99(11), 1867–1873 (2008).
  • Deng L, Zhang H, Luan Y et al. Accumulation of Foxp3+ T regulatory cells in draining lymph nodes correlates with disease progression and immune suppression in colorectal cancer patients. Clin. Cancer Res.16(16), 4105–4112 (2010).
  • Frey DM, Droeser RA, Viehl CT et al. High frequency of tumor-infiltrating FOXP3(+) regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients. Int. J. Cancer126(11), 2635–2643 (2010).
  • Ropponen KM, Eskelinen MJ, Lipponen PK, Alhava E, Kosma VM. Prognostic value of tumour-infiltrating lymphocytes (TILs) in colorectal cancer. J. Pathol.182(3), 318–324 (1997).
  • Naito Y, Saito K, Shiiba K et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res.58(16), 3491–3494 (1998).
  • Galon J, Costes A, Sanchez-Cabo F et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science313(5795), 1960–1964 (2006).
  • Correale P, Rotundo MS, Del Vecchio MT et al. Regulatory (FoxP3+) T-cell tumor infiltration is a favorable prognostic factor in advanced colon cancer patients undergoing chemo or chemoimmunotherapy. J. Immunother.33(4), 435–441 (2010).
  • Erdman SE, Sohn JJ, Rao VP et al. CD4+CD25+ regulatory lymphocytes induce regression of intestinal tumors in APCMin/+ mice. Cancer Res.65(10), 3998–4004 (2005).
  • Gounaris E, Blatner NR, Dennis K et al. T-regulatory cells shift from a protective anti-inflammatory to a cancer-promoting proinflammatory phenotype in polyposis. Cancer Res.69(13), 5490–5497 (2009).
  • Clarke AR. Wnt signalling in the mouse intestine. Oncogene25(57), 7512–7521 (2006).
  • Sinicrope FA, Rego RL, Ansell SM, Knutson KL, Foster NR, Sargent DJ. Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology137(4), 1270–1279 (2009).
  • Suzuki H, Chikazawa N, Tasaka T et al. Intratumoral CD8(+) T/FOXP3 (+) cell ratio is a predictive marker for survival in patients with colorectal cancer. Cancer Immunol. Immunother.59(5), 653–661 (2010).
  • Zhang B, Jia H, Liu J et al. Depletion of regulatory T cells facilitates growth of established tumors: a mechanism involving the regulation of myeloid-derived suppressor cells by lipoxin A4. J. Immunol.185(12), 7199–7206 (2010).
  • Bonertz A, Weitz J, Pietsch DH et al. Antigen-specific Tregs control T cell responses against a limited repertoire of tumor antigens in patients with colorectal carcinoma. J. Clin. Invest.119(11), 3311–3321 (2009).
  • Enarsson K, Johnsson E, Lindholm C et al. Differential mechanisms for T lymphocyte recruitment in normal and neoplastic human gastric mucosa. Clin. Immunol.118(1), 24–34 (2006).
  • Siewert C, Lauer U, Cording S et al. Experience-driven development: effector/memory-like αE+Foxp3+ regulatory T cells originate from both naive T cells and naturally occurring naive-like regulatory T cells. J. Immunol.180(1), 146–155 (2008).
  • Anz D, Mueller W, Golic M et al. CD103 is a hallmark of tumor-infiltrating regulatory T cells. Int. J. Cancer DOI: 10.1002/ijc.25902 (2011) (Epub ahead of print).
  • Zhou G, Levitsky HI. Natural regulatory T cells and de novo-induced regulatory T cells contribute independently to tumor-specific tolerance. J. Immunol.178(4), 2155–2162 (2007).
  • Massague J. TGFβ in cancer. Cell.134(2), 215–230 (2008).
  • Fantini MC, Becker C, Monteleone G, Pallone F, Galle PR, Neurath MF. Cutting edge: TGF-β induces a regulatory phenotype in CD4+CD25- T cells through Foxp3 induction and down-regulation of Smad7.J. Immunol.172(9), 5149–5153 (2004).
  • Liu VC, Wong LY, Jang T et al. Tumor evasion of the immune system by converting CD4+CD25- T cells into CD4+CD25+ T regulatory cells: role of tumor-derived TGF-β. J. Immunol.178(5), 2883–2892 (2007).
  • Hindley JP, Ferreira C, Jones E et al. Analysis of the T-cell receptor repertoires of tumor-infiltrating conventional and regulatory T cells reveals no evidence for conversion in carcinogen-induced tumors. Cancer Res.71(3), 736–746 (2011).
  • Kuczma M, Kopij M, Pawlikowska I, Wang CY, Rempala GA, Kraj P. Intratumoral convergence of the TCR repertoires of effector and Foxp3+ CD4+ T cells. PLoS ONE5(10), e13623 (2010).
