2
Views
2
CrossRef citations to date
0
Altmetric
Review

Ovarian cancer: individualized and personalized care

, &
Pages 409-419 | Published online: 10 Jan 2014

References

  • Jemal A, Siegel R, Ward E et al. Cancer statistics, 2009. CA Cancer J. Clin.59, 225–249 (2009).
  • Hennessy BT, Coleman RL, Markman M. Ovarian cancer. Lancet374, 1371–1382 (2009).
  • Vergote I. EORTC-GCG/NCIC-CTG trial 55971 randomized comparing primary debulking surgery (PDS) with neoadjuvant chemotherapy (NACT) followed by interval debulking (IDS) in stage IIIC-IV ovarian, fallopian tube, and peritoneal cancer. Presented at: International Gynecologic Cancer Society. Bangkok, Thailand, 25–28 October 2008.
  • Ozols RF, Bundy BN, Greer BE et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J. Clin. Oncol.21, 3194–3200 (2003).
  • Armstrong DK, Bundy B, Wenzel L et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N. Engl. J. Med.354, 34–43 (2006).
  • Moroni M, Veronese S, Benvenuti S et al. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol.6, 279–286 (2005).
  • Ciardiello F, Tortora G. A novel approach in the treatment of cancer: targeting the epidermal growth factor receptor. Clin. Cancer Res.7, 2958–2970 (2001).
  • Heimberger AB, Learn CA, Archer GE et al. Brain tumors in mice are susceptible to blockade of epidermal growth factor receptor (EGFR) with the oral, specific, EGFR-tyrosine kinase inhibitor ZD1839 (Iressa). Clin. Cancer Res.8, 3496–3502 (2002).
  • Magne N, Fischel JL, Dubreuil A et al. Sequence-dependent effects of ZD1839 (‘Iressa’) in combination with cytotoxic treatment in human head and neck cancer. Br. J. Cancer86, 819–827 (2002).
  • Moulder SL, Yakes FM, Muthuswamy SK et al. Epidermal growth factor receptor (HER1) tyrosine kinase inhibitor ZD1839 (Iressa) inhibits HER2/neu (erbB2)-overexpressing breast cancer cells in vitro and in vivo. Cancer Res.61, 8887–8895 (2001).
  • Ranson M. Epidermal growth factor receptor tyrosine kinase inhibitors. Br. J. Cancer90, 2250–2255 (2004).
  • Baselga J. A review of EGFR targeted therapy. Clin. Adv. Hematol. Oncol.1, 218–219 (2003).
  • Arribas J, Baselga J. Who will benefit from treatment against EGFR? Lancet Oncol.6, 257–258 (2005).
  • Baselga J, Arteaga CL. Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J. Clin. Oncol.23, 2445–2459 (2005).
  • Arteaga CL. ErbB-targeted therapeutic approaches in human cancer. Exp. Cell Res.284, 122–130 (2003).
  • Hirsch FR, Varella-Garcia M, Cappuzzo F et al. Combination of EGFR gene copy number and protein expression predicts outcome for advanced non-small-cell lung cancer patients treated with gefitinib. Ann. Oncol.18, 752–760 (2007).
  • Lynch TJ, Bell DW, Sordella R et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med.350, 2129–2139 (2004).
  • Cappuzzo F, Hirsch FR, Rossi E et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J. Natl Cancer Inst.97, 643–655 (2005).
  • Hirsch FR, Varella-Garcia M, McCoy J et al. Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: a Southwest Oncology Group Study. J. Clin. Oncol.23, 6838–6845 (2005).
  • Chung CH, Ely K, McGavran L et al. Increased epidermal growth factor receptor gene copy number is associated with poor prognosis in head and neck squamous cell carcinomas. J. Clin. Oncol.24, 4170–4176 (2006).
  • Jeon YK, Sung SW, Chung JH et al. Clinicopathologic features and prognostic implications of epidermal growth factor receptor (EGFR) gene copy number and protein expression in non-small cell lung cancer. Lung Cancer54, 387–398 (2006).
  • Hirsch FR, Varella-Garcia M, Bunn PA Jr et al. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J. Clin. Oncol.21, 3798–3807 (2003).
  • Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N. Engl. J. Med.358, 1160–1174 (2008).
  • Ramaswamy S, Golub TR. DNA microarrays in clinical oncology. J. Clin. Oncol.20, 1932–1941 (2002).
  • Bild AH, Yao G, Chang JT et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature439, 353–357 (2006).
  • Nevins JR, Potti A. Mining gene expression profiles: expression signatures as cancer phenotypes. Nat. Rev. Genet.8, 601–609 (2007).
  • Potti A, Nevins JR. Utilization of genomic signatures to direct use of primary chemotherapy. Curr. Opin. Genet. Dev.18, 62–67 (2008).
  • Berchuck A, Iversen ES, Lancaster JM et al. Patterns of gene expression that characterize long-term survival in advanced stage serous ovarian cancers. Clin. Cancer Res.11, 3686–3696 (2005).
  • Bonome T, Lee JY, Park DC et al. Expression profiling of serous low malignant potential, low-grade, and high-grade tumors of the ovary. Cancer Res.65, 10602–10612 (2005).
  • Lancaster JM, Dressman HK, Whitaker RS et al. Gene expression patterns that characterize advanced stage serous ovarian cancers. J. Soc. Gynecol. Investig.11, 51–59 (2004).
  • Mok SC, Bonome T, Vathipadiekal V et al. A gene signature predictive for outcome in advanced ovarian cancer identifies a survival factor: microfibril-associated glycoprotein 2. Cancer Cell16, 521–532 (2009).
  • Bast RC Jr, Hennessy B, Mills GB. The biology of ovarian cancer: new opportunities for translation. Nat. Rev. Cancer9, 415–428 (2009).
  • Spentzos D, Levine DA, Ramoni MF et al. Gene expression signature with independent prognostic significance in epithelial ovarian cancer. J. Clin. Oncol.22, 4700–4710 (2004).
  • Zorn KK, Bonome T, Gangi L et al. Gene expression profiles of serous, endometrioid, and clear cell subtypes of ovarian and endometrial cancer. Clin. Cancer Res.11, 6422–6430 (2005).
  • Bookman MA, Brady MF, McGuire WP et al. Evaluation of new platinum-based treatment regimens in advanced-stage ovarian cancer: a Phase III trial of the Gynecologic Cancer Intergroup. J. Clin. Oncol.27, 1419–1425 (2009).
  • Dressman HK, Berchuck A, Chan G et al. An integrated genomic-based approach to individualized treatment of patients with advanced-stage ovarian cancer. J. Clin. Oncol.25, 517–525 (2007).
  • Hall J, Paul J, Brown R. Critical evaluation of p53 as a prognostic marker in ovarian cancer. Expert Rev. Mol. Med.6(12), 1–20 (2004).
  • Havrilesky L, Darcy M, Hamdan H et al. Prognostic significance of p53 mutation and p53 overexpression in advanced epithelial ovarian cancer: a Gynecologic Oncology Group Study. J. Clin. Oncol.21, 3814–3825 (2003).
  • Vasey PA, Shulman LN, Campos S et al. Phase I trial of intraperitoneal injection of the E1B-55-kd-gene-deleted adenovirus ONYX-015 (dl1520) given on days 1 through 5 every 3 weeks in patients with recurrent/refractory epithelial ovarian cancer. J. Clin. Oncol.20, 1562–1569 (2002).
  • Buller RE, Runnebaum IB, Karlan BY et al. A Phase I/II trial of rAd/p53 (SCH 58500) gene replacement in recurrent ovarian cancer. Cancer Gene Ther.9, 553–566 (2002).
  • Bookman MA, Darcy KM, Clarke-Pearson D et al. Evaluation of monoclonal humanized anti-HER2 antibody, trastuzumab, in patients with recurrent or refractory ovarian or primary peritoneal carcinoma with overexpression of HER2: a Phase II trial of the Gynecologic Oncology Group. J. Clin. Oncol.21, 283–290 (2003).
  • Mayr D, Kanitz V, Amann G et al. HER-2/neu gene amplification in ovarian tumours: a comprehensive immunohistochemical and FISH analysis on tissue microarrays. Histopathology48, 149–156 (2006).
