148
Views
17
CrossRef citations to date
0
Altmetric
Review

Pathophysiologic mechanisms and management of neutropenia associated with large granular lymphocytic leukemia

, &
Pages 317-328 | Published online: 10 Jan 2014

References

  • Loughran TP Jr. Clonal diseases of large granular lymphocytes. Blood82(1), 1–14 (1993).
  • Lamy T, Loughran TP Jr. Clinical features of large granular lymphocyte leukemia. Semin. Hematol.40(3), 185–195 (2003).
  • Russell JH, Ley TJ. Lymphocyte-mediated cytotoxicity. Annu. Rev. Immunol.20, 323–370 (2002).
  • Sokol L, Loughran TP Jr. Large granular lymphocyte leukemia. Oncologist11(3), 263–273 (2006).
  • Zambello R, Semenzato G. Large granular lymphocyte disorders: new etiopathogenetic clues as a rationale for innovative therapeutic approaches. Haematologica94(10), 1341–1345 (2009).
  • Chan WC, Foucar KM, Morice WG, Catovsky D. T-cell large granular lymphocyte leukaemia. In: WHO Classification of Tumours of the Hematopoietic and Lymphoid Tissues. Swerdlow SH, Campo E, Harris NL et al. (Eds). IARC Press, Lyon, France, 272–273 (2008).
  • Villamor N, Morice WG, Chan WC, Foucar K. Chronic lyphoproliferative disorders of NK cells. In: WHO Classification of Tumours of Hematopoietic and Lymphoid Tissues. Swerdlow SH, Campo E, Harris NL et al. (Eds). IARC Press, Lyon, France, 274–275 (2008).
  • Posnett DN, Sinha R, Kabak S, Russo C. Clonal populations of T cells in normal elderly humans: the T cell equivalent to ‘benign monoclonal gammapathy’. J. Exp. Med.179(2), 609–618 (1994).
  • Ricalton NS, Roberton C, Norris JM, Rewers M, Hamman RF, Kotzin BL. Prevalence of CD8+ T-cell expansions in relation to age in healthy individuals. J. Gerontol. A Biol. Sci. Med. Sci.53(3), B196–B203 (1998).
  • Bigouret V, Hoffmann T, Arlettaz L et al. Monoclonal T-cell expansions in asymptomatic individuals and in patients with large granular leukemia consist of cytotoxic effector T cells expressing the activating CD94:NKG2C/E and NKD2D killer cell receptors. Blood101(8), 3198–3204 (2003).
  • Clambey ET, van Dyk LF, Kappler JW, Marrack P. Non-malignant clonal expansions of CD8+ memory T cells in aged individuals. Immunol. Rev.205, 170–189 (2005).
  • Dhodapkar MV, Li CY, Lust JA, Tefferi A, Phyliky RL. Clinical spectrum of clonal proliferations of T-large granular lymphocytes: a T-cell clonopathy of undetermined significance? Blood84(5), 1620–1627 (1994).
  • Sabnani I, Tsang P. Are clonal T-cell large granular lymphocytes to blame for unexplained haematological abnormalities? Br. J. Haematol.136(1), 30–37 (2007).
  • Zhang R, Shah MV, Loughran TP Jr. The root of many evils: indolent large granular lymphocyte leukaemia and associated disorders. Hematol. Oncol.28(3), 105–117 (2010).
  • Tefferi A, Li CY, Witzig TE, Dhodapkar MV, Okuno SH, Phyliky RL. Chronic natural killer cell lymphocytosis: a descriptive clinical study. Blood84(8), 2721–2725 (1994).
  • Oshimi K. Progress in understanding and managing natural killer-cell malignancies. Br. J. Haematol.139(4), 532–544 (2007).
  • Zambello R, Trentin L, Facco M et al. Analysis of the T cell receptor in the lymphoproliferative disease of granular lymphocytes: superantigen activation of clonal CD3+ granular lymphocytes. Cancer Res.55(24), 6140–6145 (1995).
  • Epling-Burnette PK, Loughran TP Jr. Survival signals in leukemic large granular lymphocytes. Semin. Hematol.40(3), 213–220 (2003).
  • Yang J, Epling-Burnette PK, Painter JS et al. Antigen activation and impaired Fas-induced death-inducing signaling complex formation in T-large-granular lymphocyte leukemia. Blood111(3), 1610–1616 (2008).
