972
Views
141
CrossRef citations to date
0
Altmetric
Review

Update on hepatic stellate cells: pathogenic role in liver fibrosis and novel isolation techniques

&
Pages 67-80 | Published online: 10 Jan 2014

References

  • Kupffer K. Über Sternzellen der Leber. Briefliche Mitteilung an Professor Waldeyer. Arch. Mikr. Anat.12, 353–358 (1876).
  • Leberkapillaren beim Menschen. Ztsch. Mikr. Anat. Forsch.14, 528–548 (1928).
  • Ito T, Nemoto M. Kupffer’s cells and fat storing cells in the capillary wall of human liver. Okajimas Folia Anat. Jpn24(4), 243–258 (1952).
  • Wake K. ‘Sternzellen” in the liver: perisinusoidal cells with special reference to storage of vitamin A. Am. J. Anat.132(4), 429–462 (1971).
  • Wake K. Perisinusoidal stellate cells (fat-storing cells, interstitial cells, lipocytes), their related structure in and around the liver sinusoids, and vitamin A-storing cells in extrahepatic organs. Int. Rev. Cytol.66, 303–353 (1980).
  • Suzuki K. A silver impregnation method in histology. In: The Experimental Therapy. Takeda Pharmaceutical Ind., Osaka, Japan, 310–320 (1958).
  • McGee JO, Patrick RS. The role of perisinusoidal cells in hepatic fibrogenesis. An electron microscopic study of acute carbon tetrachloride liver injury. Lab. Invest.26(4), 429–440 (1972).
  • Knook DL, Seffelaar AM, de Leeuw AM. Fat-storing cells of the rat liver. Their isolation and purification. Exp. Cell Res.139(2), 468–471 (1982).
  • de Leeuw AM, McCarthy SP, Geerts A, Knook DL. Purified rat liver fat-storing cells in culture divide and contain collagen. Hepatology4(3), 392–403 (1984).
  • Yokoi Y, Namihisa T, Kuroda H et al. Immunocytochemical detection of desmin in fat-storing cells (Ito cells). Hepatology4(4), 709–714 (1984).
  • Gard AL, White FP, Dutton GR. Extra-neural glial fibrillary acidic protein (GFAP) immunoreactivity in perisinusoidal stellate cells of rat liver. J. Neuroimmunol.8(4–6), 359–375 (1985).
  • Blomhoff R, Rasmussen M, Nilsson A et al. Hepatic retinol metabolism. Distribution of retinoids, enzymes, and binding proteins in isolated rat liver cells. J. Biol. Chem.260(25), 13560–13565 (1985).
  • Friedman SL, Roll FJ. Isolation and culture of hepatic lipocytes, Kupffer cells, and sinusoidal endothelial cells by density gradient centrifugation with Stractan. Anal. Biochem.161(1), 207–218 (1987).
  • Ramadori G, Rieder H, Knittel T, Dienes HP, Meyer zum Büschenfelde KH. Fat storing cells (FSC) of rat liver synthesize and secrete fibronectin. Comparison with hepatocytes. J. Hepatol.4(2), 190–197 (1987).
  • Maher JJ, Bissell DM, Friedman SL, Roll FJ. Collagen measured in primary cultures of normal rat hepatocytes derives from lipocytes within the monolayer. J. Clin. Invest.82(2), 450–459 (1988).
  • Pinzani M, Gesualdo L, Sabbah GM, Abboud HE. Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat-storing cells. J. Clin. Invest.84(6), 1786–1793 (1989).
  • Davis BH. Transforming growth factor beta responsiveness is modulated by the extracellular collagen matrix during hepatic ito cell culture. J. Cell Physiol.136(3), 547–553 (1988).
  • Parola M, Pinzani M, Casini A et al. Stimulation of lipid peroxidation or 4-hydroxynonenal treatment increases procollagen alpha 1 (I) gene expression in human liver fat-storing cells. Biochem. Biophys. Res. Commun.194(3), 1044–1050 (1993).
