197
Views
13
CrossRef citations to date
0
Altmetric
Review

Microbes, intestinal inflammation and probiotics

, , , , &
Pages 81-94 | Published online: 10 Jan 2014

References

  • Michelsen KS, Arditi M. Toll-like receptors and innate immunity in gut homeostasis and pathology. Curr. Opin. Hematol.14, 48–54 (2007).
  • Srikanth CV, McCormick BA, Interactions of the intestinal epithelium with the pathogen and the indigenous microbiota: a three-way crosstalk. Interdiscip. Perspect. Infect. Dis.27, 62–68 (2008).
  • Iwasaki A. Mucosal dendritic cells. Annu. Rev. Immunol.25, 381–418 (2007).
  • Weltzin R, Lucia-Jandris P, Michetti P et al. Binding and transepithelial transport of immunoglobulins by intestinal M cells: demonstration using monoclonal IgA antibodies against enteric viral proteins. J. Cell Biol.108, 1673–1685 (1989).
  • Neutra MR, Kraehenbuhl JP. The role of transepithelial transport by M cells in microbial invasion and host defense. J. Cell Sci. Suppl.17, 209–215 (1993).
  • Rimoldi M, Chieppa M, Salucci V et al. Intestinal immune homeostasis is regulated by the crosstalk between epithelial cells and dendritic cells. Nat. Immunol.6, 507–514 (2005).
  • Turner JR. Intestinal mucosal barrier function in health and disease. Nat. Rev.9, 799–809 (2009).
  • Wilson C, Ouellette A, Satchell D et al. Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science286, 113–117 (1999).
  • Ayabe T, Satchell D, Wilson C et al. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat. Immunol.1, 113–118 (2000).
  • Margolis KG, Stevanovic K, Karamooz N et al. Enteric neuronal density contributes to the severity of intestinal inflammation. Gastroenterology141, 588–598 (2011).
  • Charagundla SR, Levine MS, Torigian DA et al. Diffuse intestinal ganglioneuromatosis mimicking Crohn’s disease. AJR Am. J. Roentgenol.182, 1166–1168 (2004).
  • Steinman RM. Dendritic cells in vivo: a key target for a new vaccine science. Immunity29, 319–324 (2008).
  • Huang FP, Platt N, Wykes M et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes. J. Exp. Med.191, 435–444 (2000).
  • Smith PD, Ochsenbauer-Jambor C, Smythies LE. Intestinal macrophages: unique effector cells of the innate immune system. Immunol. Rev.206, 149–159 (2005).
  • Wendelsdorf K, Bassaganya-Riera J, Hontecillas R et al. Model of colonic inflammation: immune modulatory mechanisms in inflammatory bowel disease. J. Theo. Bio.4, 1225–1239 (2010).
  • Eckburg PB, Bik EM, Bernstein CN et al. Diversity of the human intestinal microbial flora. Science308, 1635–1638 (2005).
  • Sartor RB. The influence of normal microbial flora on the development of chronic mucosal inflammation. Res. Immunol.148, 567–576 (1997).
  • Hacker H, Karin M. Regulation and function of IKK and IKK-related kinases. Sci. STKE357, 13 (2006).
  • Beutler B, Hoebe K, Du X et al. How we detect microbes and respond to them: the Toll-like receptors and their transducers. J. Leukoc. Biol.74, 479–485 (2003).
  • Kumar A, Wu H, Collier-Hyams LS et al. Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J.26, 4457–4466 (2007).
  • Kelly D, Cambell JI, King TP et al. Commensal anaerobic gut bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-gamma and RelA. Nat. Immunol.5, 104–112 (2004).
  • Silverman N, Paquette N, Immunology. The right resident bugs. Science319, 734–735 (2008).
  • Neish AS, Gewirtz AT, Zeng H et al. Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination. Science289, 1560–1563 (2000).
  • Stremmel W, Merle U, Zahn A et al. Retarded release phosphatidylcholine benefits patients with chronic active ulcerative colitis. Gut54, 966–971 (2005).
  • De Hertogh G, Aerssens J, De Hoogt R et al. Validation of 16S rDNA sequencing in microdissected bowel biopsies from Crohn’s disease patients to assess bacterial flora diversity. J. Pathol.209, 532–539 (2006).
