106
Views
6
CrossRef citations to date
0
Altmetric
Key Paper Evaluation

Renin–angiotensin system and hemangioblast development from human embryonic stem cells

Pages 137-143 | Published online: 10 Jan 2014

References

  • Zambidis ET, Soon Park T, Yu W et al. Expression of angiotensin-converting enzyme (CD143) identifies and regulates primitive hemangioblasts derived from human pluripotent stem cells. Blood112, 3601–3614 (2008).
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science282, 1145–1147 (1998).
  • Kaufman DS, Lewis RL, Hanson ET et al. Functional endothelial cells derived from rhesus monkey embryonic stem cells. Blood103, 1325–1332 (2004).
  • Mikkola HK, Orkin SH. The journey of developing hematopoietic stem cells. Development133, 3733–3744 (2006).
  • Maximow AA. Relation of blood cells to connective tissues and endothelium. Physiol. Rev.4, 533–563 (1924).
  • Sabin F. Origin and development of the primitive vessels of the chick and of the pig. Carnegie Inst. Wash. Publ. Contribs Embryol.6, 61–124 (1917).
  • Murray PDF. The development in vitro of the blood of the early chick embryo. Proc. Royal Soc. Lond. SeriesB111, 497–521 (1932).
  • Kennedy M, Firpo M, Choi K et al. A common precursor for primitive erythropoiesis and definitive haematopoiesis. Nature386, 488–493 (1997).
  • Choi K, Kennedy M, Kazarov A et al. A common precursor for hematopoietic and endothelial cells. Development125, 725–732 (1998).
  • Yamashita J, Itoh H, Hirashima M et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature408, 92–96 (2000).
  • Kennedy M, D’Souza SL, Lynch-Kattman M et al. Development of the hemangioblast defines the onset of hematopoiesis in human ES cell differentiation cultures. Blood109, 2679–2687 (2007).
  • Wang L, Li L, Shojaei F et al. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity21, 31–41 (2004).
  • Fehling HJ, Lacaud G, Kubo A et al. Tracking mesoderm induction and its specification to the hemangioblast during embryonic stem cell differentiation. Development130, 4217–4227 (2003).
  • Ramshaw HS, Haylock D, Swart B et al. Monoclonal antibody BB9 raised against bone marrow stromal cells identifies a cell-surface glycoprotein expressed by primitive human hemopoietic progenitors. Exp. Hematol.29, 981–992 (2001).
  • Jokubaitis VJ, Sinka L, Driessen R et al. Angiotensin-converting enzyme (CD143) marks hematopoietic stem cells in human embryonic, fetal, and adult hematopoietic tissues. Blood111, 4055–4063 (2008).
  • Sauvageau G, Iscove NN, Humphries RK. In vitro and in vivo expansion of hematopoietic stem cells. Oncogene23, 7223–7232 (2004).
  • Kaufman DS, Hanson ET, Lewis RL et al. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc. Natl Acad. Sci USA98, 10716–10721 (2001).
  • Vodyanik MA, Bork JA, Thomson JA et al. Human embryonic stem cell-derived CD34+ cells: efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood105, 617–626 (2005).
  • Zambidis ET, Peault B, Park TS et al. Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood106, 860–870 (2005).
  • Yu J, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318, 1917–1920 (2007).
  • Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131, 861–872 (2007).
  • Park IH, Zhao R, West JA et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature451, 141–146 (2008).
  • Kondo M, Wagers AJ, Manz MG et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol.21, 759–806 (2003).
  • Cumano A, Ferraz JC, Klaine M et al. Intraembryonic, but not yolk sac hematopoietic precursors, isolated before circulation, provide long-term multilineage reconstitution. Immunity15, 477–485 (2001).
  • Medvinsky AL, Samoylina NL, Muller AM et al. An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature364, 64–67 (1993).
  • Gekas C, Dieterlen-Lievre F, Orkin SH et al. The placenta is a niche for hematopoietic stem cells. Dev. Cell8, 365–375 (2005).
  • Zovein AC, Hofmann JJ, Lynch M et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell3, 625–636 (2008).
  • Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev.19, 1129–1155 (2005).
  • Lensch MW, Daley GQ. Scientific and clinical opportunities for modeling blood disorders with embryonic stem cells. Blood107, 2605–2612 (2006).
  • Olsen AL, Stachura DL, Weiss MJ. Designer blood: creating hematopoietic lineages from embryonic stem cells. Blood107, 1265–1275 (2006).
  • Tian X, Woll PS, Morris JK et al. Hematopoietic engraftment of human embryonic stem cell-derived cells is regulated by recipient innate immunity. Stem Cells24, 1370–1380 (2006).
  • Wang L, Menendez P, Shojaei F et al. Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J. Exp. Med.201, 1603–1614 (2005).
  • Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell132, 661–680 (2008).
  • Doetschman TC, Eistetter H, Katz M et al. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol.87, 27–45 (1985).
  • Burt RK, Verda L, Kim DA et al. Embryonic stem cells as an alternate marrow donor source: engraftment without graft-versus-host disease. J. Exp. Med.199, 895–904 (2004).
  • Narayan AD, Chase JL, Lewis RL et al. Human embryonic stem cell-derived hematopoietic cells are capable of engrafting primary as well as secondary fetal sheep recipients. Blood107, 2180–2183 (2006).
  • Ledran MH, Krassowska A, Armstrong L et al. Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell3, 85–98 (2008).