  • Zambello R, Berno T, Cannas G et al. Phenotypic and functional analyses of dendritic cells in patients with lymphoproliferative disease of granular lymphocytes (LDGL). Blood106(12), 3926–3931 (2005).
  • Wlodarski MW, O’Keefe C, Howe EC et al. Pathologic clonal cytotoxic T-cell responses: nonrandom nature of the T-cell-receptor restriction in large granular lymphocyte leukemia. Blood106(8), 2769–2780 (2005).
  • Loughran TP Jr. Chronic T-cell leukemia/lymphoma. Cancer Control5(1), 8–9 (1998).
  • Sokol L, Agrawal D, Loughran TP Jr. Characterization of HTLV envelope seroreactivity in large granular lymphocyte leukemia. Leuk. Res.29(4), 381–387 (2005).
  • Rodriguez-Caballero A, Garcia-Montero AC, Barcena P et al. Expanded cells in monoclonal TCR-αβ+/CD4+/NKa+/CD8-/+dim T-LGL lymphocytosis recognize hCMV antigens. Blood112(12), 4609–4616 (2008).
  • Dearden C. Large granular lymphocytic leukaemia pathogenesis and management. Br. J. Haematol.152(3), 273–283 (2011).
  • Lamy T, Loughran TP Jr. Current concepts: large granular lymphocyte leukemia. Blood Rev.13(4), 230–240 (1999).
  • Burks EJ, Starkebaum G, Loughran TP Jr. Section III. Large granular lyphocyte leukemia and neutropenia. In: Congenital and Acquired Neutropenia. Berliner N, Horwitz M, Loughran TP Jr (Eds). Hematology: American Society of Hematology Education Program Book, 63–79 (2004).
  • Burks EJ, Loughran TP Jr. Pathogenesis of neutropenia in large granular lymphocyte leukemia and Felty syndrome. Blood Rev.20(5), 245–266 (2006).
  • Shah MV, Zhang R, Loughran TP Jr. Never say die: survival signaling in large granular lymphocyte leukemia. Clin. Lymphoma Myeloma.9(Suppl. 3), S244–S253 (2009).
  • Krammer PH. CD95’s deadly mission in the immune system. Nature407(6805), 789–795 (2000).
  • Lamy T, Liu JH, Landowski TH, Dalton WS, Loughran TP Jr. Dysregulation of CD95/CD95 ligand-apoptotic pathway in CD3+ large granular lymphocyte leukemia. Blood92(12), 4771–4777 (1998).
  • Liu JH, Wei S, Lamy T et al. Blockade of Fas-dependent apoptosis by soluble Fas in LGL leukemia. Blood100(4), 1449–1453 (2002).
  • Epling-Burnette PK, Liu JH, Catlett-Falcone R et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J. Clin. Invest107(3), 351–362 (2001).
  • Schade AE, Wlodarski MW, Maciejewski JP. Pathophysiology defined by altered signal transduction pathways: the role of JAK-STAT and PI3K signaling in leukemic large granular lymphocytes. Cell Cycle5(22), 2571–2574 (2006).
  • Zhang R, Shah MV, Yang J et al. Network model of survival signaling in large granular lymphocyte leukemia. Proc. Natl Acad. Sci. USA105(42), 16308–16313 (2008).
  • Shah MV, Zhang R, Irby R et al. Molecular profiling of LGL leukemia reveals role of sphingolipid signaling in survival of cytotoxic lymphocytes. Blood112(3), 770–781 (2008).
  • Zambello R, Falco M, Della CM et al. Expression and function of KIR and natural cytotoxicity receptors in NK-type lymphoproliferative diseases of granular lymphocytes. Blood102(5), 1797–1805 (2003).
  • Epling-Burnette PK, Painter JS, Chaurasia P et al. Dysregulated NK receptor expression in patients with lymphoproliferative disease of granular lymphocytes. Blood103(9), 3431–3439 (2004).
  • Zambello R, Loughran TP Jr, Trentin L et al. Serologic and molecular evidence for a possible pathogenetic role of viral infection in CD3-negative natural killer-type lymphoproliferative disease of granular lymphocytes. Leukemia9(7), 1207–1211 (1995).
  • Loughran TP Jr, Hadlock KG, Yang Q et al. Seroreactivity to an envelope protein of human T-cell leukemia/lymphoma virus in patients with CD3- (natural killer) lymphoproliferative disease of granular lymphocytes. Blood90(5), 1977–1981 (1997).
