15
Views
66
CrossRef citations to date
0
Altmetric
Review

Recent insights into the pathophysiology of preeclampsia

&
Pages 557-566 | Published online: 10 Jan 2014

References

  • Roberts JM, Cooper DW. Pathogenesis and genetics of pre-eclampsia. Lancet357(9249), 53–56 (2001).
  • Granger JP, Alexander BT, Llinas MT, Bennett WA, Khalil RA. Pathophysiology of preeclampsia: linking placental ischemia/hypoxia with microvascular dysfunction. Microcirculation9(3), 147–160 (2002).
  • Zandi-Nejad K, Luyckx VA, Brenner BM. Adult hypertension and kidney disease: the role of fetal programming. Hypertension47(3), 502–508 (2006).
  • Sibai B, Dekker G, Kupferminc M. Pre-eclampsia. Lancet365(9461), 785–799 (2005).
  • Harskamp RE, Zeeman GG. Preeclampsia: at risk for remote cardiovascular disease. Am. J. Med. Sci.334(4), 291–295 (2007).
  • Meis PJ, Goldenberg RL, Mercer BM et al. The preterm prediction study: risk factors for indicated preterm births. Maternal–Fetal Medicine Units Network of the National Institute of Child Health and Human Development. Am. J. Obstet. Gynecol.178(3), 562–567 (1998).
  • Roberts JM, Pearson GD, Cutler JA, Lindheimer MD. Summary of the NHLBI working group on research on hypertension during pregnancy. Hypertens. Pregnancy22(2), 109–127 (2003).
  • Caritis S, Sibai B, Hauth J et al. Predictors of pre-eclampsia in women at high risk. National Institute of Child Health and Human Development Network of Maternal–Fetal Medicine Units. Am. J. Obstet. Gynecol.179(4), 946–951 (1998).
  • Sibai BM, Ewell M, Levine RJ et al. Risk factors associated with preeclampsia in healthy nulliparous women. The Calcium for Preeclampsia Prevention (CPEP) Study Group. Am. J. Obstet. Gynecol.177(5), 1003–1010 (1997).
  • Mostello D, Catlin TK, Roman L, Holcomb WL Jr, Leet T. Preeclampsia in the parous woman: who is at risk? Am. J. Obstet. Gynecol.187(2), 425–429 (2002).
  • Hladunewich M, Karumanchi SA, Lafayette R. Pathophysiology of the clinical manifestations of preeclampsia. Clin. J. Am. Soc. Nephrol.2(3), 543–549 (2007).
  • Shembrey MA, Noble AD. An instructive case of abdominal pregnancy. Aust. N. Z. J. Obstet. Gynaecol.35(2), 220–221 (1995).
  • Redman CW, Sacks GP, Sargent IL. Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am. J. Obstet. Gynecol.180(2 Pt 1), 499–506 (1999).
  • Roberts JM, Pearson G, Cutler J, Lindheimer M. Summary of the NHLBI working group on research on hypertension during pregnancy. Hypertension41(3), 437–445 (2003).
  • Roberts JM, Gammill HS. Preeclampsia: recent insights. Hypertension46(6), 1243–1249 (2005).
  • Zhou Y, Damsky CH, Fisher SJ. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J. Clin. Invest.99(9), 2152–2164 (1997).
  • Brosens IA, Robertson WB, Dixon HG. The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet. Gynecol. Annu.1, 177–191 (1972).
  • Karimu AL, Burton GJ. The effects of maternal vascular pressure on the dimensions of the placental capillaries. Br. J. Obstet. Gynaecol.101(1), 57–63 (1994).
  • Lim KH, Zhou Y, Janatpour M et al. Human cytotrophoblast differentiation/invasion is abnormal in pre-eclampsia. Am. J. Pathol.151(6), 1809–1818 (1997).
  • Damsky CH, Fisher SJ. Trophoblast pseudo-vasculogenesis: faking it with endothelial adhesion receptors. Curr. Opin. Cell Biol.10(5), 660–666 (1998).
  • Rodesch F, Simon P, Donner C, Jauniaux E. Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet. Gynecol.80(2), 283–285 (1992).
