189
Views
25
CrossRef citations to date
0
Altmetric
Review

Mobilization of hematopoietic stem cells into the peripheral blood

&
Pages 717-733 | Published online: 10 Jan 2014

References

  • Armitage JO. Bone marrow transplantation. N. Engl. J. Med.330(12), 827–838 (1994).
  • Bensinger W, Applebaum F, Rowley S et al. Factors that influence collection and engraftment of autologous peripheral-blood stem cells. J. Clin. Oncol.13, 2547–2555 (1995).
  • Schmitz N, Linch DC, Dreger P et al. Randomized trial of filgrastim-mobilized peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients. Lancet347, 353–357 (1996).
  • Rettig MP, Ramirez P, Nervi B et al. CXCR4 and mobilization of hematopoietic precursors. In: Methods in Enzymology (Volume 460). Elsevier Inc, St Louis, MO, USA, 57–90 (2009).
  • Papayannopoulou T, Scadden DT. Stem-cell ecology and stem cells in motion. Blood111, 3923–3920 (2008).
  • Winkler IG, Levesque JP. Mechanisms of hematopoietic stem cell mobilization: when innate immunity assails the cells that make blood and bone. Exp. Hematol.34, 996–1009 (2006).
  • Adams GB, Scadden DT. The hematopoietic stem cell in its place. Nat. Immunol.7, 333–337 (2006).
  • Laird DJ, von Andrian UH, Wagers AJ. Stem cell trafficking in tissue development, growth, and disease. Cell132, 612–630 (2008).
  • Nervi B, Link DC, DiPersio JF. Cytokines and hematopoietic stem cell mobilization. J. Cell Biochem.99, 690–705 (2006).
  • Kessinger A, Armitage JO, Landmark JD et al. Reconstitution of human hematopoietic function with autologous cryopreserved circulating stem cells. Exp. Hematol.14, 192–196 (1986).
  • Kessinger A, Bierman PJ, Vose JM, Armitage JO. High-dose cyclophosphamide, carmustine, and etoposide followed by autologous peripheral stem cell transplantation for patients with relapsed Hodgkin’s disease. Blood77, 2322–2325 (1991).
  • Gandhi ML, Jestice K, Scott MA et al. The minimum CD34 threshold depends on prior chemotherapy in autologous peripheral blood stem cell recipients. Bone Marrow Transplant.23, 9–13 (1999).
  • Montgomery M, Cottler-Fox M. Mobilization and collection of autologous hematopoietic progenitor/stem cells. Clin. Adv. Hematol. Oncol.5, 127–136 (2007).
  • Tricot G, Jagannath S, Vesole D et al. Peripheral blood stem cell transplants for multiple myeloma: identification of favorable variables for rapid engraftment in 225 patients. Blood85, 588–596 (1995).
  • Shpall EJ, Cagnoni PJ, Bearman SI et al. Peripheral blood stem cells for autografting. Annu. Rev. Med.48, 241–251 (1997).
  • Brown RA, Adkins D, Goodnough LT et al. Factors that influence the collection and engraftment of allogeneic peripheral-blood stem cells in patients with hematologic malignancies. J. Clin. Oncol.15, 3067–3074 (1997).
  • Weaver CH, Hazelton B, Birch R et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood86, 3961–3969 (1995).
  • Cashen AF, Lind D, Devine S et al. Cytokines and stem cell mobilization for autologous and allogeneic transplantation. Curr. Hematol. Rep.3, 406–412 (2004).
  • Bensinger W, Dipersio JF, McCarty JM. Improving stem cell mobilization strategies: future directions. Bone Marrow Transplant.43, 181–195 (2009).
  • Korbling M, Przepiorka D, Huh YO et al. Allogeneic blood stem cell transplantation for refractory leukemia and lymphoma: potential advantage of blood over marrow allografts. Blood85, 1659–1665 (1995).
  • Schmitz N, Beksac M, Bacigalupo A et al. Filgrastim-mobilized peripheral blood progenitor cells versus bone marrow transplantation for treating leukemia: 3-year results from the EBMT randomized trial. Haematologica90, 643–648 (2005).
  • Powles R, Mehta J, Kulkarni S et al. Allogeneic blood and bone-marrow stem-cell transplantation in haematological malignant diseases: a randomized trial. Lancet355(9211), 1231–1237 (2000).
  • Robinet E, Lapierre V, Tavebi H et al. Blood versus marrow hematopoietic allogeneic graft. Transfus. Apher. Sci.29(1), 53–59 (2003).
  • Cavallero AM, Lilleby K, Majolino I et al. Three to six year follow-up of normal donors who received recombinant human granulocyte colony-stimulating factor. Bone Marrow Transplant.25, 85–89 (2000).
  • Kiger AA, White-Cooper H, Fuller MT. Somatic support cells restrict germline stem cell self-renewal and promote differentiation. Nature407, 750–754 (2000).