  • Tuefferd M, Couturier J, Penault-Llorca F et al. HER2 status in ovarian carcinomas: a multicenter GINECO study of 320 patients. PLoS ONE2, e1138 (2007).
  • Risch HA, McLaughlin JR, Cole DE et al. Population BRCA1 and BRCA2 mutation frequencies and cancer penetrances: a kin-cohort study in Ontario, Canada. J. Natl Cancer Inst.98, 1694–1706 (2006).
  • Berchuck A, Cirisano F, Lancaster JM et al. Role of BRCA1 mutation screening in the management of familial ovarian cancer. Am. J. Obstet. Gynecol.175, 738–746 (1996).
  • Narod SA, Boyd J. Current understanding of the epidemiology and clinical implications of BRCA1 and BRCA2 mutations for ovarian cancer. Curr. Opin. Obstet. Gynecol.14, 19–26 (2002).
  • Moynahan ME, Cui TY, Jasin M. Homology-directed DNA repair, mitomycin-c resistance, and chromosome stability is restored with correction of a BRCA1 mutation. Cancer Res.61, 4842–4850 (2001).
  • Sandhu SK, Yap TA, de Bono JS. Poly(ADP-ribose) polymerase inhibitors in cancer treatment: a clinical perspective. Eur. J. Cancer46, 9–20 (2010).
  • Ashworth A. A synthetic lethal therapeutic approach: poly(ADP) ribose polymerase inhibitors for the treatment of cancers deficient in DNA double-strand break repair. J. Clin. Oncol.26, 3785–3790 (2008).
  • Fong PC, Boss DS, Yap TA et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med.361, 123–134 (2009).
  • Audeh M, Penson R, Friedlander M. Phase II trial of the oral PARP inhibitor olaparib (AZD2281) in BRCA-deficient advanced ovarian cancer. J. Clin. Oncol.27(Suppl.), 15s (2009) (Abstract 5500).
  • O’Shaughnessy JO. Efficacy of BSI-201, a poly (ADP-ribose) polymerase-1 (PARP1) inhibitor, in combination with gemcitabine/carboplatin (G/C) in patients with metastatic triple-negative breast cancer (TNBC): results of a randomized Phase II trial. Am. Soc. Clin. Oncol.27(Suppl.), 18s (2009) (Abstract 3).
  • Dent R, Trudeau M, Pritchard KI et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin. Cancer Res.13, 4429–4434 (2007).
  • Foulkes WD, Stefansson IM, Chappuis PO et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J. Natl Cancer Inst.95, 1482–1485 (2003).
  • Press JZ, De Luca A, Boyd N et al. Ovarian carcinomas with genetic and epigenetic BRCA1 loss have distinct molecular abnormalities. BMC Cancer8, 17 (2008).
  • Santin AD, Hermonat PL, Ravaggi A et al. Secretion of vascular endothelial growth factor in adenocarcinoma and squamous cell carcinoma of the uterine cervix. Obstet. Gynecol.94, 78–82 (1999).
  • Cooper BC, Ritchie JM, Broghammer CL et al. Preoperative serum vascular endothelial growth factor levels: significance in ovarian cancer. Clin. Cancer Res.8, 3193–3197 (2002).
  • Yokoyama Y, Charnock-Jones DS, Licence D et al. Vascular endothelial growth factor-D is an independent prognostic factor in epithelial ovarian carcinoma. Br. J. Cancer88, 237–244 (2003).
  • Cannistra SA, Matulonis UA, Penson RT et al. Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J. Clin. Oncol.25, 5180–5186 (2007).
  • Burger RA, Sill MW, Monk BJ et al. Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group Study. J. Clin. Oncol.25, 5165–5171 (2007).
  • Tuma RS. Success of bevacizumab trials raises questions for future studies. J. Natl Cancer Inst.97, 950–951 (2005).
  • Lee FYF, Castaneda S, Hawken D. Bevacizumab/ixabepilone (BMS-247550) combination produces synergistic antitumor efficacy in multiple tumor in vivo and is superior to bevacizumab/paclitaxel combination. Presented at: AACR–EORTC–NCI International Conference. Philadelphia, PA, USA, 14–18 November 2005 (Poster B246).