  • Rajakumar A, Doty K, Daftary A, Harger G, Conrad KP. Impaired oxygen-dependent reduction of HIF-1α and -2α proteins in pre-eclamptic placentae. Placenta24(2–3), 199–208 (2003).
  • Rajakumar A, Whitelock KA, Weissfeld LA et al. Selective overexpression of the hypoxia-inducible transcription factor, HIF-2α, in placentas from women with preeclampsia. Biol. Reprod.64(2), 499–506 (2001).
  • Lyall F, Greer IA, Boswell F et al. Expression of cell adhesion molecules in placentae from pregnancies complicated by pre-eclampsia and intrauterine growth retardation. Placenta16(7), 579–587 (1995).
  • Macara L, Kingdom JC, Kohnen G et al. Elaboration of stem villous vessels in growth restricted pregnancies with abnormal umbilical artery Doppler waveforms. Br. J. Obstet. Gynaecol.102(10), 807–812 (1995).
  • Sheppard BL, Bonnar J. An ultrastructural study of utero–placental spiral arteries in hypertensive and normotensive pregnancy and fetal growth retardation. Br. J. Obstet. Gynaecol.88(7), 695–705 (1981).
  • Knofler M. Critical growth factors and signalling pathways controlling human trophoblast invasion. Int. J. Dev. Biol.54(2–3), 269–280 (2010).
  • Lindheimer MD, Taler SJ, Cunningham FG. ASH position paper: hypertension in pregnancy. J. Clin. Hypertens. (Greenwich)11(4), 214–225 (2009).
  • Hodari AA. Chronic uterine ischemia and reversible experimental ‘toxemia of pregnancy’. Am. J. Obstet. Gynecol.97(5), 597–607 (1967).
  • Losonczy G, Brown G, Venuto RC. Increased peripheral resistance during reduced uterine perfusion pressure hypertension in pregnant rabbits. Am. J. Med. Sci.303(4), 233–240 (1992).
  • Cavanagh D, Rao PS, Tsai CC, O’Connor TC. Experimental toxemia in the pregnant primate. Am. J. Obstet. Gynecol.128(1), 75–85 (1977).
  • Cavanagh D, Rao PS, Tung KS, Gaston L. Eclamptogenic toxemia: the development of an experimental model in the subhuman primate. Am. J. Obstet. Gynecol.120(2), 183–196 (1974).
  • Combs CA, Katz MA, Kitzmiller JL, Brescia RJ. Experimental preeclampsia produced by chronic constriction of the lower aorta: validation with longitudinal blood pressure measurements in conscious rhesus monkeys. Am. J. Obstet. Gynecol.169(1), 215–223 (1993).
  • Makris A, Thornton C, Thompson J et al. Uteroplacental ischemia results in proteinuric hypertension and elevated sFLT-1. Kidney Int.71(10), 977–984 (2007).
  • Granger JP, LaMarca BB, Cockrell K et al. Reduced uterine perfusion pressure (RUPP) model for studying cardiovascular–renal dysfunction in response to placental ischemia. Methods Mol. Med.122, 383–392 (2006).
  • Sholook MM, Gilbert JS, Sedeek MH et al. Systemic hemodynamic and regional blood flow changes in response to chronic reductions in uterine perfusion pressure in pregnant rats. Am. J. Physiol. Heart Circ. Physiol.293(4), H2080–H2084 (2007).
  • Burton GJ, Jauniaux E. Placental oxidative stress: from miscarriage to preeclampsia. J. Soc. Gynecol. Investig.11(6), 342–352 (2004).
  • Hung TH, Burton GJ. Hypoxia and reoxygenation: a possible mechanism for placental oxidative stress in preeclampsia. Taiwan J. Obstet. Gynecol.45(3), 189–200 (2006).
  • Hung TH, Skepper JN, Charnock-Jones DS, Burton GJ. Hypoxia–reoxygenation: a potent inducer of apoptotic changes in the human placenta and possible etiological factor in preeclampsia. Circ. Res.90(12), 1274–1281 (2002).
  • Walsh SW. Maternal–placental interactions of oxidative stress and antioxidants in preeclampsia. Semin. Reprod. Endocrinol.16(1), 93–104 (1998).
  • Staff AC, Ranheim T, Khoury J, Henriksen T. Increased contents of phospholipids, cholesterol, and lipid peroxides in decidua basalis in women with preeclampsia. Am. J. Obstet. Gynecol.180(3 Pt 1), 587–592 (1999).