  • Scquizzato E, Teramo A, Miorin M et al. Genotypic evaluation of killer immunoglobulin-like receptors in NK-type lymphoproliferative disease of granular lymphocytes. Leukemia21(5), 1060–1069 (2007).
  • Gattazzo C, Teramo A, Miorin M et al. Lack of expression of inhibitory KIR3DL1 receptor in patients with natural killer cell-type lymphoproliferative disease of granular lymphocytes. Haematologica95(10), 1722–1729 (2010).
  • Epling-Burnette PK, Bai F, Wei S et al. ERK couples chronic survival of NK cells to constitutively activated Ras in lymphoproliferative disease of granular lymphocytes (LDGL). Oncogene23(57), 9220–9229 (2004).
  • Hodge DL, Yang J, Buschman MD et al. Interleukin-15 enhances proteasomal degradation of bid in normal lymphocytes: implications for large granular lymphocyte leukemias. Cancer Res.69(9), 3986–3994 (2009).
  • Yang J, Liu X, Nyland SB et al. Platelet-derived growth factor mediates survival of leukemic large granular lymphocytes via an autocrine regulatory pathway. Blood115(1), 51–60 (2010).
  • Yu J, Ershler M, Yu L et al. TSC-22 contributes to hematopoietic precursor cell proliferation and repopulation and is epigenetically silenced in large granular lymphocyte leukemia. Blood113(22), 5558–5567 (2009).
  • Papadaki HA, Pontikoglou C. Pathophysiologic mechanisms, clinical features and treatment of idiopathic neutropenia. Expert. Rev. Hematol.1(2), 217–229 (2008).
  • Prochorec-Sobieszek M. Advances in diagnosis and treatment of large granular lymphocyte syndrome. Curr. Opin. Hematol.18(1), 55–62 (2011).
  • Loughran TP Jr, Starkebaum G. Large granular lymphocyte leukemia. Report of 38 cases and review of the literature. Medicine66(5), 397–405 (1987).
  • Evans HL, Burks E, Viswanatha D, Larson RS. Utility of immunohistochemistry in bone marrow evaluation of T-lineage large granular lymphocyte leukemia. Hum. Pathol.31(10), 1266–1273 (2000).
  • Morice WG, Kurtin PJ, Tefferi A, Hanson CA. Distinct bone marrow findings in T-cell granular lymphocytic leukemia revealed by paraffin section immunoperoxidase stains for CD8, TIA-1, and granzyme B. Blood99(1), 268–274 (2002).
  • Sood R, Stewart CC, Aplan PD et al. Neutropenia associated with T-cell large granular lymphocyte leukemia: long-term response to cyclosporine therapy despite persistence of abnormal cells. Blood91(9), 3372–3378 (1998).
  • Hansson M, Beran M, Andersson B, Kiessling R. Inhibition of in vitro granulopoiesis by autologous allogeneic human NK cells. J. Immunol.129(1), 126–132 (1982).
  • Matera L, Santoli D, Garbarino G, Pegoraro L, Bellone G, Pagliardi G. Modulation of in vitro myelopoiesis by LGL: different effects on early and late progenitor cells. J. Immunol.136(4), 1260–1265 (1986).
  • Coakley G, Iqbal M, Brooks D, Panayi GS, Lanchbury JS. CD8+, CD57+ T cells from healthy elderly subjects suppress neutrophil development in vitro: implications for the neutropenia of Felty’s and large granular lymphocyte syndromes. Arthritis Rheum.43(4), 834–843 (2000).
  • Reynolds CW, Foon KA. T gamma-lymphoproliferative disease and related disorders in humans and experimental animals: a review of the clinical, cellular, and functional characteristics. Blood64(6), 1146–1158 (1984).
  • Loughran TP Jr, Kadin ME, Starkebaum G et al. Leukemia of large granular lymphocytes: association with clonal chromosomal abnormalities and autoimmune neutropenia, thrombocytopenia, and hemolytic anemia. Ann. Intern. Med.102(2), 169–175 (1985).
  • Grillot-Courvalin C, Vinci G, Tsapis A, Dokhelar MC, Vainchenker W, Brouet JC. The syndrome of T8 hyperlymphocytosis: variation in phenotype and cytotoxic activities of granular cells and evaluation of their role in associated neutropenia. Blood69(4), 1204–1210 (1987).