  • Sears CL. Enterotoxigenic Bacteroides fragilis: a rogue among symbiotes. Clin. Microbiol. Rev.22, 349–369 (2009).
  • Sack RB, Myers LL, Almeido-Hill J et al. Enterotoxigenic Bacteroides fragilis: epidemiologic studies of its role as a human diarrhoeal pathogen. J. Diarrhoeal Dis. Res.10, 4–9 (1992).
  • Prindiville TP, Sheikh RA, Cohen SH et al.Bacteroides fragilis enterotoxin gene sequences in patients with inflammatory bowel disease. Emerg. Infect. Dis.6, 171–174 (2000).
  • Toprak NU, Yagci A, Gulloglu BM et al. A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin. Microbiol. Infect.12, 782–786 (2006).
  • Wu S, Rhee KJ, Zhang M et al.Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and gamma-secretase-dependent E-cadherin cleavage. J. Cell Sci.120, 1944–1952 (2007).
  • Halle S, Bumann D, Herbrand H et al. Solitary intestinal lymphoid tissue provides a productive port of entry for Salmonella enterica serovar Typhimurium. Infect. Immun.75, 1577–1585 (2007).
  • Niess JH, Brand S, Gu X et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science307, 254–258 (2005).
  • Vazquez-Torres A, Jones-Carson J, Baumler AJ et al. Extraintestinal dissemination of Salmonella by CD18-expressing phagocytes. Nature401, 804–808 (1999).
  • Klapproth JM, Sasaki M, Sherman M et al.Citrobacter rodentium lifA/efa1 is essential for colonic colonization and crypt cell hyperplasia in vivo. Infect. Immun.73, 1441–1451 (2005).
  • Guttman JA, Samki FN, Li Y et al. Evidence that tight junctions are disrupted due to intimate bacterial contact and not inflammation during attaching and effacing pathogen infection in vivo. Infect. Immun.74, 6075–6084 (2006).
  • Satsangi J, Jewell DP, Bell JI. The genetics of inflammatory bowel disease. Gut40, 572–574 (1997).
  • Rioux JD, Xavier RJ, Taylor KD et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet.39, 596–604 (2007).
  • Hampe J, Franke A, Rosentiel P et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet.39, 207–211 (2007).
  • Parkes M, Barrett JC, Prescott NJ et al. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat. Genet.39, 830–832 (2007).
  • Barrett JC, Hansoul S, Nicolae DL et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat. Genet.40, 955–962 (2008).
  • Parham C, Chirica M, Timans J et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J. Immunol.168, 5699–5708 (2002).
  • Parrello T, Monteleone G, Cucchiara S et al. Up-regulation of the IL-12 receptor beta 2 chain in Crohn’s disease. J. Immunol.165, 7234–7239 (2000).
  • Cua DJ, Sherlock J, Chen Y et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature421, 744–748 (2003).
  • Saitoh T, Fujita N, Jang MH et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature456, 264–268 (2008).
  • Bouma G, Strober W. The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol.3, 521–533 (2003).
  • Rahman MK, Midtling EH, Svingen PA et al. The pathogen recognition receptor NOD2 regulates human FOXP3+ T cell survival. J. Immunol.184, 7247–7256 (2010).
  • Hermiston ML, Gordon JI. Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin. Science270, 1203–1207 (1995).
  • Hue S, Ahern P, Buonocore S et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J. Exp. Med.203, 2473–2483 (2006).
  • Kullberg MC, Jankovic D, Feng CG et al. IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J. Exp. Med.203, 2485–2494 (2006).
  • Uhlig HH, McKenzie BS, Hue S et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity25, 309–318 (2006).
  • Yen D, Cheung J, Scheerens H et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest.116, 1310–1316 (2006).
  • Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature448, 427–434 (2007).
  • Manel N, Unutmaz D, Littman DR. The differentiation of human T(H)-17 cells requires transforming growth factor-beta and induction of the nuclear receptor RORgammat. Nat. Immunol.9, 641–649 (2008).
  • Travassos LH, Carneiro LA, Ramjeet M et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol.11, 55–62 (2010).