  • Peng Y, Laouar Y, Li MO, Green EA, Flavell RA. TGF-β regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T cells responsible for protection against diabetes. Proc. Natl Acad. Sci. USA101(13), 4572–4577 (2004).
  • Huber S, Schramm C, Lehr HA et al. Cutting edge: TGF-β signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells. J. Immunol.173(11), 6526–6531 (2004).
  • Ghiringhelli F, Puig PE, Roux S et al. Tumor cells convert immature myeloid dendritic cells into TGF-β-secreting cells inducing CD4+CD25+ regulatory T cell proliferation. J. Exp. Med.202(7), 919–929 (2005).
  • Agace WW. T-cell recruitment to the intestinal mucosa. Trends Immunol.29(11), 514–522 (2008).
  • Strauss L, Bergmann C, Whiteside TL. Functional and phenotypic characteristics of CD4+CD25highFoxp3+ Treg clones obtained from peripheral blood of patients with cancer. Int. J. Cancer121(11), 2473–2483 (2007).
  • Cao M, Cabrera R, Xu Y et al. Hepatocellular carcinoma cell supernatants increase expansion and function of CD4(+)CD25(+) regulatory T cells. Lab. Invest.87(6), 582–590 (2007).
  • North RJ, Awwad M. Elimination of cycling CD4+ suppressor T cells with an anti-mitotic drug releases non-cycling CD8+ T cells to cause regression of an advanced lymphoma. Immunology71(1), 90–95 (1990).
  • Lutsiak ME, Tagaya Y, Adams AJ, Schlom J, Sabzevari H. Tumor-induced impairment of TCR signaling results in compromised functionality of tumor-infiltrating regulatory T cells. J. Immunol.180(9), 5871–5881 (2008).
  • Mougiakakos D, Johansson CC, Jitschin R, Bottcher M, Kiessling R. Increased thioredoxin-1 production in human naturally occurring regulatory T cells confers enhanced tolerance to oxidative stress. Blood117(3), 857–861 (2011).
  • Mougiakakos D, Johansson CC, Kiessling R. Naturally occurring regulatory T cells show reduced sensitivity toward oxidative stress-induced cell death. Blood113(15), 3542–3545 (2009).
  • Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science272(5258), 60–66 (1996).
  • Campbell JJ, Butcher EC. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol.12(3), 336–341 (2000).
  • Siewert C, Menning A, Dudda J et al. Induction of organ-selective CD4+ regulatory T cell homing. Eur. J. Immunol.37(4), 978–989 (2007).
  • Wei S, Kryczek I, Zou W. Regulatory T-cell compartmentalization and trafficking. Blood108(2), 426–431 (2006).
  • Fu S, Yopp AC, Mao X et al. CD4+ CD25+ CD62+ T-regulatory cell subset has optimal suppressive and proliferative potential. Am. J. Transplant.4(1), 65–78 (2004).
  • Hirahara K, Liu L, Clark RA, Yamanaka K, Fuhlbrigge RC, Kupper TS. The majority of human peripheral blood CD4+CD25highFoxp3+ regulatory T cells bear functional skin-homing receptors. J. Immunol.177(7), 4488–4494 (2006).
  • Iellem A, Mariani M, Lang R et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4(+)CD25(+) regulatory T cells. J. Exp. Med.194(6), 847–853 (2001).
  • Ganss R, Arnold B, Hammerling GJ. Mini-review: overcoming tumor-intrinsic resistance to immune effector function. Eur. J. Immunol.34(10), 2635–2641 (2004).
  • Ryschich E, Schmidt J, Hammerling GJ, Klar E, Ganss R. Transformation of the microvascular system during multistage tumorigenesis. Int. J. Cancer97(6), 719–725 (2002).
  • Muthuswamy R, Urban J, Lee JJ, Reinhart TA, Bartlett D, Kalinski P. Ability of mature dendritic cells to interact with regulatory T cells is imprinted during maturation. Cancer Res.68(14), 5972–5978 (2008).
  • Kuniyasu Y, Takahashi T, Itoh M, Shimizu J, Toda G, Sakaguchi S. Naturally anergic and suppressive CD25(+)CD4(+) T cells as a functionally and phenotypically distinct immunoregulatory T cell subpopulation. Int. Immunol.12(8), 1145–1155 (2000).
  • Shevach EM. Mechanisms of Foxp3+ T regulatory cell-mediated suppression. Immunity30(5), 636–645 (2009).
  • Ji Q, Gondek D, Hurwitz AA. Provision of granulocyte–macrophage colony-stimulating factor converts an autoimmune response to a self-antigen into an antitumor response. J. Immunol.175(3), 1456–1463 (2005).