  • Platanias L, Raefsky E, Young N. Neutropenia associated with large granular lymphocytes responsive to corticosteroids in vitro and in vivo. Eur. J. Haematol.38(1), 89–94 (1987).
  • Starkebaum G, Martin PJ, Singer JW et al. Chronic lymphocytosis with neutropenia: evidence for a novel, abnormal T-cell population associated with antibody-mediated neutrophil destruction. Clin. Immunol. Immunopathol.27(1), 110–123 (1983).
  • van der Veen JP, Goldschmeding R, Miedema F, Smit JW, Melief CJ, von dem Borne AE. K-cell lymphocytosis/neutropenia syndrome: the neutropenia is not caused by autoimmunity. Br. J. Haematol.64(4), 777–787 (1986).
  • Rustagi PK, Han T, Ziolkowski L, Farolino DL, Currie MS, Logue GL. Granulocyte antibodies in leukaemic chronic lymphoproliferative disorders. Br. J. Haematol.66(4), 461–465 (1987).
  • Liu JH, Wei S, Lamy T et al. Chronic neutropenia mediated by Fas ligand. Blood95(10), 3219–3222 (2000).
  • Liles WC, Kiener PA, Ledbetter JA, Aruffo A, Klebanoff SJ. Differential expression of Fas (CD95) and Fas ligand on normal human phagocytes: implications for the regulation of apoptosis in neutrophils. J. Exp. Med.184(2), 429–440 (1996).
  • Tanaka M, Suda T, Takahashi T, Nagata S. Expression of the functional soluble form of human fas ligand in activated lymphocytes. EMBO J.14(6), 1129–1135 (1995).
  • Tanaka M, Suda T, Haze K et al. Fas ligand in human serum. Nat. Med.2(3), 317–322 (1996).
  • Cheung MM, Chan JK, Wong KF. Natural killer cell neoplasms: a distinctive group of highly aggressive lymphomas/leukemias. Semin. Hematol.40(3), 221–232 (2003).
  • Reichard KK, Burks EJ, Foucar MK et al. CD4+ CD56+ lineage-negative malignancies are rare tumors of plasmacytoid dendritic cells. Am. J. Surg. Pathol.29(10), 1274–1283 (2005).
  • Nagafuji K, Shibuya T, Harada M et al. Functional expression of Fas antigen (CD95) on hematopoietic progenitor cells. Blood86(3), 883–889 (1995).
  • Maciejewski J, Selleri C, Anderson S, Young NS. Fas antigen expression on CD34+ human marrow cells is induced by interferon γ and tumor necrosis factor α and potentiates cytokine-mediated hematopoietic suppression in vitro. Blood85(11), 3183–3190 (1995).
  • Maciejewski JP, Selleri C, Sato T, Anderson S, Young NS. Increased expression of Fas antigen on bone marrow CD34+ cells of patients with aplastic anaemia. Br. J. Haematol.91(1), 245–252 (1995).
  • Bank I, Cohen L, Kneller A, De Rosbo NK, Book M, Ben-Nun A. Aberrant T-cell receptor signalling of interferon-γ- and tumour necrosis factor-α-producing cytotoxic CD8+ Vδ1/Vβ16 T cells in a patient with chronic neutropenia. Scand. J. Immunol.58(1), 89–98 (2003).
  • Papadaki HA, Chatzivassili A, Stefanaki K, Koumaki V, Kanavaros P, Eliopoulos GD. Morphologically defined myeloid cell compartments, lymphocyte subpopulations, and histological findings of bone marrow in patients with nonimmune chronic idiopathic neutropenia of adults. Ann. Hematol.79(10), 563–570 (2000).
  • Papadaki HA, Eliopoulos AG, Kosteas T et al. Impaired granulocytopoiesis in patients with chronic idiopathic neutropenia is associated with increased apoptosis of bone marrow myeloid progenitor cells. Blood101(7), 2591–2600 (2003).
  • Papadaki HA, Stamatopoulos K, Damianaki A et al. Activated T-lymphocytes with myelosuppressive properties in patients with chronic idiopathic neutropenia. Br. J. Haematol.128(6), 863–876 (2005).
  • Spanoudakis M, Koutala H, Ximeri M, Pyrovolaki K, Stamatopoulos K, Papadaki HA. T-cell receptor Vβ repertoire analysis in patients with chronic idiopathic neutropenia demonstrates the presence of aberrant T-cell expansions. Clin. Immunol.137(3), 384–395 (2010).