  • Kollet O, Dar A, Lapidot T. The multiple roles of osteoclasts in host defense: bone remodeling and hematopoietic stem cell mobilization. Annu. Rev. Immunol.25, 51–69 (2007).
  • Wilson A, Trumpp A. Bone-marrow hematopoietic-stem-cell niches. Nat. Rev. Immunol.6, 93–106 (2006).
  • Lane SW, Scadden DT, Gilliland DG. The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood114(6), 1150–1157 (2009).
  • Scadden DT. The stem cell niche in health and leukemic disease. Best Pract. Res. Clin. Haematol.20, 19–27 (2007).
  • Adams GB, Chabner KT, Alley IR et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature439, 599–603 (2006).
  • Kiel MJ, Yilmaz OH, Iwashita T et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell121, 1109–1121 (2005).
  • Kiel MJ, Morrison SJ. Uncertainty in the niches that maintain haematopoietic stem cells. Nat. Rev. Immunol.8, 290–301 (2008).
  • Mayack SR, Wagers AJ. Osteolineage niche cells initiate hematopoietic stem cell mobilization. Blood112, 519–531 (2008).
  • Zhang J, Niu C, Ye L et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature425, 836–841 (2003).
  • Petit I, Szyper-Kravitz M, Nagler A et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol.3, 687–694 (2002).
  • Nilsson SK, Johnston HM, Coverdale JA. Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood97, 2293–2299 (2001).
  • Visnjic D, Kalajzic I, Gronowicz G et al. Conditional ablation of the osteoblast lineage in Col2.3deltatk transgenic mice. J. Bone Miner. Res.16, 2222–2231 (2001).
  • Askmyr M, Sims NA, Martin TJ, Purton LE. What is the true nature of the osteoblastic hematopoietic stem cell niche? Trends Endocrinol. Metab.20(6), 303–309 (2009).
  • Fleming HE, Janzen V, Lo Celso C et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell2, 274–283 (2008).
  • Wilson A, Laurenti E, Oser G et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell135 (6), 1118–1129 (2008).
  • Kollet O, Dar A, Shivtiel S et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic stem cells. Nat. Med.12, 657–664 (2006).
  • Khan A, Greenman J, Archibald SJ. Small molecule CXCR4 chemokine receptor antagonists: developing drug candidates. Curr. Med. Chem.14, 2257–2277 (2007).
  • Uy GL, Rettig MP, Cashen AF. Plerixafor, a CXCR4 antagonist for the mobilization of hematopoietic stem cell. Expert Opin. Biol. Ther.8, 1797–1804 (2008).
  • Calvi LM, Adams GB, Weibrecht KW et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature425, 841–846 (2003).
  • Dar A, Goichberg P, Shinder V et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat. Immunol.6, 1038–1046 (2005).
  • Busillo JM, Benovic JL. Regulation of CXCR4 signaling. Biochim. Biophys. Acta1768, 952–963 (2007).
  • Kucia M, Jankowsi, K, Reca R et al. CXCR4-SDF-1 signaling, locomotion, chemotaxis and adhesion. J. Mol. Histol.35, 233–245 (2004).
  • Fredriksson R, Lagerstrom MC, Lundin LG et al. The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol. Pharmacol.63, 1256–1272 (2003).
  • Bleul CC, Farzan M, Choe H et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature382, 829–833 (1996).
  • Sugiyama T, Kohara H, Noda M et al. Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity25, 977–988 (2006).
  • Avecilla ST, Hattori K, Heissig B et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat. Med.10, 64–71 (2004).
  • Williams DA, Rios M, Stephens C, Patel VP. Fibronectin and VLA-4 in haematopoietic stem cell–microenvironment interactions. Nature352, 438–441 (1991).
  • Peled A, Petit I, Kollet O et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science283, 845–848 (1999).
  • Watt SM, Forde SP. The central role of the chemokine receptor, CXCR4, in hematopoietic stem cell transplantation: will CXCR4 antagonists contribute to the treatment of blood disorders? Vox Sang.94, 18–32 (2008).
  • Lataillade JJ, Clay D, Dupuy C et al. Chemokine SDF-1 enhances circulating CD34(+) cell proliferation in synergy with cytokines: possible role in progenitor survival. Blood95(3), 756–768 (2000).
  • Benboubker L, Watier H, Carion A et al. Association between the SDF1–3´ A allele and high levels of CD34+ progenitor cells mobilized into peripheral blood in humans. Br. J. Haematol.113, 247–250 (2001).
  • Christopher MJ, Liu F, Hilton MJ et al. Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood114(7), 1331–1339 (2009).
  • Levesque JP, Hendy J, Takamatsu Y et al. Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp. Hematol.30, 440–449 (2002).