  • Staff AC, Halvorsen B, Ranheim T, Henriksen T. Elevated level of free 8-iso-prostaglandin F2α in the decidua basalis of women with preeclampsia. Am. J. Obstet. Gynecol.181(5 Pt 1), 1211–1215 (1999).
  • Roggensack AM, Zhang Y, Davidge ST. Evidence for peroxynitrite formation in the vasculature of women with preeclampsia. Hypertension33(1), 83–89 (1999).
  • Sedeek M, Gilbert JS, LaMarca BB et al. Role of reactive oxygen species in hypertension produced by reduced uterine perfusion in pregnant rats. Am. J. Hypertens.21(10), 1152–1156 (2008).
  • Sedeek MW, Wang YP, Granger, JP. Increased oxidative stress in a rat model of preeclampsia. Am. J. Hypertens.17(142A) (2004).
  • Xia Y, Kellems RE. Is preeclampsia an autoimmune disease? Clin. Immunol.133(1), 1–12 (2009).
  • Herse F, Staff AC, Hering L et al. AT1-receptor autoantibodies and uteroplacental RAS in pregnancy and pre-eclampsia. J. Mol. Med.86(6), 697–703 (2008).
  • Campbell DM, MacGillivray I, Carr-Hill R. Pre-eclampsia in second pregnancy. Br. J. Obstet. Gynaecol.92(2), 131–140 (1985).
  • Saito S, Shiozaki A, Nakashima A, Sakai M, Sasaki Y. The role of the immune system in preeclampsia. Mol. Aspects Med.28(2), 192–209 (2007).
  • Robillard PY, Hulsey TC, Alexander GR et al. Paternity patterns and risk of preeclampsia in the last pregnancy in multiparae. J. Reprod. Immunol.24(1), 1–12 (1993).
  • Schiessl B. Inflammatory response in preeclampsia. Mol. Aspects Med.28(2), 210–219 (2007).
  • Redman CW, Sargent IL. Pre-eclampsia, the placenta and the maternal systemic inflammatory response – a review. Placenta24(Suppl. A), S21–S27 (2003).
  • Gadonski G, LaMarca BB, Sullivan E et al. Hypertension produced by reductions in uterine perfusion in the pregnant rat: role of interleukin 6. Hypertension48(4), 711–716 (2006).
  • LaMarca B, Speed J, Fournier L et al. Hypertension in response to chronic reductions in uterine perfusion in pregnant rats: effect of tumor necrosis factor-α blockade. Hypertension52(6), 1161–1167 (2008).
  • Alexander BT, Cockrell KL, Massey MB, Bennett WA, Granger JP. Tumor necrosis factor-α-induced hypertension in pregnant rats results in decreased renal neuronal nitric oxide synthase expression. Am. J. Hypertens.15(2 Pt 1), 170–175 (2002).
  • LaMarca BB, Cockrell K, Sullivan E, Bennett W, Granger JP. Role of endothelin in mediating tumor necrosis factor-induced hypertension in pregnant rats. Hypertension46(1), 82–86 (2005).
  • Germain SJ, Sacks GP, Sooranna SR, Sargent IL, Redman CW. Systemic inflammatory priming in normal pregnancy and preeclampsia: the role of circulating syncytiotrophoblast microparticles. J. Immunol.178(9), 5949–5956 (2007).
  • Wallukat G, Homuth V, Fischer T et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J. Clin. Invest.103(7), 945–952 (1999).
  • Dechend R, Viedt C, Muller DN et al. AT1 receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase. Circulation107(12), 1632–1639 (2003).
  • Stepan H, Faber R, Wessel N et al. Relation between circulating angiotensin II type 1 receptor agonistic autoantibodies and soluble fms-like tyrosine kinase 1 in the pathogenesis of preeclampsia. J. Clin. Endocrinol. Metab.91(6), 2424–2427 (2006).
  • Zhou CC, Ahmad S, Mi T et al. Autoantibody from women with preeclampsia induces soluble Fms-like tyrosine kinase-1 production via angiotensin type 1 receptor and calcineurin/nuclear factor of activated T-cells signaling. Hypertension51(4), 1010–1019 (2008).
