48
Views
3
CrossRef citations to date
0
Altmetric
Review

Molecular biomarkers and ablative therapies for Barrett’s esophagus

, , &
Pages 567-581 | Published online: 10 Jan 2014

References

  • Oberg S, Peters JH, DeMeester TR et al. Inflammation and specialized intestinal metaplasia of cardiac mucosa is a manifestation of gastroesophageal reflux disease. Ann. Surg. 226(4), 522–530; discussion 530 (1997).
  • Phillips WA, Lord RV, Nancarrow DJ, Watson DI, Whiteman DC. Barrett’s esophagus. J. Gastroenterol. Hepatol. 26(4), 639–648 (2011).
  • Pohl H, Welch HG. The role of overdiagnosis and reclassification in the marked increase of esophageal adenocarcinoma incidence. J. Natl Cancer Inst. 97(2), 142–146 (2005).
  • Brown LM, Devesa SS. Epidemiologic trends in esophageal and gastric cancer in the United States. Surg. Oncol. Clin. N. Am. 11(2), 235–256 (2002).
  • Stavrou EP, McElroy HJ, Baker DF, Smith G, Bishop JF. Adenocarcinoma of the oesophagus: incidence and survival rates in New South Wales, 1972–2005. Med. J. Aust. 191(6), 310–314 (2009).
  • Müller JM, Erasmi H, Stelzner M, Zieren U, Pichlmaier H. Surgical therapy of oesophageal carcinoma. Br. J. Surg. 77(8), 845–857 (1990).
  • Jamieson GG, Mathew G, Ludemann R, Wayman J, Myers JC, Devitt PG. Postoperative mortality following oesophagectomy and problems in reporting its rate. Br. J. Surg. 91(8), 943–947 (2004).
  • Crane SJ, Locke GR 3rd, Harmsen WS, Zinsmeister AR, Romero Y, Talley NJ. Survival trends in patients with gastric and esophageal adenocarcinomas: a population-based study. Mayo Clin. Proc. 83(10), 1087–1094 (2008).
  • Wang DH, Souza RF. Biology of Barrett’s esophagus and esophageal adenocarcinoma. Gastrointest. Endosc. Clin. N. Am. 21(1), 25–38 (2011).
  • Shaheen NJ, Crosby MA, Bozymski EM, Sandler RS. Is there publication bias in the reporting of cancer risk in Barrett’s esophagus? Gastroenterology 119(2), 333–338 (2000).
  • Chang EY, Morris CD, Seltman AK et al. The effect of antireflux surgery on esophageal carcinogenesis in patients with Barrett esophagus: a systematic review. Ann. Surg. 246(1), 11–21 (2007).
  • Wani S, Falk G, Hall M et al. Patients with nondysplastic Barrett’s esophagus have low risks for developing dysplasia or esophageal adenocarcinoma. Clin. Gastroenterol. Hepatol. 9(3), 220–227; quiz e26 (2011).
  • Bhat S, Coleman HG, Yousef F et al. Risk of malignant progression in Barrett’s esophagus patients: results from a large population-based study. J. Natl Cancer Inst. 103(13), 1049–1057 (2011).
  • Hvid-Jensen F, Pedersen L, Drewes AM, Sørensen HT, Funch-Jensen P. Incidence of adenocarcinoma among patients with Barrett’s esophagus. N. Engl. J. Med. 365(15), 1375–1383 (2011).
  • Peters FT, Ganesh S, Kuipers EJ et al. Endoscopic regression of Barrett’s oesophagus during omeprazole treatment; a randomised double blind study. Gut 45(4), 489–494 (1999).
  • Malesci A, Savarino V, Zentilin P et al. Partial regression of Barrett’s esophagus by long-term therapy with high-dose omeprazole. Gastrointest. Endosc. 44(6), 700–705 (1996).