  • Papadaki HA, Tsagournisakis M, Mastorodemos V et al. Normal bone marrow hematopoietic stem cell reserves and normal stromal cell function support the use of autologous stem cell transplantation in patients with multiple sclerosis. Bone Marrow Transplant.36(12), 1053–1063 (2005).
  • Stamatopoulos K, Papadaki T, Pontikoglou C et al. Lymphocyte subpopulation imbalances, bone marrow hematopoiesis and histopathology in rituximab-treated lymphoma patients with late-onset neutropenia. Leukemia22(7), 1446–1449 (2008).
  • Wolach O, Bairey O, Lahav M. Late-onset neutropenia after rituximab treatment: case series and comprehensive review of the literature. Medicine89(5), 308–318 (2010).
  • Viny AD, Clemente MJ, Jasek M et al. MICA polymorphism identified by whole genome array associated with NKG2D-mediated cytotoxicity in T-cell large granular lymphocyte leukemia. Haematologica95(10), 1713–1721 (2010).
  • Loughran TP Jr, Hammond WP. Adult-onset cyclic neutropenia is a benign neoplasm associated with clonal proliferation of large granular lymphocytes. J. Exp. Med.164(6), 2089–2094 (1986).
  • Loughran TP Jr, Clark EA, Price TH, Hammond WP. Adult-onset cyclic neutropenia is associated with increased large granular lymphocytes. Blood68(5), 1082–1087 (1986).
  • Dale DC, Hammond WP. Cyclic neutropenia: a clinical review. Blood Rev.2(3), 178–185 (1988).
  • Loughran TP Jr, Starkebaum G, Aprile JA. Rearrangement and expression of T-cell receptor genes in large granular lymphocyte leukemia. Blood71(3), 822–824 (1988).
  • Greer JP, Kinney MC, Loughran TP Jr. T cell and NK cell lymphoproliferative disorders. Hematology Am. Soc. Hematol. Educ. Program259–281 (2001).
  • Rose MG, Berliner N. T-cell large granular lymphocyte leukemia and related disorders. Oncologist9(3), 247–258 (2004).
  • Loughran TP Jr, Kidd PG, Starkebaum G. Treatment of large granular lymphocyte leukemia with oral low-dose methotrexate. Blood84(7), 2164–2170 (1994).
  • Hamidou MA, Sadr FB, Lamy T, Raffi F, Grolleau JY, Barrier JH. Low-dose methotrexate for the treatment of patients with large granular lymphocyte leukemia associated with rheumatoid arthritis. Am. J. Med.108(9), 730–732 (2000).
  • Osuji N, Matutes E, Tjonnfjord G et al. T-cell large granular lymphocyte leukemia: a report on the treatment of 29 patients and a review of the literature. Cancer107(3), 570–578 (2006).
  • Bareau B, Rey J, Hamidou M et al. Analysis of a French cohort of patients with large granular lymphocyte leukemia: a report on 229 cases. Haematologica95(9), 1534–1541 (2010).
  • Pastor E, Sayas MJ. Severe neutropenia associated with large granular lymphocyte lymphocytosis: successful control with cyclosporin A. Blut59(6), 501–502 (1989).
  • Gabor EP, Mishalani S, Lee S. Rapid response to cyclosporine therapy and sustained remission in large granular lymphocyte leukemia. Blood87(3), 1199–1200 (1996).
  • Brinkman K, van Dongen JJ, van Lom K, Groeneveld K, Misere JF, van der Heul C. Induction of clinical remission in T-large granular lymphocyte leukemia with cyclosporin A, monitored by use of immunophenotyping with Vβ antibodies. Leukemia12(2), 150–154 (1998).
  • Battiwalla M, Melenhorst J, Saunthararajah Y et al. HLA-DR4 predicts haematological response to cyclosporine in T-large granular lymphocyte lymphoproliferative disorders. Br. J. Haematol.123(3), 449–453 (2003).
  • Aribi A, Huh Y, Keating M et al. T-cell large granular lymphocytic (T-LGL) leukemia: experience in a single institution over 8 years. Leuk. Res.31(7), 939–945 (2007).
  • Thomssen C, Nissen C, Gratwohl A, Tichelli A, Stern A. Agranulocytosis associated with T-gamma-lymphocytosis: no improvement of peripheral blood granulocyte count with human-recombinant granulocyte-macrophage colony-stimulating factor (GM-CSF). Br. J. Haematol.71(1), 157–158 (1989).