  • Galluzzi L, Kepp O, Zitvogel L et al. Bacterial invasion: linking autophagy and innate immunity. Curr. Biol.20, 106–108 (2010).
  • Kuballa P, Huett A, Rioux JD et al. Impaired autophagy of an intracellular pathogen induced by a Crohn’s disease associated ATG16L1 variant. PLoS One3, 3391 (2008).
  • Mizushima N, Levine B, Cuervo AM et al. Autophagy fights disease through cellular self-digestion. Nature451, 1069–1075 (2008).
  • Thompson AI, Lees CW. Genetics of ulcerative colitis. Inflamm. Bowel Dis.17, 831–848 (2011).
  • Chichlowski M, Hale LP. Bacterial–mucosal interactions in inflammatory bowel disease – an alliance gone bad. Am. J. Physiol. Gastrointest. Liver Physiol.295, 1139–1149 (2008)
  • Heazlewood CK, Cook MC, Eri R et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med.5, 54 (2008).
  • Hibi T, Ohara M, Kobayashi K et al. Enzyme linked immunosorbent assay (ELISA) and immunoprecipitation studies on anti-goblet cell antibody using a mucin producing cell line in patients with inflammatory bowel disease. Gut35, 224–230 (1994).
  • Folwaczny C, Noehl N, Tschop K et al. Goblet cell autoantibodies in patients with inflammatory bowel disease and their first-degree relatives. Gastroenterology113, 101–106 (1997).
  • An G, Wei B, Xia B et al. Increased susceptibility to colitis and colorectal tumors in mice lacking core 3-derived O-glycans. J. Exp. Med.204, 1417–1429 (2007).
  • Ho SB, Dvorak LA, Moor RE et al. Cysteine-rich domains of muc3 intestinal mucin promote cell migration, inhibit apoptosis, and accelerate wound healing. Gastroenterology131, 1501–1517 (2006).
  • Van der Sluis M, De Koning BA, De Bruijn AC et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology131, 117–129 (2006).
  • Madsen LK, Doyle JS, Jewell LD et al. Lactobacillus species prevents colitis in Interleukin-10 gene-deficient mice. Gastroenterology116(5), 1107–1114 (1999).
  • Madsen LK, Cornish A, Soper P et al. Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology121, 580 (2001).
  • Clayburgh DR, Barrett TA, Tang Y et al. Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo. J. Clin. Invest.115, 2702–2715 (2005).
  • Zolotarevsky Y, Hecht G, Koutsouris A et al. A membrane-permeant peptide that inhibits MLC kinase restores barrier function in in vitro models of intestinal disease. Gastroenterology123, 163–172 (2002).
  • Su L, Shen L, Clayburgh DR et al. Targeted epithelial tight junction dysfunction causes immune activation and contributes to development of experimental colitis. Gastroenterology136, 551–563 (2009).
  • Mahida YR. The key role of macrophages in the immunopathogenesis of inflammatory bowel disease. Inflam. Bowel Dis.6, 21–33 (2000).
  • Smythies LE, Sellers M, Clements RH et al. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J. Clin. Invest.115, 66–75 (2005).
  • Iwasaki A, Kelsall BL. Unique functions of CD11b+, CD8 alpha+, and double-negative Peyer’s patch dendritic cells. J. Immunol.166, 4884–4890 (2001).
  • Kuhn R, Lohler J, Rennick D et al. Interleukin-10-deficient mice develop chronic enterocolitis. Cell75, 263–274 (1993).
  • Kamada N, Hisamatsu T, Okamoto S et al. Abnormally differentiated subsets of intestinal macrophage play a key role in Th1-dominant chronic colitis through excess production of IL-12 and IL-23 in response to bacteria. J. Immunol.175, 6900–6908 (2005).
  • Imai Y, Irimura T. Quantitative measurement of carbohydrate binding activity of mouse macrophage lectin. J. Immunol. Methods171, 23–31 (1994).
  • Yamamoto K, Ishida C, Shinohara Y et al. Interaction of immobilized recombinant mouse C-type macrophage lectin with glycopeptides and oligosaccharides. Biochemistry33, 8159–8166 (1994).