  • Arthur MJ, Friedman SL, Roll FJ, Bissell DM. Lipocytes from normal rat liver release a neutral metalloproteinase that degrades basement membrane (type IV) collagen. J. Clin. Invest.84(4), 1076–1085 (1989).
  • Herbst H, Frey A, Heinrichs O et al. Heterogeneity of liver cells expressing procollagen types I and IV in vivo. Histochem. Cell Biol.107(5), 399–409 (1997).
  • Zou Z, Ekataksin W, Wake K. Zonal and regional differences identified from precision mapping of vitamin A-storing lipid droplets of the hepatic stellate cells in pig liver: a novel concept of addressing the intralobular area of heterogeneity. Hepatology27(4), 1098–1108 (1998).
  • Knittel T, Kobold D, Saile B et al. Rat liver myofibroblasts and hepatic stellate cells: different cell populations of the fibroblast lineage with fibrogenic potential. Gastroenterology117(5), 1205–1221 (1999).
  • Magness ST, Bataller R, Yang L, Brenner DA. A dual reporter gene transgenic mouse demonstrates heterogeneity in hepatic fibrogenic cell populations. Hepatology40(5), 1151–1159 (2004).
  • Saile B, Matthes N, Knittel T, Ramadori G. Transforming growth factor beta and tumor necrosis factor alpha inhibit both apoptosis and proliferation of activated rat hepatic stellate cells. Hepatology30(1), 196–202 (1999).
  • Trim N, Morgan S, Evans M et al. Hepatic stellate cells express the low affinity nerve growth factor receptor p75 and undergo apoptosis in response to nerve growth factor stimulation. Am. J. Pathol.156(4), 1235–1243 (2000).
  • Reuben A. Ito becomes a star. Hepatology35(2), 503–504 (2002).
  • Ahearn M, Hall P, Hallidy J et al. Hepatic stellate cell nomenclature [Letter]. Hepatology23(1), 193 (1996).
  • Geerts A. History, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin. Liver Dis.21(3), 311–335 (2001).
  • Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev.88(1), 125–172 (2008).
  • Shirakami Y, Lee SA, Clugston RD, Blaner WS. Hepatic metabolism of retinoids and disease associations. Biochim. Biophys. Acta doi:10.1016/j.bbalip.2011.06.023 (2011) (Epub ahead of print).
  • Rockey DC. Hepatic blood flow regulation by stellate cells in normal and injured liver. Semin. Liver Dis.21(3), 337–349 (2001).
  • Eckardt KU, Pugh CW, Meier M, Tan CC, Ratcliffe PJ, Kurtz A. Production of erythropoietin by liver cells in vivo and in vitro. Ann. NY Acad. Sci.718, 50–60 (1994).
  • Leyland H, Gentry J, Arthur MJ, Benyon RC. The plasminogen-activating system in hepatic stellate cells. Hepatology24(5), 1172–1178 (1996).
  • Pinzani M, Failli P, Ruocco C et al. Fat-storing cells as liver-specific pericytes. Spatial dynamics of agonist-stimulated intracellular calcium transients. J. Clin. Invest.90(2), 642–646 (1992).
  • Rockey DC, Chung JJ. Inducible nitric oxide synthase in rat hepatic lipocytes and the effect of nitric oxide on lipocyte contractility. J. Clin. Invest.95(3), 1199–1206 (1995).
  • Gressner AM, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF-β as major players and therapeutic targets. J. Cell. Mol. Med.10(1), 76–99 (2006).
  • Winau F, Hegasy G, Weiskirchen R et al. Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity26(1), 117–129 (2007).
  • Bomble M, Tacke F, Rink L, Kovalenko E, Weiskirchen R. Analysis of antigen-presenting functionality of cultured rat hepatic stellate cells and transdifferentiated myofibroblasts. Biochem. Biophys. Res. Commun.396(2), 342–347 (2010).
  • Bachem MG, Meyer D, Melchior R, Sell KM, Gressner AM. Activation of rat liver perisinusoidal lipocytes by transforming growth factors derived from myofibroblastlike cells. A potential mechanism of self perpetuation in liver fibrogenesis. J. Clin. Invest.89(1), 19–27 (1992).