  • Csendes A, Burdiles P, Braghetto I, Korn O. Adenocarcinoma appearing very late after antireflux surgery for Barrett’s esophagus: long-term follow-up, review of the literature, and addition of six patients. J. Gastrointest. Surg. 8(4), 434–441 (2004).
  • Hofstetter WL, Peters JH, DeMeester TR et al. Long-term outcome of antireflux surgery in patients with Barrett’s esophagus. Ann. Surg. 234(4), 532–538; discussion 538 (2001).
  • Parrilla P, Martinez de Haro LF, Ortiz A et al. Long-term results of a randomized prospective study comparing medical and surgical treatment of Barrett’s esophagus. Ann. Surg. 237(3), 291–298 (2003).
  • Spechler SJ, Lee E, Ahnen D et al. Long-term outcome of medical and surgical therapies for gastroesophageal reflux disease: follow-up of a randomized controlled trial. JAMA 285(18), 2331–2338 (2001).
  • Spechler SJ. Comparison of medical and surgical therapy for complicated gastroesophageal reflux disease in veterans. The Department of Veterans Affairs Gastroesophageal Reflux Disease Study Group. N. Engl. J. Med. 326(12), 786–792 (1992).
  • Hornick JL, Blount PL, Sanchez CA et al. Biologic properties of columnar epithelium underneath re-epithelialized squamous mucosa in Barrett’s esophagus. Am. J. Surg. Pathol. 29(3), 372–380 (2005).
  • Kauttu T, Räsänen J, Krogerus L, Sihvo E, Puolakkainen P, Salo JA. Long-term results of ablation with antireflux surgery for Barrett’s esophagus: a clinical and molecular biologic study. Surg. Endosc. 26(7), 1892–1897 (2012).
  • Van Laethem JL, Cremer M, Peny MO, Delhaye M, Devière J. Eradication of Barrett’s mucosa with argon plasma coagulation and acid suppression: immediate and mid term results. Gut 43(6), 747–751 (1998).
  • Basu KK, Pick B, Bale R, West KP, de Caestecker JS. Efficacy and one-year follow-up of argon plasma coagulation therapy for ablation of Barrett’s oesophagus: factors determining persistence and recurrence of Barrett’s epithelium. Gut 51(6), 776–780 (2002).
  • Pereira-Lima JC, Busnello JV, Saul C et al. High-power setting argon plasma coagulation for the eradication of Barrett’s esophagus. Am. J. Gastroenterol. 95(7), 1661–1668 (2000).
  • Bright T, Watson DI, Tam W et al. Randomized trial of argon plasma coagulation versus endoscopic surveillance for barrett esophagus after antireflux surgery: late results. Ann. Surg. 246(6), 1016–1020 (2007).
  • Gossner L, Stolte M, Sroka R et al. Photodynamic ablation of high-grade dysplasia and early cancer in Barrett’s esophagus by means of 5-aminolevulinic acid. Gastroenterology 114(3), 448–455 (1998).
  • Barr H, Shepherd NA, Dix A, Roberts DJ, Tan WC, Krasner N. Eradication of high-grade dysplasia in columnar-lined (Barrett’s) oesophagus by photodynamic therapy with endogenously generated protoporphyrin IX. Lancet 348(9027), 584–585 (1996).
  • Overholt BF, Panjehpour M, Haydek JM. Photodynamic therapy for Barrett’s esophagus: follow-up in 100 patients. Gastrointest. Endosc. 49(1), 1–7 (1999).
  • Sampliner RE, Faigel D, Fennerty MB et al. Effective and safe endoscopic reversal of nondysplastic Barrett’s esophagus with thermal electrocoagulation combined with high-dose acid inhibition: a multicenter study. Gastrointest. Endosc. 53(6), 554–558 (2001).
  • Sharma P, Wani S, Weston AP et al. A randomised controlled trial of ablation of Barrett’s oesophagus with multipolar electrocoagulation versus argon plasma coagulation in combination with acid suppression: long-term results. Gut 55(9), 1233–1239 (2006).