  • Saba K, Denda-Nagai K, Irimura T. A C-type lectin MGL1/CD301a plays an anti-inflammatory role in murine experimental colitis. Am. J. Pathol.174, 144–152 (2009).
  • Rugtveit J, Brandtzaeg P, Halstensen TS et al. Increased macrophage subset in inflammatory bowel disease: apparent recruitment from peripheral blood monocytes. Gut35, 669–674 (1994).
  • Meuret GA, Bitzi A, Hammer GB. Macrophage turnover in Crohn’s disease and ulcerative colitis. Gastroenterology74, 501–503 (1978).
  • Grimm MC, Pullman WE, Bennett GM et al. Direct evidence of monocyte recruitment to inflammatory bowel disease mucosa. J. Gastrol. Hepatol.10, 387–395 (1995).
  • Reinecker HC, Loh EY, Ringler DJ et al. Monocyte-chemoattractant protein 1 gene expression in intestinal epithelial cells and inflammatory bowel disease mucosa. Gastroenterology108, 40–50 (1995).
  • Liu K, Victora GD, Schwickert TA et al.In vivo analysis of dendritic cell development and homeostasis. Science324, 392–397 (2009).
  • Schulz O, Jaensson E, Persson EK et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med.206, 3101–3114 (2009).
  • Krajina T, Leithauser F, Moller P et al. Colonic lamina propria dendritic cells in mice with CD4+ T cell-induced colitis. Eur. J. Immunol.33, 1073–1083 (2003).
  • Duchmann R, Zeitz M. Treg suppress colitis: the role of TGF-β. Gut55, 604–606 (2006).
  • Darrasse-Jeze G, Deroubaix S, Mouquet H et al. Feedback control of regulatory T cell homeostasis by dendritic cells in vivo. J. Exp. Med.206, 1853–1862 (2009).
  • Siddiqui KR, Laffont S, Powrie F. E-cadherin marks a subset of inflammatory dendritic cells that promote T cell-mediated colitis. Immunity32, 557–567 (2010).
  • Jung S. Dendritic cells: a question of upbringing. Immunity32, 502–504 (2010).
  • Varol C, Vallon-Eberhard A, Elinav E et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity31, 502–512 (2009).
  • Hart AL, Al-Hassi HO, Rigby RJ et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases. Gastroenterology129, 50–65 (2005).
  • de Baey A, Mende I, Baretton G et al. A subset of human dendritic cells in the T cell area of mucosa-associated lymphoid tissue with a high potential to produce TNF-alpha. J. Immunol.170, 5089–5094 (2003).
  • de Baey A, Mende I, Riethmueller G et al. Phenotype and function of human dendritic cells derived from M-DC8(+) monocytes. Eur. J. Immunol.31, 1646–1655 (2001).
  • Becker C, Wirtz S, Blessing M et al. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J. Clin. Invest.112, 693–706 (2003).
  • Duerr RH, Taylor KD, Brant SR et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science314, 1461–1463 (2006).
  • Glas J, Seiderer J, Wetzke M et al. rs1004819 is the main disease-associated IL23R variant in German Crohn’s disease patients: combined analysis of IL23R, CARD15, and OCTN1/2 variants. PLoS One2, 819 (2007).
  • Mizoguchi A, Ogawa A, Takedatsu H et al. Dependence of intestinal granuloma formation on unique myeloid DC-like cells. J. Clin. Invest.117, 605–615 (2007).
  • von Boehmer H. Oral tolerance: is it all retinoic acid? J. Exp. Med.204, 1737–1739 (2007).
  • Johansson-Lindbom B, Svensson M, Pabst O et al. Functional specialization of gut CD103+ dendritic cells in the regulation of tissue-selective T cell homing. J. Exp. Med.202, 1063–1073 (2005).
  • Duerkop BA, Vaishnava S, Hooper LV. Immune responses to the microbiota at the intestinal mucosal surface. Immunity31, 368–376 (2009).
  • Strober W. The multifaceted influence of the mucosal microflora on mucosal dendritic cell responses. Immunity31, 377–388 (2009).
  • Barnes MJ, Powrie F. Regulatory T cells reinforce intestinal homeostasis. Immunity31, 401–411 (2009).
