86
Views
18
CrossRef citations to date
0
Altmetric
Review

Future alternative therapies for β-thalassemia

&
Pages 685-697 | Published online: 10 Jan 2014

References

  • Steinberg MH, Forget BG, Higgs DR, Nagel RL. Disorders of Hemoglobin: Genetics, Pathophysiology and Clinical Management. Cambridge University Press, Cambridge, UK (2001).
  • Cunningham MJ, Macklin EA, Neufeld EJ, Cohen AR. Complications of β-thalassemia major in North America. Blood104(1), 34–39 (2004).
  • Cao A, Pintus L, Lecca U et al. Control of homozygous β-thalassemia by carrier screening and antenatal diagnosis in sardinians. Clin. Genet.26(1), 12–22 (1984).
  • Vichinsky EP. Changing patterns of thalassemia worldwide. Ann. NY Acad. Sci.1054, 18–24 (2005).
  • Sankaran VG, Xu J, Ragoczy T et al. Developmental and species-divergent globin switching are driven by bcl11a. Nature460(7259), 1093–1097 (2009).
  • Sankaran VG, Menne TF, Xu J et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor bcl11a. Science322, 1839–1842 (2008).
  • Lettre G, Sankaran VG, Bezerra MA et al. DNA polymorphisms at the bcl11a, hbs1l-myb, and β-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc. Natl Acad. Sci. USA105(33), 11869–11874 (2008).
  • Uda M, Galanello R, Sanna S et al. Genome-wide association study shows bcl11a associated with persistent fetal hemoglobin and amelioration of the phenotype of β-thalassemia. Proc. Natl Acad. Sci. USA105(5), 1620–1625 (2008).
  • Wahlberg K, Jiang J, Rooks H et al. The hbs1l-myb intergenic interval associated with elevated hbf levels shows characteristics of a distal regulatory region in erythroid cells. Blood114(6), 1254–1262 (2009).
  • Menzel S, Thein SL. Genetic architecture of hemoglobin F control. Curr. Opin. Hematol.16(3), 179–186 (2009).
  • Creary LE, Ulug P, Menzel S et al. Genetic variation on chromosome 6 influences F cell levels in healthy individuals of African descent and hbf levels in sickle cell patients. PLoS ONE4(1), E4218 (2009).
  • Gambari R, Fibach E. Medicinal chemistry of fetal hemoglobin inducers for treatment of β-thalassemia. Curr. Med. Chem.14(2), 199–212 (2007).
  • Wu H, Liu X, Jaenisch R, Lodish HF. Generation of committed erythroid bfu-e and cfu-e progenitors does not require erythropoietin or the erythropoietin receptor. Cell83(1), 59–67 (1995).
  • D’andrea A, Fasman G, Wong G, Lodish H. Erythropoietin receptor: Cloning strategy and structural features. Int. J. Cell Cloning8(Suppl. 1), 173–180 (1990).
  • D’andrea AD, Lodish HF, Wong GG. Expression cloning of the murine erythropoietin receptor. Cell57(2), 277–285 (1989).
  • Li K, Miller C, Hegde S, Wojchowski D. Roles for an epo receptor tyr-343 stat5 pathway in proliferative co-signaling with kit. J. Biol. Chem.278(42), 40702–40709 (2003).
  • Menon MP, Fang J, Wojchowski DM. Core erythropoietin receptor signals for late erythroblast development. Blood107(7), 2662–2672 (2006).
  • Menon MP, Karur V, Bogacheva O, Bogachev O, Cuetara B, Wojchowski DM. Signals for stress erythropoiesis are integrated via an erythropoietin receptor-phosphotyrosine-343-stat5 axis. J. Clin. Invest.116(3), 683–694 (2006).
  • Von Lindern M, Zauner W, Mellitzer G et al. The glucocorticoid receptor cooperates with the erythropoietin receptor and c-kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood94(2), 550–559 (1999).
  • Dolznig H, Grebien F, Deiner EM et al. Erythroid progenitor renewal versus differentiation: genetic evidence for cell autonomous, essential functions of epor, stat5 and the gr. Oncogene25(20), 2890–2900 (2006).
  • Hoelbl A, Kovacic B, Kerenyi MA et al. Clarifying the role of stat5 in lymphoid development and abelson-induced transformation. Blood107(12), 4898–4906 (2006).
  • Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF. Ineffective erythropoiesis in stat5a-/-5b-/- mice due to decreased survival of early erythroblasts. Blood98(12), 3261–3273 (2001).
  • Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF. Fetal anemia and apoptosis of red cell progenitors in stat5a-/-5b-/- mice: a direct role for stat5 in bcl-x(l) induction. Cell98(2), 181–191 (1999).
  • Kerenyi MA, Grebien F, Gehart H et al. Stat5 regulates cellular iron uptake of erythroid cells via irp-2 and tfr-1. Blood112(9), 3878–3888 (2008).
  • Libani IV, Guy EC, Melchiori L et al. Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in β-thalassemia. Blood112(3), 875–885 (2008).
  • Rivella S. Ineffective erythropoiesis and thalassemias. Curr. Opin. Hematol.16(3), 187–194 (2009).
  • Wang YL, Vandris K, Jones A et al. Jak2 mutations are present in all cases of polycythemia vera. Leukemia22(6), 1289 (2007).
  • De Domenico I, Lo E, Ward DM, Kaplan J. Hepcidin-induced internalization of ferroportin requires binding and cooperative interaction with jak2. Proc. Natl Acad. Sci. USA106(10), 3800–3805 (2009).
  • Zhang DL, Hughes RM, Ollivierre-Wilson H, Ghosh MC, Rouault TA. A ferroportin transcript that lacks an iron-responsive element enables duodenal and erythroid precursor cells to evade translational repression. Cell Metab.9(5), 461–473 (2009).
  • De Domenico I, Ward DM, Langelier C et al. The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol. Biol. Cell.18(7), 2569–2578 (2007).
  • Cappellini MD, Pattoneri P. Oral iron chelators. Annu. Rev. Med.60, 25–38 (2009).
  • Porter JB, Abeysinghe RD, Marshall L, Hider RC, Singh S. Kinetics of removal and reappearance of non-transferrin-bound plasma iron with deferoxamine therapy. Blood88(2), 705–713 (1996).
  • Shinar E, Rachmilewitz EA. Oxidative denaturation of red blood cells in thalassemia. Semin. Hematol.27(1), 70–82 (1990).
  • Borgna-Pignatti C, Cappellini MD, De Stefano P et al. Survival and complications in thalassemia. Ann. NY Acad. Sci.1054, 40–47 (2005).
  • Olivieri NF, Nathan DG, Macmillan JH et al. Survival in medically treated patients with homozygous β-thalassemia. N. Engl. J. Med.331(9), 574–578 (1994).
  • Borgna-Pignatti C, Rugolotto S, De Stefano P et al. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica89(10), 1187–1193 (2004).
  • Giardina PJ, Grady RW. Chelation therapy in β-thalassemia: an optimistic update. Semin. Hematol.38(4), 360–366 (2001).
  • Zanninelli G, Breuer W, Cabantchik ZI. Labile plasma iron (lpi), as an indicator of individual daily efficacy of chelation therapy in TM patients. Br. J. Hematol (2009) (In press).
  • Ganz T. The role of hepcidin in iron sequestration during infections and in the pathogenesis of anemia of chronic disease. Isr. Med. Assoc. J.4(11), 1043–1045 (2002).
  • Nemeth E, Tuttle MS, Powelson J et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science306(5704), 2090–2093 (2004).
  • Nicolas G, Bennoun M, Devaux I et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (usf2) knockout mice. Proc. Natl Acad. Sci. USA98(15), 8780–8785 (2001).
  • Fleming RE, Sly WS. Hepcidin: a putative iron-regulatory hormone relevant to hereditary hemochromatosis and the anemia of chronic disease. Proc. Natl Acad. Sci. USA98(15), 8160–8162 (2001).
  • Nicolas G, Bennoun M, Porteu A et al. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc. Natl Acad. Sci. USA99(7), 4596–4601 (2002).
  • Nicolas G, Chauvet C, Viatte L et al. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J. Clin. Invest.110(7), 1037–1044 (2002).
  • Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem.276(11), 7806–7810 (2001).
  • Pigeon C, Ilyin G, Courselaud B et al. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J. Biol. Chem.276(11), 7811–7819 (2001).
  • Rechavi G, Rivella S. Regulation of iron absorption in hemoglobinopathies. Curr. Mol. Med.8(7), 646–662 (2008).