  • Barham CP, Jones RL, Biddlestone LR, Hardwick RH, Shepherd NA, Barr H. Photothermal laser ablation of Barrett’s oesophagus: endoscopic and histological evidence of squamous re-epithelialisation. Gut 41(3), 281–284 (1997).
  • Bonavina L, Ceriani C, Carazzone A, Segalin A, Ferrero S, Peracchia A. Endoscopic laser ablation of nondysplastic Barrett’s epithelium: is it worthwhile? J. Gastrointest. Surg. 3(2), 194–199 (1999).
  • Norberto L, Polese L, Angriman I, Erroi F, Cecchetto A, D’Amico DF. High-energy laser therapy of Barrett’s esophagus: preliminary results. World J. Surg. 28(4), 350–354 (2004).
  • Lyday WD, Corbett FS, Kuperman DA et al. Radiofrequency ablation of Barrett’s esophagus: outcomes of 429 patients from a multicenter community practice registry. Endoscopy 42(4), 272–278 (2010).
  • Ganz RA, Overholt BF, Sharma VK et al.; U.S. Multicenter Registry. Circumferential ablation of Barrett’s esophagus that contains high-grade dysplasia: a U.S. Multicenter Registry. Gastrointest. Endosc. 68(1), 35–40 (2008).
  • Gross CP, Cruz-Correa M, Canto MI, McNeil-Solis C, Valente TW, Powe NR. The adoption of ablation therapy for Barrett’s esophagus: a cohort study of gastroenterologists. Am. J. Gastroenterol. 97(2), 279–286 (2002).
  • Hage M, Siersema PD, van Dekken H et al. 5-aminolevulinic acid photodynamic therapy versus argon plasma coagulation for ablation of Barrett’s oesophagus: a randomised trial. Gut 53(6), 785–790 (2004).
  • Kelty CJ, Ackroyd R, Brown NJ, Stephenson TJ, Stoddard CJ, Reed MW. Endoscopic ablation of Barrett’s oesophagus: a randomized-controlled trial of photodynamic therapy vs. argon plasma coagulation. Aliment. Pharmacol. Ther. 20(11–12), 1289–1296 (2004).
  • Overholt BF, Wang KK, Burdick JS et al.; International Photodynamic Group for High-Grade Dysplasia in Barrett’s Esophagus. Five-year efficacy and safety of photodynamic therapy with Photofrin® in Barrett’s high-grade dysplasia. Gastrointest. Endosc. 66(3), 460–468 (2007).
  • Fleischer DE, Overholt BF, Sharma VK et al. Endoscopic radiofrequency ablation for Barrett’s esophagus: 5-year outcomes from a prospective multicenter trial. Endoscopy 42(10), 781–789 (2010).
  • Shaheen NJ, Overholt BF, Sampliner RE et al. Durability of radiofrequency ablation in Barrett’s esophagus with dysplasia. Gastroenterology 141(2), 460–468 (2011).
  • Byrne JP, Armstrong GR, Attwood SE. Restoration of the normal squamous lining in Barrett’s esophagus by argon beam plasma coagulation. Am. J. Gastroenterol. 93(10), 1810–1815 (1998).
  • Hernandez JC, Reicher S, Chung D et al. Pilot series of radiofrequency ablation of Barrett’s esophagus with or without neoplasia. Endoscopy 40(5), 388–392 (2008).
  • Adler DC, Zhou C, Tsai TH et al. Three-dimensional optical coherence tomography of Barrett’s esophagus and buried glands beneath neosquamous epithelium following radiofrequency ablation. Endoscopy 41(9), 773–776 (2009).
  • Van Laethem JL, Peny MO, Salmon I, Cremer M, Devière J. Intramucosal adenocarcinoma arising under squamous re-epithelialisation of Barrett’s oesophagus. Gut 46(4), 574–577 (2000).
  • Shand A, Dallal H, Palmer K, Ghosh S, MacIntyre M. Adenocarcinoma arising in columnar-lined oesophagus following treatment with argon plasma coagulation. Gut 48(4), 580–581 (2001).