  • Purps O, Lahme B, Gressner AM, Meindl-Beinker NM, Dooley S. Loss of TGF-β dependent growth control during HSC transdifferentiation. Biochem. Biophys. Res. Commun.353(3), 841–847 (2007).
  • Ballardini G, Groff P, Badiali de Giorni L, Schuppan D, Bianchi FB. Ito cell heterogeneity: desmin-negative Ito cells in normal rat liver. Hepatology19(2), 440–446 (1994).
  • Ramm GA, Britton RS, O’Neill R, Blaner WS, Bacon BR. Vitamin A-poor lipocystes: a novel desmin-negative lipocyte subpopulation, which can be activated to myofibroblasts. Am. J. Physiol.269(4 Pt 1), G532–G541 (1995).
  • Knittel T, Kobold D, Piscaglia F et al. Localization of liver myofibroblasts and hepatic stellate cells in normal and diseased rat livers: distinct roles of (myo-) fibroblast subpopulations in hepatic tissue repair. Histochem. Cell Biol.112(5), 387–401 (1999).
  • Cassiman D, Roskams T. Beauty is in the eye of the beholder: emerging concepts and pitfalls in hepatic stellate cell research. J. Hepatol.37(4), 527–535 (2002).
  • Herrmann J, Gressner AM, Weiskirchen R. Immortal hepatic stellate cell lines: useful tools to study hepatic stellate cell biology and function? J. Cell. Mol. Med.11(4), 704–722 (2007).
  • Karlmark KR, Weiskirchen R, Zimmermann HW et al. Hepatic recruitment of the inflammatory Gr1+ monocyte subset upon liver injury promotes hepatic fibrosis. Hepatology50(1), 261–274 (2009).
  • Zimmermann HW, Seidler S, Nattermann J et al. Functional contribution of elevated circulating and hepatic non-classical CD14+CD16+ monocytes to inflammation and human liver fibrosis. PLoS One5(6), e11049 (2010).
  • Senoo H, Yoshikawa K, Morii M, Miura M, Imai K, Mezaki Y. Hepatic stellate cell (vitamin A-storing cell) and its relative – past, present and future. Cell Biol. Int.34(12), 1247–1272 (2010).
  • Atzori L, Poli G, Perra A. Hepatic stellate cell: a star cell in the liver. Int. J. Biochem. Cell. Biol.41(8–9), 1639–1142 (2009).
  • Kluwe J, Wongsiriroj N, Troeger JS et al. Absence of hepatic stellate cell retinoid lipid droplets does not enhance hepatic fibrosis but decreases hepatic carcinogenesis. Gut60(9), 1260–1268 (2011).
  • Hernandez-Gea V, Friedman SL. Pathogenesis of liver fibrosis. Annu. Rev. Pathol.6, 425–456 (2011).
  • Seki E, De Minicis S, Osterreicher CH et al. TLR4 enhances TGF-β signaling and hepatic fibrosis. Nat. Med.13(11), 1324–1332 (2007).
  • Karlmark KR, Zimmermann HW, Roderburg C et al. The fractalkine receptor CX3CR1 protects against liver fibrosis by controlling differentiation and survival of infiltrating hepatic monocytes. Hepatology52(5), 1769–1782 (2010).
  • Sancho-Bru P, Bataller R, Gasull X et al. Genomic and functional characterization of stellate cells isolated from human cirrhotic livers. J. Hepatol.43(2), 272–282 (2005).
  • De Minicis S, Seki E, Uchinami H et al. Gene expression profiles during hepatic stellate cell activation in culture and in vivo. Gastroenterology132(5), 1937–1946 (2007).
  • Kristensen DB, Kawada N, Imamura K et al. Proteome analysis of rat hepatic stellate cells. Hepatology32(2), 268–277 (2000).
  • Friedman SL. Evolving challenges in hepatic fibrosis. Nat. Rev. Gastroenterol. Hepatol.7(8), 425–436 (2010).