  • Levesque JP, Takamatsu Y, Nilsson SK et al. Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood98, 1289–1297 (2001).
  • Winkler IG, Hendy J, Coughlin P et al. Serine protease inhibitors serpina1 and serpina3 are down-regulated in bone marrow during hematopoietic progenitor mobilization. J. Exp. Med.201, 1077–1088 (2005).
  • Prujit JF, Fibbe WE, Laterveer L et al. Prevention of interleukin-8-induced mobilization of hematopoietic progenitor cells in rhesus monkeys by inhibitory antibodies against the metalloproteinase gelatinase B (MMP-9). Proc. Natl Acad. Sci. USA96, 10863–10868 (1999).
  • Semerad CL, Liu F, Gregory AD et al. G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity17, 413–423 (2002).
  • Semerad CL, Christopher MJ, Liu F et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood106, 3020–3027 (2005).
  • Levesque JP, Hendy J, Takamatsu Y et al. Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J. Clin. Invest.111, 187–196 (2003).
  • Oelschlaegel U, Bornhauser M, Boxberger S et al. Kinetics of CXCR-4 and adhesion molecule expression during autologous stem cell mobilization with G-CSF plus AMD3100 in patients with multiple myeloma. Ann. Hematol.86, 569–573 (2007).
  • Katayama Y, Battista M, Kao WM et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell124, 407–421 (2006).
  • Hendrix CW, Flexner C, MacFarland RT et al. Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chemokine receptor, in human volunteers. Antimicrob. Agents Chemother.44, 1667–1673 (2000).
  • Broxmeyer HE, Orschell CM, Clapp DW et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J. Exp. Med.201, 1307–1318 (2005).
  • Ramirez PA, Rettig M, Holt M et al. Rapid mobilization of long term repopulating hematopoietic stem cells (HSC) with AMD15057, a small molecule inhibitor of VLA4; synergism with AMD3100 and G-CSF. Presented at: 50th ASH Annual Meeting and Exposition San Francisco, CA, USA, 6–9 December 2008.
  • Wagstaff AJ. Plerixafor in patients with non-Hodgkin’s lymphoma or multiple myeloma. Drugs69(3), 319–326 (2009).
  • Reiffers J, Bernard P, David B et al. Successful autologous transplantation with peripheral blood hemopoietic cells in a patient with acute leukemia. Exp. Hematol.14, 312–315 (1986).
  • Juttner CA, To LB, Ho JQ et al. Early lympho-hematopoietic recovery after autografting using peripheral blood stem cells in acute non-lymphoblastic leukemia. Transplant. Proc.20, 40–42 (1988).
  • Rowlings PA, Bayly JL, Rawling CM et al. A comparison of peripheral blood stem cell mobilisation after chemotherapy with cyclophosphamide as a single agent in doses of 4 g/m2 or 7 g/m2 in patients with advanced cancer. Aust. NZ J. Med.22(6), 660–664 (1992).
  • Moreb J, Zucali JR, Zhang Y et al. Role of aldehyde dehydrogenase in the protection of hematopoietic progenitor cells from 4-hydroperoxycyclophosphamide by interleukin 1 and tumor necrosis factor. Cancer Res.52, 1770–1774 (1992).
  • Linker CA, Ries CA, Damon LE et al. Autologous bone marrow transplantation for acute myeloid leukemia using busulfan plus etoposide as a preparative regimen. Blood81, 311–318 (1993).
  • Damon LE, Rugo HS, Ries CA, Linker CA. Delayed engraftment of 4-hydroperoxycyclophosphamide-purged autologous bone marrow after induction treatment containing mitoxantrone for acute myelogenous leukemia. Bone Marrow Transplant.17, 93–99 (1996).
  • Martin H, Bruecher J, Claude R, Hoelzer D. Cumulative chemotherapy increases mafosfamide toxicity for normal progenitor cells in AML patients: rationale for cryopreserving adapted-dose purged marrow early in first complete remission. Bone Marrow Transplant.12, 495–499 (1993).
  • Gazitt Y, Akay C. Mobilization of myeloma cells involves SDF-1/CXCR4 signaling and downregulation of VLA-4. Stem Cells22, 65–73 (2004).
  • Damon L, Damon LE, Gaensler K et al. Impact of intensive PBSC mobilization therapy on outcomes following auto-SCT for non-Hodgkin’s lymphoma. Bone Marrow Transplant.42, 649–657 (2008).
  • Rowley SD, Prather K, Bui KT, Appel M, Felt T, Bensinger WI. Collection of peripheral blood progenitor cells with an automated leukapheresis system. Transfusion39(11–12), 1200–1206 (1999).
  • Damon L, Rugo H, Tolaney S et al. Cytoreduction of lymphoid malignancies and mobilization of blood hematopoietic progenitor cells with high doses of cyclophosphamide and etoposide plus filgrastim. Biol. Blood Marrow Transplant.12, 316–24 (2006).