  • Ragunath K, Krasner N, Raman VS, Haqqani MT, Phillips CJ, Cheung I. Endoscopic ablation of dysplastic Barrett’s oesophagus comparing argon plasma coagulation and photodynamic therapy: a randomized prospective trial assessing efficacy and cost-effectiveness. Scand. J. Gastroenterol. 40(7), 750–758 (2005).
  • Overholt BF, Panjehpour M, Halberg DL. Photodynamic therapy for Barrett’s esophagus with dysplasia and/or early stage carcinoma: long-term results. Gastrointest. Endosc. 58(2), 183–188 (2003).
  • Fukasawa K, Choi T, Kuriyama R, Rulong S, Vande Woude GF. Abnormal centrosome amplification in the absence of p53. Science 271(5256), 1744–1747 (1996).
  • de Vries A, Flores ER, Miranda B et al. Targeted point mutations of p53 lead to dominant-negative inhibition of wild-type p53 function. Proc. Natl Acad. Sci. USA 99(5), 2948–2953 (2002).
  • Dridi W, Krabchi K, Gadji M et al. Dominant negative activity of mutated p53 proteins. Med. Sci. (Paris) 22(3), 301–307 (2006).
  • Goldstein I, Marcel V, Olivier M, Oren M, Rotter V, Hainaut P. Understanding wild-type and mutant p53 activities in human cancer: new landmarks on the way to targeted therapies. Cancer Gene Ther. 18(1), 2–11 (2011).
  • Götte K, Riedel F, Neubauer J, Schäfer C, Coy JF, Hörmann K. The relationship between allelic imbalance on 17p, p53 mutation and p53 overexpression in head and neck cancer. Int. J. Oncol. 19(2), 331–336 (2001).
  • Levine DS, Haggitt RC, Blount PL, Rabinovitch PS, Rusch VW, Reid BJ. An endoscopic biopsy protocol can differentiate high-grade dysplasia from early adenocarcinoma in Barrett’s esophagus. Gastroenterology 105(1), 40–50 (1993).
  • Prevo LJ, Sanchez CA, Galipeau PC, Reid BJ. p53-mutant clones and field effects in Barrett’s esophagus. Cancer Res. 59(19), 4784–4787 (1999).
  • Weston AP, Banerjee SK, Sharma P, Tran TM, Richards R, Cherian R. p53 protein overexpression in low-grade dysplasia (LGD) in Barrett’s esophagus: immunohistochemical marker predictive of progression. Am. J. Gastroenterol. 96(5), 1355–1362 (2001).
  • Coggi G, Bosari S, Roncalli M et al. p53 protein accumulation and p53 gene mutation in esophageal carcinoma. A molecular and immunohistochemical study with clinicopathologic correlations. Cancer 79(3), 425–432 (1997).
  • Murray L, Sedo A, Scott M et al. TP53 and progression from Barrett’s metaplasia to oesophageal adenocarcinoma in a UK population cohort. Gut 55(10), 1390–1397 (2006).
  • Reid BJ, Prevo LJ, Galipeau PC et al. Predictors of progression in Barrett’s esophagus II: baseline 17p (p53) loss of heterozygosity identifies a patient subset at increased risk for neoplastic progression. Am. J. Gastroenterol. 96(10), 2839–2848 (2001).
  • Galipeau PC, Li X, Blount PL et al. NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma. PLoS Med. 4(2), e67 (2007).
  • Wongsurawat VJ, Finley JC, Galipeau PC et al. Genetic mechanisms of TP53 loss of heterozygosity in Barrett’s esophagus: implications for biomarker validation. Cancer Epidemiol. Biomarkers Prev. 15(3), 509–516 (2006).
  • Reid BJ, Haggitt RC, Rubin CE, Rabinovitch PS. Barrett’s esophagus. Correlation between flow cytometry and histology in detection of patients at risk for adenocarcinoma. Gastroenterology 93(1), 1–11 (1987).