  • LaMarca B, Wallukat G, Llinas M et al. Autoantibodies to the angiotensin type I receptor in response to placental ischemia and tumor necrosis factor α in pregnant rats. Hypertension52(6), 1168–1172 (2008).
  • LaMarca B, Parrish M, Ray LF et al. Hypertension in response to autoantibodies to the angiotensin II type I receptor (AT1-AA) in pregnant rats: role of endothelin-1. Hypertension54(4), 905–909 (2009).
  • Zhou CC, Zhang Y, Irani RA et al. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat. Med.14(8), 855–862 (2008).
  • Mutter WP, Karumanchi SA. Molecular mechanisms of preeclampsia. Microvasc. Res.75(1), 1–8 (2008).
  • LaMarca BD, Alexander BT, Gilbert JS et al. Pathophysiology of hypertension in response to placental ischemia during pregnancy: a central role for endothelin? Gend. Med.5(Suppl. A), S133–S138 (2008).
  • LaMarca BD, Gilbert J, Granger JP. Recent progress toward the understanding of the pathophysiology of hypertension during preeclampsia. Hypertension51(4), 982–988 (2008).
  • Banks RE, Forbes MA, Searles J et al. Evidence for the existence of a novel pregnancy-associated soluble variant of the vascular endothelial growth factor receptor, Flt-1. Mol. Hum. Reprod.4(4), 377–386 (1998).
  • Helske S, Vuorela P, Carpen O et al. Expression of vascular endothelial growth factor receptors 1, 2 and 3 in placentas from normal and complicated pregnancies. Mol. Hum. Reprod.7(2), 205–210 (2001).
  • Kendall RL, Thomas KA. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Natl Acad. Sci. USA90(22), 10705–10709 (1993).
  • Levine RJ, Lam C, Qian C et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N. Engl. J. Med.355(10), 992–1005 (2006).
  • Zhou Y, McMaster M, Woo K et al. Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am. J. Pathol.160(4), 1405–1423 (2002).
  • Maynard SE, Min JY, Merchan J et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest.111(5), 649–658 (2003).
  • Levine RJ, Maynard SE, Qian C et al. Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med.350(7), 672–683 (2004).
  • Huckle WR, Roche RI. Post-transcriptional control of expression of sFlt-1, an endogenous inhibitor of vascular endothelial growth factor. J. Cell. Biochem.93(1), 120–132 (2004).
  • Soleymanlou N, Jurisica I, Nevo O et al. Molecular evidence of placental hypoxia in preeclampsia. J. Clin. Endocrinol. Metab.90(7), 4299–4308 (2005).
  • Nagamatsu T, Fujii T, Kusumi M et al. Cytotrophoblasts up-regulate soluble fms-like tyrosine kinase-1 expression under reduced oxygen: an implication for the placental vascular development and the pathophysiology of preeclampsia. Endocrinology145(11), 4838–4845 (2004).
  • Ahmad S, Ahmed A. Elevated placental soluble vascular endothelial growth factor receptor-1 inhibits angiogenesis in preeclampsia. Circ. Res.95(9), 884–891 (2004).
  • Nevo O, Soleymanlou N, Wu Y et al. Increased expression of sFlt-1 in in vivo and in vitro models of human placental hypoxia is mediated by HIF-1. Am. J. Physiol. Regul. Integr. Comp. Physiol.291(4), R1085–R1093 (2006).
  • Heiskanen J, Romppanen EL, Hiltunen M et al. Polymorphism in the tumor necrosis factor-α gene in women with preeclampsia. J. Assist. Reprod. Genet.19(5), 220–223 (2002).
  • Eremina V, Sood M, Haigh J et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J. Clin. Invest.111(5), 707–716 (2003).
  • Byers BD, Betancourt A, Lu F et al. The effect of prepregnancy obesity and sFlt-1-induced preeclampsia-like syndrome on fetal programming of adult vascular function in a mouse model. Am. J. Obstet. Gynecol.200(4), 432.e1–7 (2009).
  • Gilbert JS, Babcock SA, Granger JP. Hypertension produced by reduced uterine perfusion in pregnant rats is associated with increased soluble fms-like tyrosine kinase-1 expression. Hypertension50(6), 1142–1147 (2007).
