166
Views
29
CrossRef citations to date
0
Altmetric
Review

Understanding the genetic basis of gastric cancer: recent advances

, , &
Pages 335-341 | Published online: 10 Jan 2014

References

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA. Cancer J. Clin. 61(2), 69–90 (2011).
  • Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol. Microbiol. Scand. 64, 31–49 (1965).
  • Aarnio M, Salovaara R, Aaltonen LA, Mecklin JP, Järvinen HJ. Features of gastric cancer in hereditary non-polyposis colorectal cancer syndrome. Int. J. Cancer 74(5), 551–555 (1997).
  • Masciari S, Dewanwala A, Stoffel EM et al. Gastric cancer in individuals with Li–Fraumeni syndrome. Genet. Med. 13(7), 651–657 (2011).
  • van Lier MG, Wagner A, Mathus-Vliegen EM, Kuipers EJ, Steyerberg EW, van Leerdam ME. High cancer risk in Peutz–Jeghers syndrome: a systematic review and surveillance recommendations. Am. J. Gastroenterol. 105(6), 1258–1264; author reply 1265 (2010).
  • Huntsman DG, Carneiro F, Lewis FR et al. Early gastric cancer in young, asymptomatic carriers of germ-line E-cadherin mutations. N. Engl. J. Med. 344(25), 1904–1909 (2001).
  • Guilford P, Humar B, Blair V. Hereditary diffuse gastric cancer: translation of CDH1 germline mutations into clinical practice. Gastric Cancer 13(1), 1–10 (2010).
  • Oliveira C, Sousa S, Pinheiro H et al. Quantification of epigenetic and genetic 2nd hits in CDH1 during hereditary diffuse gastric cancer syndrome progression. Gastroenterology 136(7), 2137–2148 (2009).
  • Pharoah PD, Guilford P, Caldas C; International Gastric Cancer Linkage Consortium. Incidence of gastric cancer and breast cancer in CDH1 (E-cadherin) mutation carriers from hereditary diffuse gastric cancer families. Gastroenterology 121(6), 1348–1353 (2001).
  • Barber ME, Save V, Carneiro Fet al. Histopathological and molecular analysis of gastrectomy specimens from hereditary diffuse gastric cancer patients has implications for endoscopic surveillance of individuals at risk. J. Pathol. 216(3), 286–294 (2008).
  • Humar B, Blair V, Charlton A, More H, Martin I, Guilford P. E-cadherin deficiency initiates gastric signet-ring cell carcinoma in mice and man. Cancer Res. 69(5), 2050–2056 (2009).
  • Mimata A, Fukamachi H, Eishi Y, Yuasa Y. Loss of E-cadherin in mouse gastric epithelial cells induces signet ring-like cells, a possible precursor lesion of diffuse gastric cancer. Cancer Sci. 102(5), 942–950 (2011).
  • Correa P. Helicobacter pylori and gastric carcinogenesis. Am. J. Surg. Pathol. 19(Suppl. 1), S37–S43 (1995).
  • Correa P. Human gastric carcinogenesis: a multistep and multifactorial process – first American Cancer Society Award lecture on cancer epidemiology and prevention. Cancer Res. 52(24), 6735–6740 (1992).
  • Correa P, Haenszel W, Cuello C, Tannenbaum S, Archer M. A model for gastric cancer epidemiology. Lancet 2(7924), 58–60 (1975).
  • Cavaleiro-Pinto M, Peleteiro B, Lunet N, Barros H. Helicobacter pylori infection and gastric cardia cancer: systematic review and meta-analysis. Cancer Causes Control 22(3), 375–387 (2011).
  • de Sablet T, Piazuelo MB, Shaffer CLet al. Phylogeographic origin of Helicobacter pylori is a determinant of gastric cancer risk. Gut 60(9), 1189–1195 (2011).
  • Ding SZ, Goldberg JB, Hatakeyama M. Helicobacter pylori infection, oncogenic pathways and epigenetic mechanisms in gastric carcinogenesis. Future Oncol. 6(5), 851–862 (2010).
  • Polk DB, Peek RM Jr. Helicobacter pylori: gastric cancer and beyond. Nat. Rev. Cancer 10(6), 403–414 (2010).
  • Ding SZ, Minohara Y, Fan XJet al. Helicobacter pylori infection induces oxidative stress and programmed cell death in human gastric epithelial cells. Infect. Immun. 75(8), 4030–4039 (2007).