  • Reid BJ, Levine DS, Longton G, Blount PL, Rabinovitch PS. Predictors of progression to cancer in Barrett’s esophagus: baseline histology and flow cytometry identify low- and high-risk patient subsets. Am. J. Gastroenterol. 95(7), 1669–1676 (2000).
  • Rabinovitch PS, Longton G, Blount PL, Levine DS, Reid BJ. Predictors of progression in Barrett’s esophagus III: baseline flow cytometric variables. Am. J. Gastroenterol. 96(11), 3071–3083 (2001).
  • Maley CC, Galipeau PC, Li X et al. The combination of genetic instability and clonal expansion predicts progression to esophageal adenocarcinoma. Cancer Res. 64(20), 7629–7633 (2004).
  • Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13(12), 1501–1512 (1999).
  • Wong DJ, Paulson TG, Prevo LJ et al. p16(INK4a) lesions are common, early abnormalities that undergo clonal expansion in Barrett’s metaplastic epithelium. Cancer Res. 61(22), 8284–8289 (2001).
  • Bian YS, Osterheld MC, Fontolliet C, Bosman FT, Benhattar J. p16 inactivation by methylation of the CDKN2A promoter occurs early during neoplastic progression in Barrett’s esophagus. Gastroenterology 122(4), 1113–1121 (2002).
  • Sherr CJ. Cancer cell cycles. Science 274(5293), 1672–1677 (1996).
  • Bani-Hani K, Martin IG, Hardie LJ et al. Prospective study of cyclin D1 overexpression in Barrett’s esophagus: association with increased risk of adenocarcinoma. J. Natl Cancer Inst. 92(16), 1316–1321 (2000).
  • Pellish LJ, Hermos JA, Eastwood GL. Cell proliferation in three types of Barrett’s epithelium. Gut 21(1), 26–31 (1980).
  • Scholzen T, Gerdes J. The Ki-67 protein: from the known and the unknown. J. Cell. Physiol. 182(3), 311–322 (2000).
  • Chao DL, Sanchez CA, Galipeau PC et al. Cell proliferation, cell cycle abnormalities, and cancer outcome in patients with Barrett’s esophagus: a long-term prospective study. Clin. Cancer Res. 14(21), 6988–6995 (2008).
  • Sirieix PS, O’Donovan M, Brown J, Save V, Coleman N, Fitzgerald RC. Surface expression of minichromosome maintenance proteins provides a novel method for detecting patients at risk for developing adenocarcinoma in Barrett’s esophagus. Clin. Cancer Res. 9(7), 2560–2566 (2003).
  • Todorov IT, Werness BA, Wang HQ et al. HsMCM2/BM28: a novel proliferation marker for human tumors and normal tissues. Lab. Invest. 78(1), 73–78 (1998).
  • Esteller M. Relevance of DNA methylation in the management of cancer. Lancet Oncol. 4(6), 351–358 (2003).
  • Herman JG, Baylin SB. Gene silencing in cancer in association with promoter hypermethylation. N. Engl. J. Med. 349(21), 2042–2054 (2003).
  • Wong DJ, Barrett MT, Stöger R, Emond MJ, Reid BJ. p16INK4a promoter is hypermethylated at a high frequency in esophageal adenocarcinomas. Cancer Res. 57(13), 2619–2622 (1997).
  • Eads CA, Lord RV, Kurumboor SK et al. Fields of aberrant CpG island hypermethylation in Barrett’s esophagus and associated adenocarcinoma. Cancer Res. 60(18), 5021–5026 (2000).
  • Schulmann K, Sterian A, Berki A et al. Inactivation of p16, RUNX3, and HPP1 occurs early in Barrett’s-associated neoplastic progression and predicts progression risk. Oncogene 24(25), 4138–4148 (2005).
  • Clément G, Braunschweig R, Pasquier N, Bosman FT, Benhattar J. Methylation of APC, TIMP3, and TERT: a new predictive marker to distinguish Barrett’s oesophagus patients at risk for malignant transformation. J. Pathol. 208(1), 100–107 (2006).