  • Hainsworth JD, Greco FA. Etoposide: twenty years later. Ann. Oncol.6, 325–341 (1995).
  • Welte K, Platzer E, Lu L et al. Purification and biochemical characterization of human pluripotent hematopoietic colony-stimulating factor. Proc. Natl Acad. Sci. USA82, 1526–1530 (1985).
  • Scarffe JH, Kamthan A. Clinical studies of granulocyte colony stimulating factor (G-CSF). Cancer Surv.9(1), 115–130 (1990).
  • Cebon JS, Morstyn G. The potential role of granulocyte-macrophage colony stimulating factor (GM-CSF) in cancer chemotherapy. Cancer Surv.9(1), 131–155 (1990).
  • Hirbe AC, Uluckan O, Morgan EA et al. Granulocyte colony-stimulating factor enhances bone tumor growth in mice in an osteoclast-dependent manner. Blood109(8), 3424–3431 (2007).
  • Snowden JA, Biggs JC, Milliken ST et al. A randomised, blinded, placebo-controlled, dose escalation study of the tolerability and efficacy of filgrastim for haemopoietic stem cell mobilisation in patients with severe active rheumatoid arthritis. Bone Marrow Transplant.22(11), 1035–1041 (1998).
  • Lane TA, Law P, Mauyama M et al. Harvesting and enrichment of hematopoietic progenitor cells mobilized into the peripheral blood of normal donors by the granulocyte-macrophage colony-stimulating factor (GM-CSF) or G-CSF: potential role in allogeneic marrow transplantation. Blood85, 275–282 (1995).
  • Weaver CH, Tauer K, Zhen B et al. Second attempts at mobilization of peripheral blood stem cells in patients with initial low CD34+ cell yields. J. Hematother.7, 241–249 (1998).
  • Henon PR, Liang H, Beck-Wirth G et al. Comparison of hematopoietic and immune recovery after autologous bone marrow or blood stem cell transplants. Bone Marrow Transplant.9, 285–291 (1992).
  • Anderlini P, Rizzo JD, Nugent ML et al. Peripheral blood stem cell donation: an analysis from the International Bone Marrow Transplant Registry (IBMTR) and European Group for Blood and Marrow Transplant (EBMT) databases. Bone Marrow Transplant.27, 689–692 (2001).
  • Arora M, Burns LJ, Barker JN et al. Randomized comparison of granulocyte colony-stimulating factor versus granulocyte–macrophage colony-stimulating factor plus intensive chemotherapy for peripheral blood stem cell mobilization and autologous transplantation in multiple myeloma. Biol. Blood Marrow Transplant.10(6), 395–404 (2004).
  • Fischmeister G, Kurz M, Haas OA et al. G-CSF versus GM-CSF for stimulation of peripheral blood progenitor cells (PBPC) and leukocytes in healthy volunteers: comparison of efficacy and tolerability. Ann. Hematol.78(3), 117–123 (1999).
  • Przepiorka D, Smith TL, Folloder J et al. Risk factors for acute graft-versus-host disease after allogeneic blood stem cell transplantation. Blood94, 1465–1470 (1999).
  • Anderlini P, Przepiorka D, Seong D et al. Clinical toxicity and laboratory effects of granulocyte colony-stimulating factor (filgrastim) mobilization and blood stem cell apheresis from normal donors, and analysis of charges for the procedures. Transfusion36, 590–595 (1996).
  • Akizuki S, Mizorogi F, Inoue T et al. Pharmacokinetics and adverse events following 5-day repeated administration of lenograstim, a recombinant human granulocyte colony-stimulating factor, in healthy subjects. Bone Marrow Transplant.26, 939–946 (2000).
  • Stroncek DF, Clay ME, Herr G et al. Blood counts in healthy donors 1 year after the collection of granulocyte-colony-stimulating factor-mobilized progenitor cells and the results of a second mobilization and collection. Transfusion37, 304–308 (1997).
  • Anderlini P, Chan FA, Champlin RE et al. Long-term follow-up of normal peripheral blood progenitor cell donors treated with filgrastim: no evidence of increased risk of leukemia development. Bone Marrow Transplant.30, 661–663 (2002).
  • Nuamah NM, Goker H, Kilic YA, Dagmoura H, Cakmak A. Spontaneous splenic rupture in a healthy allogeneic donor of peripheral-blood stem cell following the administration of granulocyte colony-stimulating factor (G-CSF). A case report and review of the literature. Haematologica91(5 Suppl.), ECR08 (2006).
  • Pulsipher MA, Chitphakdithai P, Miller JP et al. Adverse events among 2408 unrelated donors of peripheral blood stem cells: results of a prospective trial from the National Marrow Donor Program. Blood113(15), 3604–3611 (2009).