  • El-Omar EM, Carrington M, Chow WHet al. Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature 404(6776), 398–402 (2000).
  • Persson C, Canedo P, Machado JC, El-Omar EM, Forman D. Polymorphisms in inflammatory response genes and their association with gastric cancer: a HuGE systematic review and meta-analyses. Am. J. Epidemiol. 173(3), 259–270 (2011).
  • Jorge YC, Duarte MC, Silva AE. Gastric cancer is associated with NOS2 -954G/C polymorphism and environmental factors in a Brazilian population. BMC Gastroenterol. 10, 64 (2010).
  • Shen J, Wang RT, Wang LW, Xu YC, Wang XR. A novel genetic polymorphism of inducible nitric oxide synthase is associated with an increased risk of gastric cancer. World J. Gastroenterol. 10(22), 3278–3283 (2004).
  • Goto Y, Ando T, Naito M, Goto H, Hamajima N. Inducible nitric oxide synthase polymorphism is associated with the increased risk of differentiated gastric cancer in a Japanese population. World J. Gastroenterol. 12(39), 6361–6365 (2006).
  • Jia Y, Persson C, Hou Let al. A comprehensive analysis of common genetic variation in MUC1, MUC5AC, MUC6 genes and risk of stomach cancer. Cancer Causes Control 21(2), 313–321 (2010).
  • Oguma K, Oshima H, Oshima M. Inflammation, tumor necrosis factor and Wnt promotion in gastric cancer development. Future Oncol. 6(4), 515–526 (2010).
  • Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 144(5), 646–674 (2011).
  • Ooi CH, Ivanova T, Wu Jet al. Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet. 5(10), e1000676 (2009).
  • Hamilton JP, Meltzer SJ. A review of the genomics of gastric cancer. Clin. Gastroenterol. Hepatol. 4(4), 416–425 (2006).
  • Werner M, Becker KF, Keller G, Höfler H. Gastric adenocarcinoma: pathomorphology and molecular pathology. J. Cancer Res. Clin. Oncol. 127(4), 207–216 (2001).
  • Kim HS, Woo DK, Bae SI, Kim YI, Kim WH. Allelotype of the adenoma-carcinoma sequence of the stomach. Cancer Detect. Prev. 25(3), 237–244 (2001).
  • Jiaqing L, Hokita S, Xiangming Cet al. Role of cyclin E and p53 expression in progression of early gastric cancer. Gastric Cancer 1(2), 160–165 (1998).
  • Schraml P, Bucher C, Bissig Het al. Cyclin E overexpression and amplification in human tumours. J. Pathol. 200(3), 375–382 (2003).
  • Lee JH, Park SJ, Abraham SCet al. Frequent CpG island methylation in precursor lesions and early gastric adenocarcinomas. Oncogene 23(26), 4646–4654 (2004).
  • Kuzushita N, Rogers AB, Monti NAet al. p27kip1 deficiency confers susceptibility to gastric carcinogenesis in Helicobacter pylori-infected mice. Gastroenterology 129(5), 1544–1556 (2005).
  • Tahara E. Genetic alterations in human gastrointestinal cancers. The application to molecular diagnosis. Cancer 75(Suppl. 6), 1410–1417 (1995).
  • Miki H, Ohmori M, Perantoni AO, Enomoto T. K-ras activation in gastric epithelial tumors in Japanese. Cancer Lett. 58(1–2), 107–113 (1991).
  • Gong C, Mera R, Bravo JCet al. KRAS mutations predict progression of preneoplastic gastric lesions. Cancer Epidemiol. Biomarkers Prev. 8(2), 167–171 (1999).
  • Bang YJ, Van Cutsem E, Feyereislova A et al. ; ToGA Trial Investigators. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a Phase 3, open-label, randomised controlled trial. Lancet 376(9742), 687–697 (2010).
  • Alpízar-Alpízar W, Nielsen BS, Sierra Ret al. Urokinase plasminogen activator receptor is expressed in invasive cells in gastric carcinomas from high- and low-risk countries. Int. J. Cancer 126(2), 405–415 (2010).
  • Chu YQ, Ye ZY, Tao HQ, Wang YY, Zhao ZS. Relationship between cell adhesion molecules expression and the biological behavior of gastric carcinoma. World J. Gastroenterol. 14(13), 1990–1996 (2008).