  • Jin Z, Cheng Y, Gu W et al. A multicenter, double-blinded validation study of methylation biomarkers for progression prediction in Barrett’s esophagus. Cancer Res. 69(10), 4112–4115 (2009).
  • Brock MV, Gou M, Akiyama Y et al. Prognostic importance of promoter hypermethylation of multiple genes in esophageal adenocarcinoma. Clin. Cancer Res. 9(8), 2912–2919 (2003).
  • Kaz AM, Wong CJ, Luo Y et al. DNA methylation profiling in Barrett’s esophagus and esophageal adenocarcinoma reveals unique methylation signatures and molecular subclasses. Epigenetics 6(12), 1403–1412 (2011).
  • Krishnadath KK, Wang KK, Taniguchi K et al. Persistent genetic abnormalities in Barrett’s esophagus after photodynamic therapy. Gastroenterology 119(3), 624–630 (2000).
  • Hage M, Siersema PD, Vissers KJ et al. Molecular evaluation of ablative therapy of Barrett’s oesophagus. J. Pathol. 205(1), 57–64 (2005).
  • Hage M, Siersema PD, Vissers KJ et al. Genomic analysis of Barrett’s esophagus after ablative therapy: persistence of genetic alterations at tumor suppressor loci. Int. J. Cancer 118(1), 155–160 (2006).
  • Hornick JL, Mino-Kenudson M, Lauwers GY, Liu W, Goyal R, Odze RD. Buried Barrett’s epithelium following photodynamic therapy shows reduced crypt proliferation and absence of DNA content abnormalities. Am. J. Gastroenterol. 103(1), 38–47 (2008).
  • Dvorak K, Ramsey L, Payne CM et al. Abnormal expression of biomarkers in incompletely ablated Barrett’s esophagus. Ann. Surg. 244(6), 1031–1036 (2006).
  • Vaccaro BJ, Gonzalez S, Poneros JM et al. Detection of intestinal metaplasia after successful eradication of Barrett’s Esophagus with radiofrequency ablation. Dig. Dis. Sci. 56(7), 1996–2000 (2011).
  • Shaheen NJ, Sharma P, Overholt BF et al. Radiofrequency ablation in Barrett’s esophagus with dysplasia. N. Engl. J. Med. 360(22), 2277–2288 (2009).
  • Garewal H, Ramsey L, Sharma P, Kraus K, Sampliner R, Fass R. Biomarker studies in reversed Barrett’s esophagus. Am. J. Gastroenterol. 94(10), 2829–2833 (1999).
  • Lopes CV, Pereira-Lima J, Hartmann AA. p53 immunohistochemical expression in Barrett’s esophagus before and after endoscopic ablation by argon plasma coagulation. Scand. J. Gastroenterol. 40(3), 259–263 (2005).
  • Paulson TG, Xu L, Sanchez C et al. Neosquamous epithelium does not typically arise from Barrett’s epithelium. Clin. Cancer Res. 12(6), 1701–1706 (2006).
  • Nicholson AM, Graham TA, Simpson A et al. Barrett’s metaplasia glands are clonal, contain multiple stem cells and share a common squamous progenitor. Gut 61(10), 1380–1389 (2011).
  • Panjehpour M, Coppola D, Overholt BF, Vo-Dinh T, Overholt S. Photodynamic therapy of Barrett’s esophagus: ablation of Barrett’s mucosa and reduction in p53 protein expression after treatment. Anticancer Res. 28(1B), 485–489 (2008).
  • Pouw RE, Gondrie JJ, Rygiel AM et al. Properties of the neosquamous epithelium after radiofrequency ablation of Barrett’s esophagus containing neoplasia. Am. J. Gastroenterol. 104(6), 1366–1373 (2009).