  • Penson RT, Dizon DS, Cannistra SA et al. Phase II study of carboplatin, paclitaxel, and bevacizumab with maintenance bevacizumab as first-line chemotherapy for advanced mullerian tumors. J. Clin. Oncol.28, 154–159 (2010).
  • Kumaran GC, Jayson GC, Clamp AR. Antiangiogenic drugs in ovarian cancer. Br. J. Cancer100, 1–7 (2009).
  • Sandler A, Gray R, Perry MC et al. Paclitaxel–carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med.355, 2542–2550 (2006).
  • Giantonio BJ. Bevacizumab in the treatment of metastatic colorectal cancer (mCRC) in second- and third-line settings. Semin. Oncol33, S15–S18 (2006).
  • Hirai H, Iwasawa Y, Okada M et al. Small-molecule inhibition of Wee1 kinase by MK-1775 selectively sensitizes p53-deficient tumor cells to DNA-damaging agents. Mol. Cancer Ther.8, 2992–3000 (2009).
  • Iorns E, Lord CJ, Grigoriadis A et al. Integrated functional, gene expression and genomic analysis for the identification of cancer targets. PLoS ONE4, e5120 (2009).
  • Konecny GE, Glas R, Dering J et al. Activity of the multikinase inhibitor dasatinib against ovarian cancer cells. Br. J. Cancer101, 1699–1708 (2009).
  • Rose SL. Notch signaling pathway in ovarian cancer. Int. J. Gynecol. Cancer19, 564–566 (2009).
  • Bakkum-Gamez JN, Aletti G, Lewis KA et al. Mullerian inhibiting substance type II receptor (MISIIR): a novel, tissue-specific target expressed by gynecologic cancers. Gynecol. Oncol.108, 141–148 (2008).
  • Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene27, 5497–5510 (2008).
  • Samuels Y, Wang Z, Bardelli A et al. High frequency of mutations of the PIK3CA gene in human cancers. Science304, 554 (2004).
  • Samuels Y, Velculescu VE. Oncogenic mutations of PIK3CA in human cancers. Cell Cycle3, 1221–1224 (2004).
  • Abubaker J, Bavi P, Al-Haqawi W et al.PIK3CA alterations in Middle Eastern ovarian cancers. Mol. Cancer8, 51 (2009).
  • Souglakos J, Philips J, Wang R et al. Prognostic and predictive value of common mutations for treatment response and survival in patients with metastatic colorectal cancer. Br. J. Cancer101, 465–472 (2009).
  • Kalinsky K, Jacks LM, Heguy A et al. PIK3CA mutation associates with improved outcome in breast cancer. Clin. Cancer Res.15, 5049–5059 (2009).
  • Brugge J, Hung MC, Mills GB. A new mutational AKTivation in the PI3K pathway. Cancer Cell12, 104–107 (2007).
  • Salvesen HB, Carter SL, Mannelqvist M et al. Integrated genomic profiling of endometrial carcinoma associates aggressive tumors with indicators of PI3 kinase activation. Proc. Natl Acad. Sci. USA106, 4834–4839 (2009).
  • Shayesteh L, Lu Y, Kuo WL et al.PIK3CA is implicated as an oncogene in ovarian cancer. Nat. Genet.21, 99–102 (1999).
  • Campbell IG, Russell SE, Choong DY et al. Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res.64, 7678–7681 (2004).
  • Kolasa IK, Rembiszewska A, Felisiak A et al.PIK3CA amplification associates with resistance to chemotherapy in ovarian cancer patients. Cancer Biol. Ther.8, 21–26 (2009).
  • Kuo KT, Mao TL, Jones S et al. Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am. J. Pathol.174, 1597–1601 (2009).
  • Dent P, Grant S, Fisher PB et al. PI3K: a rational target for ovarian cancer therapy? Cancer Biol. Ther.8, 27–30 (2009).
  • Ihle NT, Powis G. Take your PIK: phosphatidylinositol 3-kinase inhibitors race through the clinic and toward cancer therapy. Mol. Cancer Ther.8, 1–9 (2009).
  • Serra V, Markman B, Scaltriti M et al. NVP-BEZ235, a dual PI3K/mTOR inhibitor, prevents PI3K signaling and inhibits the growth of cancer cells with activating PI3K mutations. Cancer Res.68, 8022–8030 (2008).