  • Lukaszewicz-Zajac M, Mroczko B, Szmitkowski M. Gastric cancer – the role of matrix metalloproteinases in tumor progression. Clin. Chim. Acta 412(19–20), 1725–1730 (2011).
  • Lee LY, Wu CM, Wang CCet al. Expression of matrix metalloproteinases MMP-2 and MMP-9 in gastric cancer and their relation to claudin-4 expression. Histol. Histopathol. 23(5), 515–521 (2008).
  • Holbrook JD, Parker JS, Gallagher KTet al. Deep sequencing of gastric carcinoma reveals somatic mutations relevant to personalized medicine. J. Transl. Med. 9(1), 119 (2011).
  • Park J, Song SH, Kim TYet al. Aberrant methylation of integrin α4 gene in human gastric cancer cells. Oncogene 23(19), 3474–3480 (2004).
  • Zhao C, Bu X, Zhang N, Wang W. Downregulation of SFRP5 expression and its inverse correlation with those of MMP-7 and MT1-MMP in gastric cancer. BMC Cancer 9, 224 (2009).
  • Ascaño JJ, Frierson H Jr, Moskaluk CA et al. Inactivation of the E-cadherin gene in sporadic diffuse-type gastric cancer. Mod. Pathol. 14(10), 942–949 (2001).
  • Becker KF, Atkinson MJ, Reich U et al. E-cadherin gene mutations provide clues to diffuse type gastric carcinomas. Cancer Res. 54(14), 3845–3852 (1994).
  • Oliveira C, Senz J, Kaurah Pet al. Germline CDH1 deletions in hereditary diffuse gastric cancer families. Hum. Mol. Genet. 18(9), 1545–1555 (2009).
  • Tamura G, Yin J, Wang Set al. E-cadherin gene promoter hypermethylation in primary human gastric carcinomas. J. Natl Cancer Inst. 92(7), 569–573 (2000).
  • Hara T, Ooi A, Kobayashi M, Mai M, Yanagihara K, Nakanishi I. Amplification of c-myc, K-sam, and c-met in gastric cancers: detection by fluorescence in situ hybridization. Lab. Invest. 78(9), 1143–1153 (1998).
  • Hattori Y, Itoh H, Uchino Set al. Immunohistochemical detection of K-sam protein in stomach cancer. Clin. Cancer Res. 2(8), 1373–1381 (1996).
  • Kunii K, Davis L, Gorenstein Jet al. FGFR2-amplified gastric cancer cell lines require FGFR2 and Erbb3 signaling for growth and survival. Cancer Res. 68(7), 2340–2348 (2008).
  • Zhao WM, Wang L, Park Het al. Monoclonal antibodies to fibroblast growth factor receptor 2 effectively inhibit growth of gastric tumor xenografts. Clin. Cancer Res. 16(23), 5750–5758 (2010).
  • Kokkola A, Monni O, Puolakkainen Pet al. 17q12-21 amplicon, a novel recurrent genetic change in intestinal type of gastric carcinoma: a comparative genomic hybridization study. Genes. Chromosomes Cancer 20(1), 38–43 (1997).
  • Wu MS, Chang MC, Huang SPet al. Correlation of histologic subtypes and replication error phenotype with comparative genomic hybridization in gastric cancer. Genes Chromosomes Cancer 30(1), 80–86 (2001).
  • Weiss MM, Kuipers EJ, Postma Cet al. Genomic alterations in primary gastric adenocarcinomas correlate with clinicopathological characteristics and survival. Cell. Oncol. 26(5–6), 307–317 (2004).
  • Tsukamoto Y, Uchida T, Karnan Set al. Genome-wide analysis of DNA copy number alterations and gene expression in gastric cancer. J. Pathol. 216(4), 471–482 (2008).
  • Lee J, Seo JW, Jun HJet al. Impact of MET amplification on gastric cancer: possible roles as a novel prognostic marker and a potential therapeutic target. Oncol. Rep. 25(6), 1517–1524 (2011).
  • Tao J, Deng NT, Ramnarayanan Ket al. CD44–SLC1A2 gene fusions in gastric cancer. Sci. Transl. Med. 3(77), 77ra30 (2011).
  • Kim H, An JY, Noh SH, Shin SK, Lee YC, Kim H. High microsatellite instability predicts good prognosis in intestinal-type gastric cancers. J. Gastroenterol. Hepatol. 26(3), 585–592 (2011).