  • Bridges JP, Gilbert JS, Colson D et al. Oxidative stress contributes to soluble fms-like tyrosine kinase-1 induced vascular dysfunction in pregnant rats. Am. J. Hypertens.22(5), 564–568 (2009).
  • Murphy SR, LaMarca BB, Cockrell K, Granger JP. Role of endothelin in mediating soluble fms-like tyrosine kinase 1-induced hypertension in pregnant rats. Hypertension55(2), 394–398 (2010).
  • Gilbert JS, Ryan MJ, LaMarca BB et al. Pathophysiology of hypertension during preeclampsia: linking placental ischemia with endothelial dysfunction. Am. J. Physiol. Heart Circ. Physiol.294(2), H541–H550 (2008).
  • Wang A, Rana S, Karumanchi SA. Preeclampsia: the role of angiogenic factors in its pathogenesis. Physiology (Bethesda)24, 147–158 (2009).
  • Ballermann BJ. Glomerular endothelial cell differentiation. Kidney Int.67(5), 1668–1671 (2005).
  • Zhu X, Wu S, Dahut WL, Parikh CR. Risks of proteinuria and hypertension with bevacizumab, an antibody against vascular endothelial growth factor: systematic review and meta-analysis. Am. J. Kidney Dis.49(2), 186–193 (2007).
  • Li Z, Zhang Y, Ying Ma J et al. Recombinant vascular endothelial growth factor 121 attenuates hypertension and improves kidney damage in a rat model of preeclampsia. Hypertension50(4), 686–692 (2007).
  • Suzuki H, Ohkuchi A, Matsubara S et al. Effect of recombinant placental growth factor 2 on hypertension induced by full-length mouse soluble fms-like tyrosine kinase 1 adenoviral vector in pregnant mice. Hypertension54(5), 1129–1135 (2009).
  • Bergmann A, Ahmad S, Cudmore M et al. Reduction of circulating soluble Flt-1 alleviates preeclampsia-like symptoms in a mouse model. J. Cell. Mol. Med.14(6B), 1857–1867 (2009).
  • Gilbert JS, Verzwyvelt J, Colson D et al. Recombinant vascular endothelial growth factor 121 infusion lowers blood pressure and improves renal function in rats with placental ischemia-induced hypertension. Hypertension55(2), 380–385 (2010).
  • Maglione D, Guerriero V, Viglietto G, Delli-Bovi P, Persico MG. Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proc. Natl Acad. Sci. USA88(20), 9267–9271 (1991).
  • Shore VH, Wang TH, Wang CL et al. Vascular endothelial growth factor, placenta growth factor and their receptors in isolated human trophoblast. Placenta18(8), 657–665 (1997).
  • Khaliq A, Li XF, Shams M et al. Localisation of placenta growth factor (PIGF) in human term placenta. Growth Factors13(3–4), 243–250 (1996).
  • Lam C, Lim KH, Karumanchi SA. Circulating angiogenic factors in the pathogenesis and prediction of preeclampsia. Hypertension46(5), 1077–1085 (2005).
  • Park JE, Chen HH, Winer J, Houck KA, Ferrara N. Placenta growth factor. Potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk-1/KDR. J. Biol. Chem.269(41), 25646–25654 (1994).
  • Ahmed A, Dunk C, Ahmad S, Khaliq A. Regulation of placental vascular endothelial growth factor (VEGF) and placenta growth factor (PIGF) and soluble Flt-1 by oxygen – a review. Placenta21(Suppl. A), S16–S24 (2000).
  • Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol.146(5), 1029–1039 (1995).
  • Tayade C, Hilchie D, He H et al. Genetic deletion of placenta growth factor in mice alters uterine NK cells. J. Immunol.178(7), 4267–4275 (2007).
  • Cheifetz S, Bellon T, Cales C et al. Endoglin is a component of the transforming growth factor-β receptor system in human endothelial cells. J. Biol. Chem.267(27), 19027–19030 (1992).
  • Gougos A, St Jacques S, Greaves A et al. Identification of distinct epitopes of endoglin, an RGD-containing glycoprotein of endothelial cells, leukemic cells, and syncytiotrophoblasts. Int. Immunol.4(1), 83–92 (1992).