  • Holig K, Kramer M, Kroschinsky F et al. Safety and efficacy of hematopoietic stem cell collection from mobilized peripheral blood in unrelated volunteers – 12 years of single-centre experience in 3928 donors. Blood114(18), 3757–3763 (2009).
  • Molineux G. The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta). Curr. Pharm. Des.10(11), 1235–1244 (2004).
  • Molineux G, Kinstler O, Briddell B et al. A new form of filgrastim with sustained duration in vivo and enhanced ability to mobilize PBPC in both mice and humans. Exp. Hematol.27, 1724–1734 (1999).
  • Putkonen M, Rauhala A, Pelliniemi TT, Remes K. Single-dose pegfilgrastim is comparable to daily filgrastim in mobilizing peripheral blood stem cells: a case-matched study in patients with lymphoproliferative malignancies. Ann. Hematol.88(7), 673–680 (2009).
  • de Sauvage FJ, Hass PE, Spencer SD et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature369, 533–538 (1994).
  • Kaushansky K, Lok S, Holly RD et al. Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature369, 568–571 (1994).
  • Wendling F, Maraskovsky E, Debili N et al. c-Mpl ligand is a humoral regulator of megakaryocytopoiesis. Nature369, 571–574 (1994).
  • Sitnicka E, Lin N, Priestley GV et al. The effect of thrombopoietin on the proliferation and differentiation of murine hematopoietic stem cells. Blood87, 4998–5005 (1996).
  • Kobayashi M, Laver JH, Kato T et al. Thrombopoietin supports proliferation of human primitive hematopoietic cells in synergy with Steel factor and/or interleukin-3. Blood88, 429–436 (1996).
  • Molineux G, Hartley C, McElroy P et al. Megakaryocyte growth and development factor accelerates platelet recovery in peripheral blood progenitor cell transplant recipients. Blood88, 366–376 (1996).
  • Torii Y, Nitta Y, Akahori H et al. Mobilization of primitive haemopoietic progenitor cells and stem cells with long-term repopulating ability into peripheral blood in mice by pegylated recombinant human megakaryocyte growth and development factor. Br. J. Haematol.103, 1172–1180 (1998).
  • Honda K, Takenaka K, Shinagawa K et al. Synergistic effects of pegylated recombinant human megakaryocyte growth and development factor and granulocyte colony-stimulating factor on mobilization of hematopoietic progenitor and stem cells with long-term repopulating ability into peripheral blood in mice. Bone Marrow Transplant.28, 329–334 (2001).
  • Linker CA, Damon LE, Ries CA, Navarro WA, Case D, Wolf JL. Autologous stem cell transplantation for advanced acute myeloid leukemia. Bone Marrow Transplant.29, 297–301 (2002).
  • Gajewski JL, Rondon G, Donato ML et al. Use of thrombopoietin in combination with chemotherapy and granulocyte colony-stimulating factor for peripheral blood progenitor cell mobilization. Biol. Blood Marrow Transplant.8, 550–556 (2002).
  • Spivak JL. Erythropoietin: a brief review. Nephron52(4) 289–294 (1989).
  • Pettengell R, Woll PJ, Chang J et al. Effects of erythropoietin on mobilization of haemopoietic progenitor cells. Bone Marrow Transplant.14, 125–130 (1994).
  • Pierelli L, Menichella G, Scambia G et al.In vitro and in vivo effects of recombinant human erythropoietin plus recombinant human G-CSF on human haemopoietic progenitor cells. Bone Marrow Transplant.14, 23–30 (1994).
  • Olivieri A, Offidani M, Cantori I et al. Addition of erythropoietin to granulocyte colony-stimulating factor after priming chemotherapy enhances hemapoietic progenitor mobilization. Bone Marrow Transplant.16, 765–770 (1995).
  • Waller CF, von Lintig F, Daskalakis A et al. Mobilization of peripheral blood progenitor cells in patients with breast cancer: a prospective randomized trial comparing rhG-CSF with the combination of rhG-CSF plus rhEpo after VIP-E chemotherapy. Bone Marrow Transplant.24, 19–24 (1999).
  • Hart C, Grassinger J, Andreesen R et al. EPO in combination with G-CSF improves mobilization effectiveness after chemotherapy with ifosfamide, epirubicin and etoposide and reduces costs during mobilization and transplantation ofautologous hematopoietic progenitor cells. Bone Marrow Transplant.43, 197–206 (2009).
  • Morstyn G, Brown S, Gordon M et al. Stem cell factor is a potent synergistic factor in hematopoiesis. Oncology51, 205–214 (1994).
  • Moskowitz CH, Stiff P, Gordon MS et al. Recombinant methionyl human stem cell factor and filgrastim for peripheral blood progenitor cell mobilization and transplantation in non-Hodgkin’s lymphoma patients – results of a Phase I/II trial. Blood89, 3136–3147 (1997).