  • Lee PL, Beutler E. Regulation of hepcidin and iron-overload disease. Annu. Rev. Pathol.4, 489–515 (2009).
  • Olivieri NF, Weatherall DJ. Clinical aspects of β-thalassemia. In: Disorders of Hemoglobin: Genetics, Pathophysiology and Clinical Management. Cambridge University Press, Cambridge, UK (2001).
  • Hershko C, Rachmilewitz EA. Mechanism of desferrioxamine-induced iron excretion in thalassaemia. Br. J. Haematol.42(1), 125–132 (1979).
  • Kattamis A, Papassotiriou I, Palaiologou D et al. The effects of erythropoetic activity and iron burden on hepcidin expression in patients with thalassemia major. Haematologica91(6), 809–812 (2006).
  • Origa R, Galanello R, Ganz T et al. Liver iron concentrations and urinary hepcidin in β-thalassemia. Haematologica92(5), 583–588 (2007).
  • Adamsky K, Weizer O, Amariglio N et al. Decreased hepcidin mRNA expression in thalassemic mice. Br. J. Haematol.124(1), 123–124 (2004).
  • Weizer O, Adamsky K, Breda L et al. Hepcidin expression in cultured liver cells responds differently to iron overloaded sera derived from patients with thalassemia and hemochromatosis. Blood (ASH Annual Meeting Abstracts)104, (2004) (Abstract 3196).
  • Weizer-Stern O, Adamsky K, Amariglio N et al. mRNA expression of iron regulatory genes in β-thalassemia intermedia and β-thalassemia major mouse models. Am. J. Hematol.81(7), 479–483 (2006).
  • Erlandson ME, Walden B, Stern G, Hilgartner MW, Wehman J, Smith CH. Studies on congenital hemolytic syndromes, iv. gastrointestinal absorption of iron. Blood19, 359–378 (1962).
  • Gardenghi S, Marongiu MF, Ramos P et al. Ineffective erythropoiesis in β-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin. Blood109(11), 5027–5035 (2007).
  • Nicolas G, Viatte L, Bennoun M, Beaumont C, Kahn A, Vaulont S. Hepcidin, a new iron regulatory peptide. Blood Cells Mol. Dis.29(3), 327–335 (2002).
  • Vokurka M, Necas E. Hepcidin – a peptide regulating the quantity and distribution of iron in the body in healthy and disease states. Cas. Lek. Cesk.142(8), 465–469 (2003).
  • Pak M, Lopez MA, Gabayan V, Ganz T, Rivera S. Suppression of hepcidin during anemia requires erythropoietic activity. Blood108(12), 3730–3735 (2006).
  • Tanno T, Porayette P, Sripichai O et al. Identification of twsg1 as a second novel erythroid regulator of hepcidin expression in murine and human cells. Blood114(1), 181–186 (2009).
  • Tanno T, Bhanu NV, Oneal PA et al. High levels of gdf15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat. Med.13(9), 1096–1101 (2007).
  • Kanda J, Mizumoto C, Kawabata H et al. Serum hepcidin level and erythropoietic activity after hematopoietic stem cell transplantation. Haematologica93(10), 1550–1554 (2008).
  • Ramirez JM, Schaad O, Durual S et al. Growth differentiation factor 15 production is necessary for normal erythroid differentiation and is increased in refractory anaemia with ring-sideroblasts. Br. J. Haematol.144(2), 251–262 (2009).
  • Yoon D, Pastore YD, Divoky V et al. Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse development. J. Biol. Chem.281(35), 25703–25711 (2006).
  • Peyssonnaux C, Zinkernagel AS, Schuepbach RA et al. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (hifs). J. Clin. Invest.117(7), 1926–1932 (2007).
  • Pinto JP, Ribeiro S, Pontes H et al. Erythropoietin mediates hepcidin expression in hepatocytes through epor signalling and regulation of c/ebp{α}. Blood111(12), 5727–5733 (2008).
  • Mastrogiannaki M, Matak P, Keith B, Simon MC, Vaulont S, Peyssonnaux C. Hif-2α, but not hif-1α, promotes iron absorption in mice. J. Clin. Invest.119(5), 1159–1166 (2009).
  • De Franceschi L, Daraio F, Filippini A et al. Liver expression of hepcidin and other iron genes in two mouse models of β-thalassemia. Haematologica91(10), 1336–1342 (2006).