  • Venkatesha S, Toporsian M, Lam C et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat. Med.12(6), 642–649 (2006).
  • Gilbert JS, Gilbert SA, Arany M, Granger JP. Hypertension produced by placental ischemia in pregnant rats is associated with increased soluble endoglin expression. Hypertension53(2), 399–403 (2009).
  • Zhou CC, Irani RA, Zhang Y et al. Angiotensin receptor agonistic autoantibody-mediated tumor necrosis factor-α induction contributes to increased soluble endoglin production in preeclampsia. Circulation121(3), 436–444 (2010).
  • Yanagisawa M, Inoue A, Ishikawa T et al. Primary structure, synthesis, and biological activity of rat endothelin, an endothelium-derived vasoconstrictor peptide. Proc. Natl Acad. Sci. USA85(18), 6964–6967 (1988).
  • Yanagisawa M, Kurihara H, Kimura S, Goto K, Masaki T. A novel peptide vasoconstrictor, endothelin, is produced by vascular endothelium and modulates smooth muscle Ca2+ channels. J. Hypertens. Suppl.6(4), S188–S191 (1988).
  • Taylor RN, Varma M, Teng NN, Roberts JM. Women with preeclampsia have higher plasma endothelin levels than women with normal pregnancies. J. Clin. Endocrinol. Metab.71(6), 1675–1677 (1990).
  • Benigni A, Orisio S, Gaspari F et al. Evidence against a pathogenetic role for endothelin in pre-eclampsia. Br. J. Obstet. Gynaecol.99(10), 798–802 (1992).
  • Bernardi F, Constantino L, Machado R, Petronilho F, Dal-Pizzol F. Plasma nitric oxide, endothelin-1, arginase and superoxide dismutase in pre-eclamptic women. J. Obstet. Gynaecol. Res.34(6), 957–963 (2008).
  • Nezar MA, el-Baky AM, Soliman OA et al. Endothelin-1 and leptin as markers of intrauterine growth restriction. Indian J. Pediatr.76(5), 485–488 (2009).
  • Cao J, Inoue K, Li X, Drummond G, Abraham NG. Physiological significance of heme oxygenase in hypertension. Int. J. Biochem. Cell Biol.41(5), 1025–1033 (2009).
  • Ahmed A, Rahman M, Zhang X et al. Induction of placental heme oxygenase-1 is protective against TNFα-induced cytotoxicity and promotes vessel relaxation. Mol. Med.6(5), 391–409 (2000).
  • Yoshiki N, Kubota T, Aso T. Expression and localization of heme oxygenase in human placental villi. Biochem. Biophys. Res. Commun.276(3), 1136–1142 (2000).
  • McLaughlin BE, Hutchinson JM, Graham CH et al. Heme oxygenase activity in term human placenta. Placenta21(8), 870–873 (2000).
  • Bainbridge SA, Smith GN. HO in pregnancy. Free Radic. Biol. Med.38(8), 979–988 (2005).
  • Idriss NK, Blann AD, Lip GY. Hemoxygenase-1 in cardiovascular disease. J. Am. Coll. Cardiol.52(12), 971–978 (2008).
  • Bainbridge SA, Farley AE, McLaughlin BE et al. Carbon monoxide decreases perfusion pressure in isolated human placenta. Placenta23(8–9), 563–569 (2002).
  • Qanungo S, Mukherjea M. Ontogenic profile of some antioxidants and lipid peroxidation in human placental and fetal tissues. Mol. Cell. Biochem.215(1–2), 11–19 (2000).
  • Barber A, Robson SC, Myatt L, Bulmer JN, Lyall F. Heme oxygenase expression in human placenta and placental bed: reduced expression of placenta endothelial HO-2 in preeclampsia and fetal growth restriction. FASEB. J.15(7), 1158–1168 (2001).
  • Appleton SD, Marks GS, Nakatsu K et al. Heme oxygenase activity in placenta: direct dependence on oxygen availability. Am. J. Physiol. Heart Circ. Physiol.282(6), H2055–H2059 (2002).
  • Wang R, Shamloul R, Wang X, Meng Q, Wu L. Sustained normalization of high blood pressure in spontaneously hypertensive rats by implanted hemin pump. Hypertension48(4), 685–692 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.