  • Dawson MA, Schwarer AP, Muirhead JL et al. Successful mobilization of peripheral blood stem cells using recombinant human stem cell factor in heavily pretreated patients who have failed a previous attempt with a granulocyte colony-stimulating factor-based regimen. Bone Marrow Transplant.36, 389–296 (2005).
  • Costa JJ, Demetri GD, Harrist TJ et al. Recombinant human stem cell factor (kit ligand) promotes human mast cell and melanocyte hyperplasia and functional activation in vivo. J. Exp Med.183, 2681–2686 (1996).
  • Ravagnani F, Siena S, Bregni M et al. Large-scale collection of circulating haematopoietic progenitors in cancer patients treated with high-dose cyclophosphamide and recombinant human GM-CSF. Eur. J. Cancer26, 562–564 (1990).
  • Narayanasami U, Kanteti R, Morelli J et al. Randomized trial of filgrastim versus chemotherapy and filgrastim mobilization of hematopoietic progenitor cells for rescue in autologous transplantation. Blood98, 2059–2064 (2001).
  • Dingli D, Nowakowski GS, Dispenzieri A et al. Cyclophosphamide mobilization does not improve outcome in patients receiving stem cell transplantation for multiple myeloma. Clin. Lymph. Myeloma6, 384–388 (2006).
  • Siena S, Bregni M, Brando B et al. Circulation of CD34 hematopoietic stem cells in the peripheral blood of high-dose cyclophosphamide-treated patients: enhancement by intravenous recombinant human granulocyte–macrophage colony-stimulating factor. Blood74(6), 1905–1914 (1989).
  • Gianni AM, Siena S, Bregni M et al. Granulocyte–macrophage colony stimulating factor to harvest circulating haematopoietic stem cells for autotransplantation. Lancet2, 580–585 (1989).
  • Reiser M, Josting A, Draube A et al. Successful peripheral blood stem cell mobilization with etoposide (VP-16) in patients with relapsed or resistant lymphoma who failed cyclophosphamide mobilization. Bone Marrow Transplant.23(12), 1223–1228 (1999).
  • Min YJ, Kim SW, Suh C et al. The possible cost effectiveness of peripheral blood stem cell mobilization with cyclophosphamide and the late addition of G-CSF. J. Korean Med. Sci.15(1), 49–52 (2000).
  • Demuynck H, Delforge M, Verhoef G et al. Comparative study of peripheral blood progenitor cell collection in patients with multiple myeloma after single-dose cyclophosphamide combined with rhGM-CSF or rhG-CSF. Br. J. Haematol.90(2), 384–392 (1995).
  • Quittet P, Ceballos P, Lopez E et al. Low doses of GM-CSF (molgramostim) and G-CSF (filgrastim) after cyclophosphamide (4 g/m2) enhance the peripheral blood progenitor cell harvest: results of two randomized studies including 120 patients. Bone Marrow Transplant.38(4), 275–284 (2006).
  • Isidori A, Tani M, Bonifazi F et al. Phase II study of a single pegfilgrastim injection as an adjunct to chemotherapy to mobilize stem cells into the peripheral blood of pretreated lymphoma patients. Haematologica90, 225–231 (2005).
  • Nosari A, Cairoli R, Ciapanna D et al. Efficacy of single dose pegfilgrastim in enhancing the mobilization of CD34+ peripheral blood stem cells in aggressive lymphoma patients treated with cisplatin–aracytin-containing regimens. Bone Marrow Transplant.38, 413–416 (2006).
  • Stein AS, O’Donnell MR, Chai A et al.In vivo purging with high-dose cytarabine followed by high-dose chemoradiotherapy and reinfusion of unpurged bone marrow for adult acute myelogenous leukemia in first complete remission. J. Clin. Oncol.14, 2206–2216 (1996).
  • Linker CA, Ries CA, Damon LE et al. Autologous stem cell transplantation for acute myeloid leukemia in first remission. Biol. Blood Marrow Transplant.6, 50–57 (1999).
  • Damon LE, Johnson JL, Niedzwiecki D et al. Immuno-chemotherapy and autologous stem cell transplant for untreated patients with mantle cell lymphoma: CALGB protocol 59909. J. Clin. Oncol. (2009) (In press).
  • Gunn N, Damon L, Varosy P et al. High CD34 cell dose promotes faster platelet engraftment after autologous stem cell transplantation for acute myeloid leukemia. Biol. Blood Marrow Transplant.10, 643–648 (2003).
  • Lashkari A, Lowe T, Collisson E et al. Long-term outcome of autologous transplantation of peripheral blood progenitor cells as postremission management of patients >60 years with acute myelogenous leukemia. Biol. Blood Marrow Transplant.12, 466–471 (2006).