  • Falchetti M, Saieva C, Lupi Ret al. Gastric cancer with high-level microsatellite instability: target gene mutations, clinicopathologic features, and long-term survival. Hum. Pathol. 39(6), 925–932 (2008).
  • Gazvoda B, Juvan R, Zupanic-Pajnic Iet al. Genetic changes in Slovenian patients with gastric adenocarcinoma evaluated in terms of microsatellite DNA. Eur. J. Gastroenterol. Hepatol. 19(12), 1082–1089 (2007).
  • Corso G, Velho S, Paredes Jet al. Oncogenic mutations in gastric cancer with microsatellite instability. Eur. J. Cancer 47(3), 443–451 (2011).
  • Velho S, Oliveira C, Paredes Jet al. Mixed lineage kinase 3 gene mutations in mismatch repair deficient gastrointestinal tumours. Hum. Mol. Genet. 19(4), 697–706 (2010).
  • Balassiano K, Lima S, Jenab Met al. Aberrant DNA methylation of cancer-associated genes in gastric cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST). Cancer Lett. 311(1), 85–95 (2011).
  • Alves MK, Ferrasi AC, Lima VP, Ferreira MV, de Moura Campos Pardini MI, Rabenhorst SH. Inactivation of COX-2, HMLH1 and CDKN2A gene by promoter methylation in gastric cancer: relationship with histological subtype, tumor location and Helicobacter pylori genotype. Pathobiology 78(5), 266–276 (2011).
  • Park SY, Kook MC, Kim YWet al. CpG island hypermethylator phenotype in gastric carcinoma and its clinicopathological features. Virchows Arch. 457(4), 415–422 (2010).
  • Fukayama M. Epstein–Barr virus and gastric carcinoma. Pathol. Int. 60(5), 337–350 (2010).
  • Oh HK, Tan AL, Das Ket al. Genomic loss of miR-486 regulates tumor progression and the OLFM4 antiapoptotic factor in gastric cancer. Clin. Cancer Res. 17(9), 2657–2667 (2011).
  • Otsubo T, Akiyama Y, Hashimoto Y, Shimada S, Goto K, Yuasa Y. MicroRNA-126 inhibits SOX2 expression and contributes to gastric carcinogenesis. PLoS ONE 6(1), e16617 (2011).
  • Bou Kheir T, Futoma-Kazmierczak E, Jacobsen Aet al. miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Mol. Cancer 10, 29 (2011).
  • Wu WK, Lee CW, Cho CHet al. MicroRNA dysregulation in gastric cancer: a new player enters the game. Oncogene 29(43), 5761–5771 (2010).
  • Hippo Y, Taniguchi H, Tsutsumi Set al. Global gene expression analysis of gastric cancer by oligonucleotide microarrays. Cancer Res. 62(1), 233–240 (2002).
  • Nørsett KG, Laegreid A, Midelfart Het al. Gene expression based classification of gastric carcinoma. Cancer Lett. 210(2), 227–237 (2004).
  • Boussioutas A, Li H, Liu Jet al. Distinctive patterns of gene expression in premalignant gastric mucosa and gastric cancer. Cancer Res. 63(10), 2569–2577 (2003).
  • Dixon MF, Martin IG, Sue-Ling HM, Wyatt JI, Quirke P, Johnston D. Goseki grading in gastric cancer: comparison with existing systems of grading and its reproducibility. Histopathology 25(4), 309–316 (1994).
  • Arslan Pagnini C, Rugge M. Gastric cancer: problems in histological diagnosis. Histopathology 6(4), 391–398 (1982).
  • Palli D, Bianchi S, Cipriani Fet al. Reproducibility of histologic classification of gastric cancer. Br. J. Cancer 63(5), 765–768 (1991).
  • Tan IB, Grabsch H, Toh HCet al. Comparing the classification precision and prognostic performance of an intrinsic gastric cancer signature with existing genomic signatures in six independent datasets. J. Clin. Oncol. 29(Suppl.), abstract 4025 (2011).
  • Tan IB, Ivanova T, Lim KHet al. Intrinsic subtypes of gastric cancer, based on gene expression pattern, predict survival and respond differently to chemotherapy. Gastroenterology 141(2), 476–485, 485.e1 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.