  • Boissonnas A, Scholer-Dahirel A, Simon-Blancal V et al. Foxp3+ T cells induce perforin-dependent dendritic cell death in tumor-draining lymph nodes. Immunity32(2), 266–278 (2010).
  • Cao X, Cai SF, Fehniger TA et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity27(4), 635–646 (2007).
  • Deaglio S, Dwyer KM, Gao W et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J. Exp. Med.204(6), 1257–1265 (2007).
  • Borsellino G, Kleinewietfeld M, Di Mitri D et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood110(4), 1225–1232 (2007).
  • Stagg J, Smyth MJ. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene29(39), 5346–5358 (2010).
  • Hoskin DW, Mader JS, Furlong SJ, Conrad DM, Blay J. Inhibition of T cell and natural killer cell function by adenosine and its contribution to immune evasion by tumor cells (review). Int. J. Oncol.32(3), 527–535 (2008).
  • Mandapathil M, Szczepanski MJ, Szajnik M et al. Increased ectonucleotidase expression and activity in regulatory T cells of patients with head and neck cancer. Clin. Cancer Res.15(20), 6348–6357 (2009).
  • Kullberg MC, Ward JM, Gorelick PL et al. Helicobacter hepaticus triggers colitis in specific-pathogen-free interleukin-10 (IL-10)-deficient mice through an IL-12- and γ interferon-dependent mechanism. Infect. Immun.66(11), 5157–5166 (1998).
  • Maloy KJ, Salaun L, Cahill R, Dougan G, Saunders NJ, Powrie F. CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J. Exp. Med.197(1), 111–119 (2003).
  • Kundu N, Fulton AM. Interleukin-10 inhibits tumor metastasis, downregulates MHC class I, and enhances NK lysis. Cell Immunol.180(1), 55–61 (1997).
  • Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB. Interleukin-10 and related cytokines and receptors. Annu. Rev. Immunol.22, 929–979 (2004).
  • Shime H, Yabu M, Akazawa T et al. Tumor-secreted lactic acid promotes IL-23/IL-17 proinflammatory pathway. J. Immunol.180(11), 7175–7183 (2008).
  • Blatner NR, Bonertz A, Beckhove P et al. In colorectal cancer mast cells contribute to systemic regulatory T-cell dysfunction. Proc. Natl Acad. Sci. USA107(14), 6430–6435 (2010).
  • Chen ML, Pittet MJ, Gorelik L et al. Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-β signals in vivo.Proc. Natl Acad. Sci. USA102(2), 419–424 (2005).
  • Fahlen L, Read S, Gorelik L et al. T cells that cannot respond to TGF-β escape control by CD4(+)CD25(+) regulatory T cells. J. Exp. Med.201(5), 737–746 (2005).
  • Collison LW, Chaturvedi V, Henderson AL et al. IL-35-mediated induction of a potent regulatory T cell population. Nat. Immunol.11(12), 1093–1101 (2010).
  • Collison LW, Vignali DA. Interleukin-35: odd one out or part of the family? Immunol. Rev.226, 248–262 (2008).
  • Enarsson K, Lundin BS, Johnsson E, Brezicka T, Quiding-Jarbrink M. CD4+ CD25high regulatory T cells reduce T cell transendothelial migration in cancer patients. Eur. J. Immunol.37(1), 282–291 (2007).
  • Teng MW, Ngiow SF, von Scheidt B, McLaughlin N, Sparwasser T, Smyth MJ. Conditional regulatory T-cell depletion releases adaptive immunity preventing carcinogenesis and suppressing established tumor growth. Cancer Res.70(20), 7800–7809 (2010).
  • Li X, Kostareli E, Suffner J, Garbi N, Hammerling GJ. Efficient Treg depletion induces T-cell infiltration and rejection of large tumors. Eur. J. Immunol.40(12), 3325–3335 (2010).
  • Awwad M, North RJ. Immunologically mediated regression of a murine lymphoma after treatment with anti-L3T4 antibody. A consequence of removing L3T4+ suppressor T cells from a host generating predominantly Lyt-2+ T cell-mediated immunity. J. Exp. Med.168(6), 2193–2206 (1988).
  • Zhao J, Cao Y, Lei Z, Yang Z, Zhang B, Huang B. Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res.70(12), 4850–4858 (2010).
  • Malvicini M, Rizzo M, Alaniz L et al. A novel synergistic combination of cyclophosphamide and gene transfer of interleukin-12 eradicates colorectal carcinoma in mice. Clin. Cancer Res.15(23), 7256–7265 (2009).
  • Medina-Echeverz J, Fioravanti J, Zabala M, Ardaiz N, Prieto J, Berraondo P. Successful colon cancer eradication after chemoimmunotherapy is associated with profound phenotypic change of intratumoral myeloid cells. J. Immunol.186(2), 807–815 (2011).