  • Thomas X, Suciu S, Rio B et al. Autologous stem cell transplantation after complete remission and first consolidation in acute myeloid leukemia patients aged 61–70 years: results of the prospective EORTC–GIMEMA AML–13 study. Haematologica92, 389–396 (2007).
  • Lee C-K, Barlogie B, Munshi N et al. An effective, novel combination chemotherapy with thalidomide for previously treated patients with myeloma J. Clin. Oncol.21, 2732–2739 (2003).
  • Barlogie B, Anaissie E, van Rhee F et al. Incorporating bortezomib into upfront treatment for multiple myeloma: early results of total therapy 3. Brit. J. Haematol.138, 176–185 (2007).
  • Mclaughlin P, Cabanillas F, Grillo-Lopez AJ et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed lymphoma: half of patients respond to a 4-dose treatment. J. Clin. Oncol.16, 2825–2833 (1998).
  • Flinn IW, O’Donnell PV, Goodrich A et al. Immunotherapy with rituximab during peripheral blood stem cell transplantation for non-Hodgkin’s lymphoma. Biol. Blood Marrow Transplant.6, 628–632 (2000).
  • Arcaini L, Orlandi E, Alessandrino EP et al. A model of in vivo purging with Rituximab and high-dose Ara-C in follicular and mantle cell lymphoma. Bone Marrow Transplant.34, 175–179 (2004).
  • Sher D, Johnson J, Siddiqui M et al. Eradication of minimal residual disease during treatment of mantle cell lymphoma: CALGB 59909. Presented at: 46th ASH Annual Meeting and Exposition, San Diego, CA, USA, 4–7 December 2004
  • Liles WC, Broxmeyer HE, Rodger E et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood102(8), 2728–2730 (2003).
  • Stiff P, Micallef I, McCarthy P et al. Treatment with Plerixafor in non-Hodgkin’s lymphoma and multiple myeloma patients to increase the number of peripheral blood stem cells when given a mobilizing regimen of G-cCSF: implications for the heavily pretreated patient. Biol. Blood Marrow Transplant.15, 246–256 (2009).
  • Liles WC, Rodger E, Broxmeyer HE, Dehner C, Badel K, Calandra et al. Augmented mobilization and collection of CD34+ hematopoietic cells from normal human volunteers stimulated with granulocyte-colony-stimulating factor by single-dose administration of AMD3100, a CXCR4 antagonist. Transfusion45(3), 296–300 (2005).
  • Flomemberg N, Devine SM, Dipersio JF et al. The use of AMD3100 plus G-CSF for autologous hematopoietic progenitor cell mobilization is superior to G-CSF alone. Blood106(5), 1867–1874 (2005).
  • Stewart DA, Smith C, MacFarland R et al. Pharmacokinetics and pharmacodynamics of plerixafor in patients with non-Hodgkin lymphoma and multiple myeloma. Biol. Blood Marrow Transplant.15, 39–46 (2009).
  • Dipersio JF, Stadtmauer EA, Nademanee A et al. Plerixafor and G-CSF versus placebo and G-CSF to moboilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood113 (23), 5720–5726 (2009).
  • Dipersio JF, Micallef IN, Stiff PJ et al. Phase III prospective randomized double-blind placebo-controlled trial of plerixafor plus granulocyte colony-stimulating factor compared with placebo plus granulocyte-colony stimulating factor for autologous stem cell mobilization and transplantation for patients with non-Hodgkin’s lymphoma. J. Clin. Oncol.27(28), 4767–4773 (2009).
  • Devine SM, Vij R, Rettig M et al. Rapid mobilization of functional donor hematopoietic cells without G-CSF using AMD3100, and antagonist of the CXCR4/SDF-1 interaction. Blood112, 990–998 (2008).
  • Dugan MJ, Maziarz RT, Bensinger WI et al. Safety and preliminary efficacy of plerixafor (Mozobil) in combination with chemotherapy and G-CSF: an open-label, multicenter, exploratory trial in patients with multiple myeloma and non-Hodgkin’s lymphoma undergoing stem cell mobilization. Bone Marrow Transplant.10, 1–9 (2009).
  • Pusic I, Jiang SY, Landua S et al. Impact of mobilization and remobilization strategies on achieving sufficient stem cell yields for autologous transplantation. Biol. Blood Marrow Transplant.14, 1054–1056 (2008).
  • Fowler CJ, Dunn A, Hayes-Lattin B et al. Rescue from failed growth factor and/or chemotherapy HSC mobilization with G-CSF and plerixafor (AMD3100): an institutional experience. Bone Marrow Transplant.43, 909–917 (2009).
  • Cashen A, Lopez S, Gao F et al. A Phase II study of plerixafor (AMD3100) plus G-CSF for autologous hematopoietic progenitor cell mobilization on patients with Hodgkin lymphoma. Biol. Blood Marrow Transplant.14(11), 1253–1261 (2008).