  • Eldor A, Rachmilewitz EA. The hypercoagulable state in thalassemia. Blood99(1), 36–43 (2002).
  • Prus E, Fibach E. Flow cytometry measurement of the labile iron pool in human hematopoietic cells. Cytometry A73(1), 22–27 (2008).
  • Kuypers FA, Yuan J, Lewis RA et al. Membrane phospholipid asymmetry in human thalassemia. Blood91(8), 3044–3051 (1998).
  • Ruf A, Pick M, Deutsch V et al.In-vivo platelet activation correlates with red cell anionic phospholipid exposure in patients with β-thalassaemia major. Br. J. Haematol.98(1), 51–56 (1997).
  • Choi SO, Cho YS, Kim HL, Park JW. ROS mediate the hypoxic repression of the hepcidin gene by inhibiting c/ebpa and stat-3. Biochem. Biophys. Res. Commun.356(1), 312–317 (2007).
  • Goldschmidt N, Spectre G, Brill A et al. Increased platelet adhesion under flow conditions is induced by both thalassemic platelets and red blood cells. Thromb. Haemost.100(5), 864–870 (2008).
  • Del Principe D, Menichelli A, Di Giulio S, De Matteis W, Cianciulli P, Papa G. Padgem/gmp-140 expression on platelet membranes from homozygous β thalassaemic patients. Br. J. Haematol.84(1), 111–117 (1993).
  • Hovav T, Goldfarb A, Artmann G, Yedgar S, Barshtein G. Enhanced adherence of β-thalassaemic erythrocytes to endothelial cells. Br. J. Haematol.106(1), 178–181 (1999).
  • Shirahata A, Funahara Y, Opartkiattikul N, Fucharoen S, Laosombat V, Yamada K. Protein c and protein s deficiency in thalassemic patients. Southeast Asian J. Trop. Med. Public Health23(Suppl. 2), 65–73 (1992).
  • Taher A, Isma’eel H, Mehio G et al. Prevalence of thromboembolic events among 8,860 patients with thalassaemia major and intermedia in the mediterranean area and Iran. Thromb. Haemost.96(4), 488–491 (2006).
  • Karimi M, Khanlari M, Rachmilewitz EA. Cerebrovascular accident in β-thalassemia major (β-tm) and β-thalassemia intermedia (β-ti). Am. J. Hematol.83(1), 77–79 (2008).
  • Bush S, Mandel FS, Giardina PJ. Future orientation and life expectations of adolescents and young adults with thalassemia major. Ann. NY Acad. Sci.850, 361–369 (1998).
  • Boulad F, Giardina P, Gillio A et al. Bone marrow transplantation for homozygous β-thalassemia. The Memorial Sloan–Kettering Cancer Center experience. Ann. NY Acad. Sci.850, 498–502 (1998).
  • Giardini C, Lucarelli G. Bone marrow transplantation in the treatment of thalassemia. Curr. Opin. Hematol.1(2), 170–176 (1994).
  • Thomas ED, Buckner CD, Sanders JE et al. Marrow transplantation for thalassaemia. Lancet2(8292), 227–229 (1982).
  • Lucarelli G, Galimberti M, Polchi P et al. Bone marrow transplantation in patients with thalassemia. N. Engl. J. Med.322(7), 417–421 (1990).
  • La Nasa G, Argiolu F, Giardini C et al. Unrelated bone marrow transplantation for β-thalassemia patients: the experience of the Italian Bone Marrow transplant group. Ann. NY Acad. Sci.1054, 186–195 (2005).
  • Hongeng S, Pakakasama S, Chuansumrit A et al. Reduced intensity stem cell transplantation for treatment of class 3 Lucarelli severe thalassemia patients. Am. J. Hematol.82(12), 1095–1098 (2007).
  • Sadelain M, Boulad F, Galanello R et al. Therapeutic options for patients with severe β-thalassemia: the need for globin gene therapy. Hum. Gene Ther.18(1), 1–9 (2007).
  • Adamkiewicz TV, Szabolcs P, Haight A et al. Unrelated cord blood transplantation in children with sickle cell disease: review of four-center experience. Pediatr. Transplant.11(6), 641–644 (2007).