  • Novo E, di Bonzo LV, Cannito S, Colombatto S, Parola M. Hepatic myofibroblasts: a heterogeneous population of multifunctional cells in liver fibrogenesis. Int. J. Biochem. Cell. Biol.41(11), 2089–2093 (2009).
  • Jhandier MN, Kruglov EA, Lavoie EG, Sévigny J, Dranoff JA. Portal fibroblasts regulate the proliferation of bile duct epithelia via expression of NTPDase2. J. Biol. Chem.280(24), 22986–22992 (2005).
  • Forbes SJ, Russo FP, Rey V et al. A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis. Gastroenterology126(4), 955–963 (2004).
  • Kisseleva T, Uchinami H, Feirt N et al. Bone marrow-derived fibrocytes participate in pathogenesis of liver fibrosis. J. Hepatol.45(3), 429–438 (2006).
  • Fujimiya T, Liu J, Kojima H, Shirafuji S, Kimura H, Fujimiya M. Pathological roles of bone marrow-derived stellate cells in a mouse model of alcohol-induced fatty liver. Am. J. Physiol. Gastrointest. Liver Physiol.297(3), G451–G460 (2009).
  • Roderfeld M, Rath T, Voswinckel R et al. Bone marrow transplantation demonstrates medullar origin of CD34+ fibrocytes and ameliorates hepatic fibrosis in Abcb4-/- mice. Hepatology51(1), 267–276 (2010).
  • Scholten D, Reichart D, Paik YH et al. Migration of fibrocytes in fibrogenic liver injury. Am. J. Pathol.179(1), 189–198 (2011).
  • Higashiyama R, Moro T, Nakao S et al. Negligible contribution of bone marrow-derived cells to collagen production during hepatic fibrogenesis in mice. Gastroenterology137(4), 1459.e1–1466.e1 (2009).
  • Kallis YN, Forbes SJ. The bone marrow and liver fibrosis: friend or foe? Gastroenterology137(4), 1218–1221 (2009).
  • Zeisberg M, Yang C, Martino M et al. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J. Biol. Chem.282(32), 23337–23347 (2007).
  • Choi SS, Diehl AM. Epithelial-to-mesenchymal transitions in the liver. Hepatology50(6), 2007–2013 (2009).
  • Wells RG. The epithelial-to-mesenchymal transition in liver fibrosis: here today, gone tomorrow? Hepatology51(3), 737–740 (2010).
  • Popov Y, Schuppan D. Epithelial-to-mesenchymal transition in liver fibrosis: dead or alive? Gastroenterology139(3), 722–725 (2010).
  • Wells RG. Cellular sources of extracellular matrix in hepatic fibrosis. Clin. Liver Dis.12(4), 759–768, viii (2008).
  • Rygiel KA, Robertson H, Marshall HL et al. Epithelial–mesenchymal transition contributes to portal tract fibrogenesis during human chronic liver disease. Lab. Invest.88(2), 112–123 (2008).
  • Robertson H, Kirby JA, Yip WW, Jones DE, Burt AD. Biliary epithelial–mesenchymal transition in posttransplantation recurrence of primary biliary cirrhosis. Hepatology45(4), 977–981 (2007).
  • Omenetti A, Porrello A, Jung Y et al. Hedgehog signaling regulates epithelial–mesenchymal transition during biliary fibrosis in rodents and humans. J. Clin. Invest.118(10), 3331–3342 (2008).
  • Syn WK, Jung Y, Omenetti A et al. Hedgehog-mediated epithelial-to-mesenchymal transition and fibrogenic repair in nonalcoholic fatty liver disease. Gastroenterology137(4), 1478.e8–1488.e8 (2009).
  • Taura K, Miura K, Iwaisako K et al. Hepatocytes do not undergo epithelial–mesenchymal transition in liver fibrosis in mice. Hepatology51(3), 1027–1036 (2010).
  • Scholten D, Osterreicher CH, Scholten A et al. Genetic labeling does not detect epithelial-to-mesenchymal transition of cholangiocytes in liver fibrosis in mice. Gastroenterology139(3), 987–998 (2010).