  • Calandra G, McCarty J, McGuirk J, Tricot G, Crocker SA, Badel K et al. AMD3100 plus G-CSF can successfully mobilize CD34+ cells from non-Hodgkin’s lymphoma, Hodgkin’s disease and multiple myeloma patients failing mobilization with chemotherapy and/or cytokine treatment: compassionate use data. Bone Marrow Transplant.41(4), 331–338 (2008).
  • Uy GL, Rettig MP, McFarland KM et al. Mobilization and chemosensitization of AML with the CXCR4 antagonist plerixafor (AMD3100): a Phase I/II study of AMD3100+MEC in patients with relapsed or refractory disease. Presented at: 50th ASH Annual Meeting and Exposition, San Francisco, CA, USA, 6–9 December 2008.
  • Nervi B, Ramirez P, Rettig MP et al. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood113(24), 6206–6214 (2009).
  • Zeng Z, Shi YX, Samudio IJ et al. Targeting the leukemia microenvironment by CXCR4 inhibition overcomes resistance to kinase inhibitors and chemotherapy in AML. Blood113(24), 6215–6224 (2009).
  • Tricot G, Cottler-Fox MH, Calandra G. Safety and efficacy assessment of plerixafor in patients with multiple myeloma proven or predicted to be poor mobilizers, including assessment of tumor cell mobilization. Bone Marrow Transplant. DOI: 1001:10.1038/BMT.2009.130 (2009) (Epub ahead of print).
  • Fruehof S, Ehninger G, Hübel K et al. Mobilization of peripheral blood stem cells for autologous transplant in non-Hodgkin’s lymphoma and multiple myeloma patients by plerixafor and G-CSF and detection of tumor cell mobilization by PCR in multiple myeloma patients. Bone Marrow Transplant. DOI: 1001:10.1038/BMT.2009.142 (2009) (Epub ahead of print).
  • Moncada V, Bolan C, Yau YY et al. Analysis of PBPC cell yields during large-volume leukapheresis of subjects with a poor mobilization response to filgrastim. Transfusion43, 495–501 (2003).
  • Stiff PJ. Management strategies for the hard to mobilize patient. Bone Marrow Transplant.23, 529–533 (1997).
  • Haas R, Mohle R, Fruehauf S et al. Patient characteristics associate with successful mobilizing and autografting of peripheral blood progenitor cells in malignant lymphoma. Blood83, 3787–3794 (1994).
  • Demirer T, Buckner CD, Gooley T et al. Factors influencing collection of peripheral blood stem cells in patients with multiple myeloma. Bone Marrow Transplant.17, 937–941 (1996).
  • Giralt S, Stadtmauer EA, Harousseau JL et al. International Myeloma Working Group (IMWG) consensus statement and guidelines regarding the current status of stem cell collection and high-dose therapy for multiple myeloma and the role of plerixafor (AMD 3100). Leukemia23(10), 1904–1912 (2009).
  • Perea G, Sureda A, Martino R et al. Predictive factors for a successful mobilization of peripheral blood CD34+ cells in multiple myeloma. Ann. Hematol.80, 592–597 (2001).
  • de la Rubia J, Blade J, Lahuerta JJ et al. Effect of chemotherapy with alkylating agents on the yield of CD34+ cells in patients with multiple myeloma. Results of the Spanish Myeloma Group (GEM) Study. Haematologica91, 621–627 (2006).
  • Kumar S, Dispenzieri A, Lacy MQ et al. Impact of lenalidomide therapy on stem cell mobilization and engraftment post-peripheral blood stem cell transplantation in patients with newly diagnosed myeloma. Leukemia21, 2035–2042 (2007).
  • Mazumder A, Kaufman J, Niesvizky R et al. Effect of lenalidomide therapy on mobilization of peripheral blood stem cells in previously untreated multiple myeloma patients. Leukemia22, 1280–1281 (2007).
  • Paripati H, Stewart AK, Cabou S et al. Compromised stem cell mobilization following induction therapy with lenalidomide in myeloma. Leukemia22, 1282–1284 (2008).
  • Mark T, Stern J, Furst J et al. Stem cell mobilization with cyclophosphamide overcomes the suppressive effect of lenalidomide therapy on stem cell collection in multiple myeloma. Biol. Blood Marrow Transplant.14, 795–798 (2008).
  • Micallef IN, Maurer M, Ansell SM et al. Peripheral blood CD34 count can predict successful progenitor cell mobilization in poor mobilizers treated with plerixafor and G-CSF. Presented at: 2009 BMT Tandem Meetings Tampa, FL, USA, 11–15 February 2009.
  • Bonig H, Wundes A, Chang KH, Lucas S, Papayannopoulou T. Increased numbers of circulating hematopoietic stem/progenitor cells are chronically maintained in patients treated with the CD49d blocking antibody natalizumab. Blood111(7), 3439–3441 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.