  • Locatelli F, Rocha V, Reed W et al. Related umbilical cord blood transplantation in patients with thalassemia and sickle cell disease. Blood101(6), 2137–2143 (2003).
  • Vanichsetakul P, Wacharaprechanont T, O-Charoen R, Seksarn P, Kupatawintu P. Umbilical cord blood transplantation in children with β-thalassemia diseases. J. Med. Assoc. Thai.87(Suppl. 2), S62–S67 (2004).
  • Frangoul H, Wang L, Harrell FE Jr, Manes B, Calder C, Domm J. Unrelated umbilical cord blood transplantation in children with immune deficiency: results of a multicenter study. Bone Marrow Transplant. DOI: 10.1038/bmt.2009.137 (2009) (Epub ahead of print).
  • Oda M, Isoyama K, Ito E et al. Survival after cord blood transplantation from unrelated donor as a second hematopoietic stem cell transplantation for recurrent pediatric acute myeloid leukemia. Int. J. Hematol.89(3), 374–382 (2009).
  • Stanevsky A, Goldstein G, Nagler A. Umbilical cord blood transplantation: pros, cons and beyond. Blood Rev.23(5), 199–204 (2009).
  • Goldstein G, Toren A, Nagler A. Human umbilical cord blood biology, transplantation and plasticity. Curr. Med. Chem.13(11), 1249–1259 (2006).
  • Ooi J. The efficacy of unrelated cord blood transplantation for adult myelodysplastic syndrome. Leuk. Lymphoma47(4), 599–602 (2006).
  • Misawa M, Kai S, Okada M et al. Reduced-intensity conditioning followed by unrelated umbilical cord blood transplantation for advanced hematologic malignancies: rapid engraftment in bone marrow. Int. J. Hematol.83(1), 74–79 (2006).
  • Petropoulos D, Chan KW. Umbilical cord blood transplantation. Curr. Oncol. Rep.7(6), 406–409 (2005).
  • Luzzatto L. Genetics of red cells and susceptibility to malaria. Blood54(5), 961–976 (1979).
  • Luzzatto L, Goodfellow P. Sickle cell anaemia. A simple disease with no cure. Nature337(6202), 17–18 (1989).
  • Greaves DR, Fraser P, Vidal MA et al. A transgenic mouse model of sickle cell disorder. Nature343(6254), 183–185 (1990).
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4), 663–676 (2006).
  • Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5), 861–872 (2007).
  • Rivella S, May C, Chadburn A, Riviere I, Sadelain M. A novel murine model of cooley anemia and its rescue by lentiviral-mediated human β-globin gene transfer. Blood101(8), 2932–2939 (2003).
  • Imren S, Fabry ME, Westerman KA et al. High-level β-globin expression and preferred intragenic integration after lentiviral transduction of human cord blood stem cells. J. Clin. Invest.114(7), 953–962 (2004).
  • Bank A, Dorazio R, Leboulch P. A Phase I/II clinical trial of β-globin gene therapy for β-thalassemia. Ann. NY Acad. Sci.1054, 308–316 (2005).
  • Malik P, Arumugam PI, Yee JK, Puthenveetil G. Successful correction of the human cooley’s anemia β-thalassemia major phenotype using a lentiviral vector flanked by the chicken hypersensitive site 4 chromatin insulator. Ann. NY Acad. Sci.1054, 238–249 (2005).
  • Nishino T, Tubb J, Emery DW. Partial correction of murine β-thalassemia with a gretrovirus vector for human γ-globin. Blood Cells Mol. Dis.37(1), 1–7 (2006).
  • Arumugam PI, Scholes J, Perelman N, Xia P, Yee JK, Malik P. Improved human β-globin expression from self-inactivating lentiviral vectors carrying the chicken hypersensitive site-4 (chs4) insulator element. Mol. Ther.15(10), 1863–1871 (2007).
  • Hanawa H, Yamamoto M, Zhao H, Shimada T, Persons DA. Optimized lentiviral vector design improves titer and transgene expression of vectors containing the chicken β-globin locus hs4 insulator element. Mol. Ther.17(4), 667–674 (2009).
  • Kim YJ, Kim YS, Larochelle A et al. Sustained high-level polyclonal hematopoietic marking and transgene expression 4 years after autologous transplantation of rhesus macaques with SIV lentiviral vector-transduced CD34+ cells. Blood113(22), 5434–5443 (2009).