  • Mosmann TR, Cherwinski H, Bond MW et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol.136, 2348–2357 (1986).
  • Wilson NJ, Boniface K, Chan JR et al. Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat. Immunol.8, 950–957 (2007).
  • Mottet C, Uhlig HH, Powrie F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J. Immunol.170, 3939–3943 (2003).
  • Maul J, Loddenkemper C, Mundt P et al. Peripheral and intestinal regulatory CD4+ CD25high T cells in inflammatory bowel disease. Gastroenterology128, 1868–1878 (2005).
  • Makita S, Kanai T, Oshima S et al. CD4+CD25bright T cells in human intestinal lamina propria as regulatory cells. J. Immunol.173, 3119–3130 (2004).
  • Defranco AL, Locksley RM, Robertson M. The immune response in infection and inflammatory disease. Immunity218–219 (2007).
  • Bellizzi AM, Frankel WL. Colorectal cancer due to deficiency in DNA mismatch repair function: a review. Adv. Anatom. Pathol.16, 405–417 (2009).
  • Rogler G. Gastrointestinal and liver adverse effects of drugs used for treating IBD. Best Pract. Res. Clin. Gastroenterol.24, 157–165 (2010).
  • Scribano M, Prantera C, Review article: medical treatment of moderate to severe Crohn’s disease. Aliment. Pharmacol. Ther.17, 23–30 (2003).
  • Truelove SC, Witts LJ. Cortisone and corticotrophin in ulcerative colitis. BMJ1, 387–394 (1959).
  • Jewell DP. Corticosteroids for the management of ulcerative colitis and Crohn’s disease. Gastroenterol. Clin. North Am.18, 21–34 (1989).
  • Brattsand R, Linden M. Cytokine modulation by glucocorticoids: mechanisms and actions in cellular studies. Aliment. Pharmacol. Ther.10, 81–90 (1996).
  • de Haij S, Daha MR, van Kooten C. Mechanism of steroid action in renal epithelial cells. Kidney Int.65, 1577–1588 (2004).
  • Di Fazano CS, Messica O, Quennesson S et al. Two new cases of glucocorticoid-induced pancreatitis. Rev. Rhum. Engl. Ed.66, 235 (1999).
  • Sandborn WJ. Azathioprine: state of the art in inflammatory bowel disease. Scand. J. Gastroenterol. Suppl.225, 92–99 (1998).
  • Garcia-Lopez S, Gomollon-Garcia F, Perez-Gisbert J. Cyclosporine in the treatment of severe attack of ulcerative colitis: a systematic review. Gastroenterol. Hepatol.28, 607–614 (2005).
  • Essayan DM. Cyclic nucleotide phosphodiesterases. J. Allergy Clin. Immunol.108, 671–680 (2001).
  • Marques LJ, Zheng L, Poulakis N et al. Pentoxifylline inhibits TNF-α production from human alveolar macrophages. Am. J. Respir. Crit. Care Med.159, 508–511 (1999).
  • Brustolim D, Ribeiro-dos-Santos R, Kast RE et al. A new chapter opens in anti-inflammatory treatments: the antidepressant bupropion lowers production of tumor necrosis factor-alpha and interferon-gamma in mice. Int. Immunopharmacol.6, 903–907 (2006).
  • Pache I, Rogler G, Felley C. TNF-α blockers in inflammatory bowel diseases: practical consensus recommendations and a user’s guide. Swiss. Med. Wkly139, 278–287 (2009).
  • Mohamadzadeh M, Duong T, Hoover T et al. Targeting mucosal dendritic cells with microbial antigens from probiotic lactic acid bacteria. Expert Rev. Vac.7, 163–174 (2008).
  • Dal Bello F, Hertel C. Oral cavity as natural reservoir for intestinal lactobacilli. Syst. Appl. Microbiol.29, 69–76 (2006).
  • Ouwehand AC, Salminen S, Isolauri E. Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek82, 279–289 (2002).
  • Roberts M, Chatfield S, Pickard D et al. Comparison of abilities of Salmonella enterica Serovar Typhimurium aroA aroD and aroA htrA mutants to act as live vectors. Infect. Immun.68, 6041–6043 (2000).