  • Singer G, Oldt R, 3rd, Cohen Y et al. Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J. Natl Cancer Inst.95, 484–486 (2003).
  • Singer G, Shih Ie M, Truskinovsky A et al. Mutational analysis of K-ras segregates ovarian serous carcinomas into two types: invasive MPSC (low-grade tumor) and conventional serous carcinoma (high-grade tumor). Int. J. Gynecol. Pathol.22, 37–41 (2003).
  • Mayr D, Hirschmann A, Lohrs U et al.KRAS and BRAF mutations in ovarian tumors: a comprehensive study of invasive carcinomas, borderline tumors and extraovarian implants. Gynecol. Oncol.103, 883–887 (2006).
  • Kuo KT, Guan B, Feng Y et al. Analysis of DNA copy number alterations in ovarian serous tumors identifies new molecular genetic changes in low-grade and high-grade carcinomas. Cancer Res.69, 4036–4042 (2009).
  • Kurman RJ, Shih IeM. Pathogenesis of ovarian cancer: lessons from morphology and molecular biology and their clinical implications. Int. J. Gynecol. Pathol.27, 151–160 (2008).
  • Schickedanz A. Of value: a discussion of cost, communication, and evidence to improve cancer care. Oncologist15(Suppl. 1), 73–79 (2010).
  • Williamson S. Patient access schemes for high-cost cancer medicines. Lancet Oncol.11, 111–112 (2010).
  • Lipscomb J. Estimating the cost of cancer care in the United States: a work very much in progress. J. Natl Cancer Inst.100, 607–610 (2008).
  • Meropol NJ, Schrag D, Smith TJ et al. American Society of Clinical Oncology guidance statement: the cost of cancer care. J. Clin. Oncol.27, 3868–3874 (2009).
  • Ramaswamy S. Rational design of cancer–drug combinations. N. Engl. J. Med.357, 299–300 (2007).
  • Galic V, Willner J, Wollan M et al. Common polymorphisms in TP53 and MDM2 and the relationship to TP53 mutations and clinical outcomes in women with ovarian and peritoneal carcinomas. Genes Chromosomes Cancer46, 239–247 (2007).
  • Cannistra SA. Cancer of the ovary. N. Engl. J. Med.351, 2519–2529 (2004).
  • Markman M, Liu PY, Moon J et al. Impact on survival of 12 versus 3 monthly cycles of paclitaxel (175 mg/m2) administered to patients with advanced ovarian cancer who attained a complete response to primary platinum-paclitaxel: follow-up of a Southwest Oncology Group and Gynecologic Oncology Group Phase 3 trial. Gynecol. Oncol.114, 195–198 (2009).
  • Bruel-Jungerman E, Veyrac A, Dufour F et al. Inhibition of PI3K–Akt signaling blocks exercise-mediated enhancement of adult neurogenesis and synaptic plasticity in the dentate gyrus. PLoS ONE4, e7901 (2009).
  • Rustin GW. A randomized trial in ovarian cancer (OC) of early treatment of relapse based on CA125 level alone versus delayed treatment based on conventional clinical indicators (MRC OV05/EORTC 55955 trials). American Society of Clinical Oncology Annual Meeting (ed 18s). J. Clin. Oncol. Chicago, IL, USA (2009).
  • Eisenhauer EA, Vermorken JB, van Glabbeke M. Predictors of response to subsequent chemotherapy in platinum pretreated ovarian cancer: a multivariate analysis of 704 patients. Ann. Oncol.8, 963–968 (1997).
  • Harter P, Hahmann M, Lueck HJ et al. Surgery for recurrent ovarian cancer: role of peritoneal carcinomatosis: exploratory analysis of the DESKTOP I trial about risk factors, surgical implications, and prognostic value of peritoneal carcinomatosis. Ann. Surg. Oncol.16, 1324–1330 (2009).
  • Doyle C, Crump M, Pintilie M et al. Does palliative chemotherapy palliate? Evaluation of expectations, outcomes, and costs in women receiving chemotherapy for advanced ovarian cancer. J. Clin. Oncol.19, 1266–1274 (2001).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.