  • Zhao H, Pestina TI, Nasimuzzaman M, Mehta P, Hargrove PW, Persons DA. Amelioration of murine β-thalassemia through drug selection of hematopoietic stem cells transduced with a lentiviral vector encoding both γ-globin and the MGMT drug-resistance gene. Blood113(23), 5747–5756 (2009).
  • May C, Rivella S, Callegari J et al. Therapeutic haemoglobin synthesis in β-thalassaemic mice expressing lentivirus-encoded human β-globin. Nature406(6791), 82–86 (2000).
  • May C, Rivella S, Chadburn A, Sadelain M. Successful treatment of murine β-thalassemia intermedia by transfer of the human β-globin gene. Blood99(6), 1902–1908 (2002).
  • Yang B, Kirby S, Lewis J, Detloff PJ, Maeda N, Smithies O. A mouse model for β 0-thalassemia. Proc. Natl Acad. Sci. USA92(25), 11608–11612 (1995).
  • Puthenveetil G, Scholes J, Carbonell D et al. Successful correction of the human β-thalassemia major phenotype using a lentiviral vector. Blood104(12), 3445–3453 (2004).
  • Crone TM, Pegg AE. A single amino acid change in human o6-alkylguanine-DNA alkyltransferase decreasing sensitivity to inactivation by o6-benzylguanine. Cancer Res.53(20), 4750–4753 (1993).
  • Ragg S, Xu-Welliver M, Bailey J et al. Direct reversal of DNA damage by mutant methyltransferase protein protects mice against dose-intensified chemotherapy and leads to in vivo selection of hematopoietic stem cells. Cancer Res.60(18), 5187–5195 (2000).
  • Gerson SL. Drug resistance gene transfer: stem cell protection and therapeutic efficacy. Exp. Hematol.28(12), 1315–1324 (2000).
  • Imren S, Payen E, Westerman KA et al. Permanent and panerythroid correction of murine β thalassemia by multiple lentiviral integration in hematopoietic stem cells. Proc. Natl Acad. Sci. USA99(22), 14380–14385 (2002).
  • Levasseur DN, Ryan TM, Pawlik KM, Townes TM. Correction of a mouse model of sickle cell disease: lentiviral/antisickling β-globin gene transduction of unmobilized, purified hematopoietic stem cells. Blood102(13), 4312–4319 (2003).
  • Levasseur DN, Ryan TM, Reilly MP, McCune SL, Asakura T, Townes TM. A recombinant human hemoglobin with anti-sickling properties greater than fetal hemoglobin. J. Biol. Chem.279(26), 27518–27524 (2004).
  • Samakoglu S, Lisowski L, Budak-Alpdogan T et al. A genetic strategy to treat sickle cell anemia by coregulating globin transgene expression and RNA interference. Nat. Biotechnol.24(1), 89–94 (2006).
  • Miccio A, Cesari R, Lotti F et al.In vivo selection of genetically modified erythroblastic progenitors leads to long-term correction of β-thalassemia. Proc. Natl Acad. Sci. USA105(30), 10547–10552 (2008).
  • Maquat LE. Nonsense-mediated mRNA decay in mammals. J. Cell. Sci.118(Pt 9), 1773–1776 (2005).
  • Salvatori F, Cantale V, Breveglieri G et al. Development of k562 cell clones expressing β-globin mRNA carrying the β039 thalassemia mutation for the screening of correctors of stop codon mutations. Biotechnol. Appl. Biochem.54(1), 41–52 (2009).
  • Salvatori F, Breveglieri G, Zuccato C et al. Production of β-globin and adult hemoglobin following g418 treatment of erythroid precursor cells from homozygous β039 thalassemia patients. Am. J. Hematol.84(11), 720–728 (2009).
  • Chui DH, Hardison R, Riemer C et al. An electronic database of human hemoglobin variants on the world wide web. Blood91(8), 2643–2644 (1998).
  • Giardine B, Van Baal S, Kaimakis P et al. Hbvar database of human hemoglobin variants and thalassemia mutations: 2007 update. Hum. Mutat.28(2), 206 (2007).
  • Dominski Z, Kole R. Restoration of correct splicing in thalassemic pre-mRNA by antisense oligonucleotides. Proc. Natl Acad. Sci. USA90(18), 8673–8677 (1993).