  • Stevenson A, Roberts M. Use of Bordetella bronchiseptica and Bordetella pertussis as live vaccines and vectors for heterologous antigens. FEMS Immunol. Med. Microbiol.37, 121–128 (2003).
  • Saklani-Jusforgues H, Fontan E, Soussi N et al. Enteral immunization with attenuated recombinant Listeria monocytogenes as a live vaccine vector: organ-dependent dynamics of CD4 T lymphocytes reactive to a Leishmania major tracer epitope. Infect. Immun.71, 1083–1090 (2003).
  • Pouwels PH, Leer RJ, Shaw M et al. Lactic acid bacteria as antigen delivery vehicles for oral immunization purposes. Int. J. Food Microbiol.41, 155–167 (1998).
  • Mercenier A, Pavan S, Pot B. Probiotics as biotherapeutic agents: present knowledge and future prospects. Curr. Pharm. Des.9, 175–191 (2003).
  • Cain AM, Kelly Karpa KD. Clinical utility of probiotics in inflammatory bowel disease. Alt. Ther.17, 72–79 (2011).
  • Fitzpatrick LR, Hertzog KL, Quatse AL et al. Effects of the probiotic formulation VSL#3 on colitis in weanling rats. J. Pediatr. Gastroenterol. Nutr.44, 561–570 (2007).
  • Shibolet O, Karmeli F, Eliakim R et al. Variable response to probiotics in two models of experimental colitis in rats. Inflamm. Bowel Dis.8, 399–406 (2002).
  • Chen ML, Yan BS, Bando Y et al. Latency-associated peptide identifies a novel CD4+CD25+ regulatory T cell subset with TGFbeta-mediated function and enhanced suppression of experimental autoimmune encephalomyelitis. J. Immunol.180, 7327–7337 (2008).
  • Lammers KM, Vergopoulos A, Babel N et al. Probiotic therapy in the prevention of pouchitis onset: decreased interleukin-1beta, interleukin-8, and interferon-gamma gene expression. Inflamm. Bowel Dis.11, 447–454 (2005).
  • Ulisse S, Gionchetti P, D’Alo S et al. Expression of cytokines, inducible nitric oxide synthase, and matrix metalloproteinases in pouchitis: effects of probiotic treatment. Am. J. Gastroenterol.96, 2691–2699 (2001).
  • Di Giacinto C, Marnaro M, Sanchez M et al. Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-beta-bearing regulatory cells. J. Immunol.174, 3237–3246 (2005).
  • Bibiloni R, Fedorak RN, Tannock GW et al. VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am. J. Gastroenterol.100, 1539–1546 (2005).
  • Madsen K, Cornish A, Soper P et al. Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology121, 580–591 (2001).
  • Rachmilewitz D, Katakura K, Karmell F et al. Toll-like receptor 9 signaling mediates the anti-inflammatory effects of probiotics in murine experimental colitis. Gastroenterology126, 520–528 (2004).
  • Pagnini C, Saeed R, Bamias G et al. Probiotics promote gut health through stimulation of epithelial innate immunity. Proc. Natl Acad. Sci. USA107, 454–459 (2010).
  • Shen B, Brezezinski A, Fazio VW et al. Maintenance therapy with a probiotic in antibiotic-dependent pouchitis: experience in clinical practice. Aliment. Pharmacol. Ther.22, 721–728 (2005).
  • Eizaguirre I, Urkia NG, Arsensio AB et al. Probiotic supplementation reduces the risk of bacterial translocation in experimental short bowel syndrome. J. Pediatr. Surg.37, 699–702 (2002).
  • Mayer ML, Phillips CM, Stadnyk AW et al. Synergistic BM–DC activation and immune induction by the oral vaccine vector Streptococcus gordonii and exogenous tumor necrosis factor. Mol. Immunol.46, 1883–1891 (2009).
  • Mayer ML, Phillips CM, Townsend RA et al. Differential activation of dendritic cells by Toll-like receptor agonists isolated from the Gram positive vaccine vector Streptococcus gordonii. Scand. J. Immunol.69, 351–356 (2009).
  • Mohamadzadeh M, Pfeiler EA, Brown JB et al. Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc. Natl Acad. Sci. USA108, 4623–4630 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.