  • Krishnan K, Komanduri S, Cluley J et al. Radiofrequency ablation for dysplasia in Barrett’s esophagus restores b-catenin activation within esophageal progenitor cells. Dig. Dis. Sci. 57(2), 294–302 (2012).
  • Veeramachaneni NK, Kubokura H, Lin L et al. Down-regulation of β catenin inhibits the growth of esophageal carcinoma cells. J. Thorac. Cardiovasc. Surg. 127(1), 92–98 (2004).
  • Clément G, Braunschweig R, Pasquier N, Bosman FT, Benhattar J. Alterations of the Wnt signaling pathway during the neoplastic progression of Barrett’s esophagus. Oncogene 25(21), 3084–3092 (2006).
  • Grotenhuis BA, Dinjens WN, Wijnhoven BP et al. Barrett’s oesophageal adenocarcinoma encompasses tumour-initiating cells that do not express common cancer stem cell markers. J. Pathol. 221(4), 379–389 (2010).
  • Bian YS, Osterheld MC, Bosman FT, Fontolliet C, Benhattar J. Nuclear accumulation of β-catenin is a common and early event during neoplastic progression of Barrett esophagus. Am. J. Clin. Pathol. 114(4), 583–590 (2000).
  • Gray NA, Odze RD, Spechler SJ. Buried metaplasia after endoscopic ablation of Barrett’s esophagus: a systematic review. Am. J. Gastroenterol. 106(11), 1899–1908; quiz 1909 (2011).
  • Buttar NS, Wang KK, Sebo TJ et al. Extent of high-grade dysplasia in Barrett’s esophagus correlates with risk of adenocarcinoma. Gastroenterology 120(7), 1630–1639 (2001).
  • Prasad GA, Wang KK, Halling KC et al. Utility of biomarkers in prediction of response to ablative therapy in Barrett’s esophagus. Gastroenterology 135(2), 370–379 (2008).
  • Wijnhoven BP, Michael MZ, Watson DI. MicroRNAs and cancer. Br. J. Surg. 94(1), 23–30 (2007).
  • Calin GA, Croce CM. MicroRNA-cancer connection: the beginning of a new tale. Cancer Res. 66(15), 7390–7394 (2006).
  • Watson DI, Wijnhoven BP, Michael MZ et al. MicroRNA expression profiles in barrett’s oesophagus. ANZ J. of Surg. 77(Suppl. 1), A45 (2007).
  • Dijckmeester WA, Wijnhoven BP, Watson DI et al. MicroRNA-143 and -205 expression in neosquamous esophageal epithelium following Argon plasma ablation of Barrett’s esophagus. J. Gastrointest. Surg. 13(5), 846–853 (2009).
  • van Baal JW, Milano F, Rygiel AM et al. A comparative analysis by SAGE of gene expression profiles of Barrett’s esophagus, normal squamous esophagus, and gastric cardia. Gastroenterology 129(4), 1274–1281 (2005).
  • Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31(1), 11–24 (1982).
  • Liu Q, Teh M, Ito K, Shah N, Ito Y, Yeoh KG. CDX2 expression is progressively decreased in human gastric intestinal metaplasia, dysplasia and cancer. Mod. Pathol. 20(12), 1286–1297 (2007).
  • Groisman GM, Amar M, Meir A. Expression of the intestinal marker Cdx2 in the columnar-lined esophagus with and without intestinal (Barrett’s) metaplasia. Mod. Pathol. 17(10), 1282–1288 (2004).
  • Kerkhof M, Bax DA, Moons LM et al.; For The Cybar Study Group. Does CDX2 expression predict Barrett’s metaplasia in oesophageal columnar epithelium without goblet cells? Aliment. Pharmacol. Ther. 24(11–12), 1613–1621 (2006).
  • Hirst NG, Gordon LG, Whiteman DC, Watson DI, Barendregt JJ. Is endoscopic surveillance for non-dysplastic Barrett’s esophagus cost-effective? Review of economic evaluations. J. Gastroenterol. Hepatol. 26(2), 247–254 (2011).

Patents

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.