  • Gorman L, Suter D, Emerick V, Schumperli D, Kole R. Stable alteration of pre-mRNA splicing patterns by modified u7 small nuclear RNAs. Proc. Natl Acad. Sci. USA95(9), 4929–4934 (1998).
  • Suter D, Tomasini R, Reber U, Gorman L, Kole R, Schumperli D. Double-target antisense u7 snRNAs promote efficient skipping of an aberrant exon in three human β-thalassemic mutations. Hum. Mol. Genet.8(13), 2415–2423 (1999).
  • Lacerra G, Sierakowska H, Carestia C et al. Restoration of hemoglobin a synthesis in erythroid cells from peripheral blood of thalassemic patients. Proc. Natl Acad. Sci. USA97(17), 9591–9596 (2000).
  • Suwanmanee T, Sierakowska H, Fucharoen S, Kole R. Repair of a splicing defect in erythroid cells from patients with β-thalassemia/hbe disorder. Mol. Ther.6(6), 718–726 (2002).
  • Suwanmanee T, Sierakowska H, Lacerra G et al. Restoration of human β-globin gene expression in murine and human ivs2–654 thalassemic erythroid cells by free uptake of antisense oligonucleotides. Mol. Pharmacol.62(3), 545–553 (2002).
  • Sazani P, Kole R. Therapeutic potential of antisense oligonucleotides as modulators of alternative splicing. J. Clin. Invest.112(4), 481–486 (2003).
  • Vacek MM, Ma H, Gemignani F, Lacerra G, Kafri T, Kole R. High-level expression of hemoglobin A in human thalassemic erythroid progenitor cells following lentiviral vector delivery of an antisense snRNA. Blood101(1), 104–111 (2003).
  • Chin JY, Kuan JY, Lonkar PS et al. Correction of a splice-site mutation in the β-globin gene stimulated by triplex-forming peptide nucleic acids. Proc. Natl Acad. Sci. USA105(36), 13514–13519 (2008).
  • Svasti S, Suwanmanee T, Fucharoen S et al. RNA repair restores hemoglobin expression in ivs2–654 thalassemic mice. Proc. Natl Acad. Sci. USA106(4), 1205–1210 (2009).
  • Sierakowska H, Sambade MJ, Agrawal S, Kole R. Repair of thalassemic human β-globin mRNA in mammalian cells by antisense oligonucleotides. Proc. Natl Acad. Sci. USA93(23), 12840–12844 (1996).
  • Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat. Biotechnol.25(10), 1177–1181 (2007).
  • Hyun I, Hochedlinger K, Jaenisch R, Yamanaka S. New advances in IPS cell research do not obviate the need for human embryonic stem cells. Cell Stem Cell1(4), 367–368 (2007).
  • Hanna J, Wernig M, Markoulaki S et al. Treatment of sickle cell anemia mouse model with IPS cells generated from autologous skin. Science318(5858), 1920–1923 (2007).
  • Maherali N, Sridharan R, Xie W et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell1(1), 55–70 (2007).
  • Wernig M, Meissner A, Foreman R et al.In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature448(7151), 318–324 (2007).
  • Carey BW, Markoulaki S, Hanna J et al. Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc. Natl Acad. Sci. USA106(1), 157–162 (2009).
  • Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science322(5903), 949–953 (2008).
  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science322(5903), 945–949 (2008).
  • Varas F, Stadtfeld M, De Andres-Aguayo L et al. Fibroblast-derived induced pluripotent stem cells show no common retroviral vector insertions. Stem Cells27(2), 300–306 (2009).
  • Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G. Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells27(3), 543–549 (2009).
  • Yu J, Hu K, Smuga-Otto K et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science324(5928), 797–801 (2009).
  • Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol.6(10), e253 (2008).
  • Soldner F, Hockemeyer D, Beard C et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell136(5), 964–977 (2009).
  • Woltjen K, Michael IP, Mohseni P et al. Piggybac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature458(7239), 766–770 (2009).
  • Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature458(7239), 771–775 (2009).
  • Ye L, Chang JC, Lin C, Sun X, Yu J, Kan YW. Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proc. Natl Acad. Sci. USA106(24), 9826–9830 (2009).
  • Lyssiotis CA, Foreman RK, Staerk J et al. Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of klf4. Proc. Natl Acad. Sci. USA106(22), 8912–8917 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.