  • Staff C, Mozaffari F, Haller BK, Wahren B, Liljefors M. A Phase I safety study of plasmid DNA immunization targeting carcinoembryonic antigen in colorectal cancer patients. Vaccine DOI: 10.1016/j.vaccine.2010.12.063 (2010) (Epub ahead of print).
  • Audia S, Nicolas A, Cathelin D et al. Increase of CD4+ CD25+ regulatory T cells in the peripheral blood of patients with metastatic carcinoma: a Phase I clinical trial using cyclophosphamide and immunotherapy to eliminate CD4+ CD25+ T lymphocytes. Clin. Exp. Immunol.150(3), 523–530 (2007).
  • Cao Y, Zhao J, Yang Z et al. CD4+FOXP3+ regulatory T cell depletion by low-dose cyclophosphamide prevents recurrence in patients with large condylomata acuminata after laser therapy. Clin. Immunol.136(1), 21–29 (2010).
  • Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res.59(13), 3128–3133 (1999).
  • Shimizu J, Yamazaki S, Sakaguchi S. Induction of tumor immunity by removing CD25+CD4+ T cells: a common basis between tumor immunity and autoimmunity. J. Immunol.163(10), 5211–5218 (1999).
  • Tanaka H, Tanaka J, Kjaergaard J, Shu S. Depletion of CD4+ CD25+ regulatory cells augments the generation of specific immune T cells in tumor-draining lymph nodes. J. Immunother.25(3), 207–217 (2002).
  • Dannull J, Su Z, Rizzieri D et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J. Clin. Invest.115(12), 3623–3633 (2005).
  • Mahnke K, Schonfeld K, Fondel S et al. Depletion of CD4+CD25+ human regulatory T cells in vivo: kinetics of Treg depletion and alterations in immune functions in vivo and in vitro.Int. J. Cancer120(12), 2723–2733 (2007).
  • Morse MA, Hobeika AC, Osada T et al. Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines. Blood112(3), 610–618 (2008).
  • Attia P, Maker AV, Haworth LR, Rogers-Freezer L, Rosenberg SA. Inability of a fusion protein of IL-2 and diphtheria toxin (Denileukin Diftitox, DAB389IL-2, ONTAK) to eliminate regulatory T lymphocytes in patients with melanoma. J. Immunother.28(6), 582–592 (2005).
  • Jacobs JF, Punt CJ, Lesterhuis WJ et al. Dendritic cell vaccination in combination with anti-CD25 monoclonal antibody treatment: a Phase I/II study in metastatic melanoma patients. Clin. Cancer Res.16(20), 5067–5078 (2010).
  • Okita R, Yamaguchi Y, Ohara M et al. Targeting of CD4+CD25high cells while preserving CD4+CD25low cells with low-dose chimeric anti-CD25 antibody in adoptive immunotherapy of cancer. Int. J. Oncol.34(2), 563–572 (2009).
  • Peggs KS, Quezada SA, Korman AJ, Allison JP. Principles and use of anti-CTLA4 antibody in human cancer immunotherapy. Curr. Opin. Immunol.18(2), 206–213 (2006).
  • Weber J. Ipilimumab: controversies in its development, utility and autoimmune adverse events. Cancer Immunol. Immunother.58(5), 823–830 (2009).
  • Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science271(5256), 1734–1736 (1996).
  • Lute KD, May KF Jr, Lu P et al. Human CTLA4 knock-in mice unravel the quantitative link between tumor immunity and autoimmunity induced by anti-CTLA-4 antibodies. Blood106(9), 3127–3133 (2005).
  • Chung KY, Gore I, Fong L et al. Phase II study of the anti-cytotoxic T-lymphocyte-associated antigen 4 monoclonal antibody, tremelimumab, in patients with refractory metastatic colorectal cancer. J. Clin. Oncol.28(21), 3485–3490 (2010).
  • Mendelsohn J. Epidermal growth factor receptor inhibition by a monoclonal antibody as anticancer therapy. Clin. Cancer Res.3(12 Pt 2), 2703–2707 (1997).
  • Hortobagyi GN. Trastuzumab in the treatment of breast cancer. N. Engl. J. Med.353(16), 1734–1736 (2005).
  • Karlsson M, Marits P, Dahl K et al. Pilot study of sentinel-node-based adoptive immunotherapy in advanced colorectal cancer. Ann. Surg. Oncol.17(7), 1747–1757 (2010).
  • Klebanoff CA, Acquavella N, Yu Z, Restifo NP. Therapeutic cancer vaccines: are we there yet? Immunol. Rev.239(1), 27–44 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.