  • Kyba M, Perlingeiro RC, Daley GQ. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell109, 29–37 (2002).
  • Kyba M, Perlingeiro RC, Hoover RR et al. Enhanced hematopoietic differentiation of embryonic stem cells conditionally expressing Stat5. Proc. Natl Acad. Sci. USA100(Suppl. 1), 11904–11910 (2003).
  • Perlingeiro RC, Kyba M, Daley GQ. Clonal analysis of differentiating embryonic stem cells reveals a hematopoietic progenitor with primitive erythroid and adult lymphoid–myeloid potential. Development128, 4597–4604 (2001).
  • Wang Y, Yates F, Naveiras O et al. Embryonic stem cell-derived hematopoietic stem cells. Proc. Natl Acad. Sci. USA102, 19081–19086 (2005).
  • Comte L, Lorgeot V, Volkov L et al. Effects of the angiotensin-converting enzyme inhibitor enalapril on blood haematopoietic progenitors and acetyl-N-Ser-Asp-Lys-Pro concentrations. Eur. J. Clin. Invest.27, 788–790 (1997).
  • Chisi JE, Wdzieczak-Bakala J, Thierry J et al. Captopril inhibits the proliferation of hematopoietic stem and progenitor cells in murine long-term bone marrow cultures. Stem Cells17, 339–344 (1999).
  • Rell K, Koziak K, Jarzyo I et al. Correction of posttransplant erythrocytosis with enalapril. Transplantation57, 1059–1063 (1994).
  • Nomura S, Sugihara T, Tomiyama T et al. Polycythaemia vera: response to treatment with angiotensin-converting enzyme inhibitor. Eur. J. Haematol.57, 117–119 (1996).
  • Lenfant M, Wdzieczak-Bakala J, Guittet E et al. Inhibitor of hematopoietic pluripotent stem cell proliferation: purification and determination of its structure. Proc. Natl Acad. Sci. USA86, 779–782 (1989).
  • Rousseau A, Michaud A, Chauvet MT et al. The hemoregulatory peptide N-acetyl-Ser-Asp-Lys-Pro is a natural and specific substrate of the N-terminal active site of human angiotensin-converting enzyme. J. Biol. Chem.270, 3656–3661 (1995).
  • Cole J, Ertoy D, Lin H et al. Lack of angiotensin II-facilitated erythropoiesis causes anemia in angiotensin-converting enzyme-deficient mice. J. Clin. Invest.106, 1391–1398 (2000).
  • Savary K, Michaud A, Favier J et al. Role of the renin–angiotensin system in primitive erythropoiesis in the chick embryo. Blood105, 103–110 (2005).
  • Grant MB, May WS, Caballero S et al. Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat. Med.8, 607–612 (2002).
  • Bailey AS, Jiang S, Afentoulis M et al. Transplanted adult hematopoietic stems cells differentiate into functional endothelial cells. Blood103, 13–19 (2004).
  • Vodyanik MA, Thomson JA, Slukvin, II. Leukosialin (CD43) defines hematopoietic progenitors in human embryonic stem cell differentiation cultures. Blood108, 2095–2105 (2006).
  • Qiu C, Hanson E, Olivier E et al. Differentiation of human embryonic stem cells into hematopoietic cells by coculture with human fetal liver cells recapitulates the globin switch that occurs early in development. Exp. Hematol.33, 1450–1458 (2005).
  • Lu SJ, Feng Q, Park JS et al. Biologic properties and enucleation of red blood cells from human embryonic stem cells. Blood112, 4475–4484 (2008).
  • Ma F, Ebihara Y, Umeda K et al. Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc. Natl Acad. Sci. USA105, 13087–13092 (2008).
  • Gaur M, Kamata T, Wang S et al. Megakaryocytes derived from human embryonic stem cells: a genetically tractable system to study megakaryocytopoiesis and integrin function. J. Thromb. Haemost.4, 436–442 (2006).
  • Takayama N, Nishikii H, Usui J et al. Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors. Blood111, 5298–5306 (2008).
  • Saeki K, Nakahara M, Matsuyama S et al. A feeder-free and efficient production of functional neutrophils from human embryonic stem cells. Stem Cells27(1), 59–67 (2009).
  • Karlsson KR, Cowley S, Martinez FO et al. Homogeneous monocytes and macrophages from human embryonic stem cells following coculture-free differentiation in M-CSF and IL-3. Exp. Hematol.36, 1167–1175 (2008).
  • Senju S, Hirata S, Matsuyoshi H et al. Generation and genetic modification of dendritic cells derived from mouse embryonic stem cells. Blood101, 3501–3508 (2003).
  • Slukvin II, Vodyanik MA, Thomson JA et al. Directed differentiation of human embryonic stem cells into functional dendritic cells through the myeloid pathway. J. Immunol.176, 2924–2932 (2006).
  • Woll PS, Martin CH, Miller JS et al. Human embryonic stem cell-derived NK cells acquire functional receptors and cytolytic activity. J. Immunol.175, 5095–5103 (2005).
  • Galic Z, Kitchen SG, Kacena A et al. T lineage differentiation from human embryonic stem cells. Proc. Natl Acad. Sci. USA103, 11742–11747 (2006).
  • Lu SJ, Feng Q, Caballero S et al. Generation of functional hemangioblasts from human embryonic stem cells. Nat. Methods4, 501–509 (2007).
  • D’Souza SL, Elefanty AG, Keller G. SCL/Tal-1 is essential for hematopoietic commitment of the hemangioblast but not for its development. Blood105, 3862–3870 (2005).
  • Choi KD, Yu J, Smuga-Otto K, Salvagiotto G et al. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells27(3), 559–567 (2009).
  • Okita K, Nakagawa M, Hyenjong H et al. Generation of mouse induced pluripotent stem cells without viral vectors. Science322, 949–953 (2008).
  • Stadtfeld M, Nagaya M, Utikal J et al. Induced pluripotent stem cells generated without viral integration. Science322, 945–949 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.