  • Mulder AB, de Wolf JT, Smit JW, van Oostveen JW, Vellenga E. Correction of neutropenia by GM-CSF in patients with a large granular lymphocyte proliferation. Ann. Hematol.65(2), 91–95 (1992).
  • Cooper DL, Henderson-Bakas M, Berliner N. Lymphoproliferative disorder of granular lymphocytes associated with severe neutropenia. Response to granulocyte colony-stimulating factor. Cancer72(5), 1607–1611 (1993).
  • Vickers M, Stross P, Millard P, Barton C. Response of T-β CD8+ lymphocytosis-associated neutropenia to G-CSF. Br. J. Haematol.87(2), 431–433 (1994).
  • Lamy T, LePrise PY, Amiot L et al. Response to granulocyte-macrophage colony-stimulating factor (GM-CSF) but not to G-CSF in a case of agranulocytosis associated with large granular lymphocyte (LGL) leukemia. Blood85(11), 3352–3353 (1995).
  • Loughran TP Jr, Starkebaum G, Clark E, Wallace P, Kadin ME. Evaluation of splenectomy in large granular lymphocyte leukaemia. Br. J. Haematol.67(2), 135–140 (1987).
  • Subbiah V, Viny AD, Rosenblatt S, Pohlman B, Lichtin A, Maciejewski JP. Outcomes of splenectomy in T-cell large granular lymphocyte leukemia with splenomegaly and cytopenia. Exp. Hematol.36(9), 1078–1083 (2008).
  • Imamura N, Kuramoto A. Effect of splenectomy in aggressive large granular lymphocyte leukaemia. Br. J. Haematol.69(4), 577–578 (1988).
  • Lacy MQ, Kurtin PJ, Tefferi A. Pure red cell aplasia: association with large granular lymphocyte leukemia and the prognostic value of cytogenetic abnormalities. Blood87(7), 3000–3006 (1996).
  • Go RS, Li CY, Tefferi A, Phyliky RL. Acquired pure red cell aplasia associated with lymphoproliferative disease of granular T lymphocytes. Blood98(2), 483–485 (2001).
  • Osuji N, Del Giudice I, Matutes E et al. CD52 expression in T-cell large granular lymphocyte leukemia – implications for treatment with alemtuzumab. Leuk. Lymphoma46(5), 723–727 (2005).
  • Mohan SR, Clemente MJ, Afable M et al. Therapeutic implications of variable expression of CD52 on clonal cytotoxic T cells in CD8+ large granular lymphocyte leukemia. Haematologica94(10), 1407–1414 (2009).
  • Sternberg A, Eagleton H, Pillai N et al. Neutropenia and anaemia associated with T-cell large granular lymphocyte leukaemia responds to fludarabine with minimal toxicity. Br. J. Haematol.120(4), 699–701 (2003).
  • Mercieca J, Matutes E, Dearden C, MacLennan K, Catovsky D. The role of pentostatin in the treatment of T-cell malignancies: analysis of response rate in 145 patients according to disease subtype. J. Clin. Oncol.12(12), 2588–2593 (1994).
  • Granjo E, Lima M, Correia T et al. CD8+/V β 5. 1+ large granular lymphocyte leukemia associated with autoimmune cytopenias, rheumatoid arthritis and vascular mammary skin lesions: successful response to 2-deoxycoformycin. Hematol. Oncol.20(2), 87–93 (2002).
  • Lamy T, Loughran TP Jr. How I treat LGL leukemia. Blood7(10), 2764–2774 (2011).
  • Wymann MP, Schneiter R. Lipid signalling in disease. Nat. Rev. Mol. Cell Biol.9(2), 162–176 (2008).
  • Papadaki HA, Kritikos HD, Valatas V, Boumpas DT, Eliopoulos GD. Anemia of chronic disease in rheumatoid arthritis is associated with increased apoptosis of bone marrow erythroid cells: improvement following anti-tumor necrosis factor-α antibody therapy. Blood100(2), 474–482 (2002).
  • Papadaki HA, Kritikos HD, Gemetzi C et al. Bone marrow progenitor cell reserve and function and stromal cell function are defective in rheumatoid arthritis: evidence for a tumor necrosis factor α-mediated effect. Blood99(5), 1610–1619 (2002).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.