  • Österreicher CH, Penz-Österreicher M, Grivennikov SI et al. Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. Proc. Natl Acad. Sci. USA108(1), 308–313 (2011).
  • Chu AS, Diaz R, Hui JJ, Yanger K et al. Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis. Hepatology53(5), 1685–1695 (2011).
  • Scholten D, Weiskirchen R. Questioning the challenging role of epithelial-to-mesenchymal transition in liver injury. Hepatology53(3), 1048–1051 (2011).
  • Reeves HL, Friedman SL. Activation of hepatic stellate cells – a key issue in liver fibrosis. Front. Biosci.7, d808–d826 (2002).
  • Pradere JP, Troeger JS, Dapito DH, Mencin AA, Schwabe RF. Toll-like receptor 4 and hepatic fibrogenesis. Semin. Liver Dis.30(3), 232–244 (2010).
  • Schwabe RF, Bataller R, Brenner DA. Human hepatic stellate cells express CCR5 and RANTES to induce proliferation and migration. Am. J. Physiol. Gastrointest. Liver Physiol.285(5), G949–G958 (2003).
  • Seki E, De Minicis S, Gwak GY et al. CCR1 and CCR5 promote hepatic fibrosis in mice. J. Clin. Invest.119(7), 1858–1870 (2009).
  • Heymann F, Trautwein C, Tacke F. Monocytes and macrophages as cellular targets in liver fibrosis. Inflamm. Allergy Drug Targets8(4), 307–318 (2009).
  • Ichikawa S, Mucida D, Tyznik AJ, Kronenberg M, Cheroutre H. Hepatic stellate cells function as regulatory bystanders. J. Immunol.186(10), 5549–5555 (2011).
  • Schildberg FA, Wojtalla A, Siegmund SV et al. Murine hepatic stellate cells veto CD8 T cell activation by a CD54-dependent mechanism. Hepatology54(1), 262–272 (2011).
  • Blouin A, Bolender RP, Weibel ER. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J. Cell Biol.72(2), 441–455 (1977).
  • Giampieri MP, Jezequel AM, Orlandi F. The lipocytes in normal human liver. A quantitative study. Digestion22(4), 165–169 (1981).
  • Marcos R, Rocha E, Monteiro RA. Stereological estimation of Ito cells from rat liver using the optical fractionator – a preliminary report. Image Anal. Sterol.21, 1–6 (2002).
  • Blomhoff R, Berg T. Isolation and cultivation of rat liver stellate cells. Methods Enzymol.190, 58–71 (1990).
  • Schäfer S, Zerbe O, Gressner AM. The synthesis of proteoglycans in fat-storing cells of rat liver. Hepatology7(4), 680–687 (1987).
  • Weiskirchen R, Gressner AM. Isolation and culture of hepatic stellate cells. Methods Mol. Med.117, 99–113 (2005).
  • Yata Y, Enosawa S, Suzuki S et al. An improved method for the purification of stellate cells from rat liver with dichloromethylene diphosphate (CL2MDP). Methods Cell Sci.21(1), 19–24 (1999).
  • Geerts A, Niki T, Hellemans K, De Craemer D et al. Purification of rat hepatic stellate cells by side scatter-activated cell sorting. Hepatology27(2), 590–598 (1998).
  • Roderburg C, Urban GW, Bettermann K et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis. Hepatology53(1), 209–218 (2011).
  • Pieper-Fürst U, Hall R, Huss S, et al. Expression of the megalin C-terminal fragment by macrophages during liver fibrogenesis in mice. Biochim. Biophys. Acta1812(12), 1640–1648 (2011).
  • Thoen LF, Guimarães EL, Dollé L et al. A role for autophagy during hepatic stellate cell activation. J. Hepatol.55(6), 1353–1360 (2011).
  • Rockey DC, Housset CN, Friedman SL. Activation-dependent contractility of rat hepatic lipocytes in culture and in vivo. J. Clin. Invest.92(4), 1795–1804 (1993).
  • Tran-Thi TA, Kawada N, Decker K. Regulation of endothelin-1 action on the perfused rat liver. FEBS Lett.318(3), 353–357 (1993).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.