5
Views
13
CrossRef citations to date
0
Altmetric
Special Report

Environmental induction of the fetal epigenome

&
Pages 657-664 | Published online: 10 Jan 2014

References

  • Barker DJ. The origins of the developmental origins theory. J. Intern. Med.261(5), 412–417 (2007).
  • Barker DJ, Osomond C. Infant mortality, childhood nutrition and ischaemic heart disease in England and Wales. Lancet1(8489), 1077–1081 (1986).
  • Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet2(8663), 577–580 (1989).
  • Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS. Fetal nutrition and cardiovascular disease in adult life. Lancet341(8850), 938–941 (1993).
  • Waterland RA, Michels KB. Epigenetic epidemiology of the developmental origins hypothesis. Annu. Rev. Nutr.27, 363–388 (2007).
  • Waddington C. Organisers and Genes. Cambridge University Press, Cambridge, UK (1940).
  • Murrell A, Rakyan VK, Beck S. From genome to epigenome. Hum. Mol. Genet.14(Suppl. 1), R3–R10 (2005).
  • Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev.23(7), 781–783 (2009).
  • Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science187(4173), 226–232 (1975).
  • Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell69(6), 915–926 (1992).
  • Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem.74(1), 481–514 (2005).
  • Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science293(5532), 1089–1093 (2001).
  • Morgan HD, Santos F, Green K, Dean W, Reik W. Epigenetic reprogramming in mammals. Hum. Mol. Genet.14(Suppl. 1), R47–R58 (2005).
  • Mayer W, Niveleau A, Walter J, Fundele R, Haaf T. Demethylation of the zygotic paternal genome. Nature403(6769), 501–502 (2000).
  • Bestor TH. The DNA methyltransferases of mammals. Hum. Mol. Genet.9(16), 2395–2402 (2000).
  • Yoder JA, Soman NS, Verdine GL, Bestor TH. DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe. J. Mol. Biol.270(3), 385–395 (1997).
  • Okano M, Bell DW, Haber DW, Li E. DNA methyltransferases DNMT3a and DNMT3b are essential for de novo methylation and mammalian development. Cell99, 247–257 (1999).
  • Bird AP, Wolffe AP. Methylation-induced repression – belts, braces, and chromatin. Cell99(5), 451–454 (1999).
  • Quina AS, Buschbeck M, Di Croce L. Chromatin structure and epigenetics. Biochem. Pharmacol.72(11), 1563–1569 (2006).
  • Kornberg RD, Lorch Y. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell98(3), 285–294 (1999).
  • Felsenfeld G, Groudine M. Controlling the double helix. Nature421(6921), 448–453 (2003).
  • Cheung P, Lau P. Epigenetic regulation by histone methylation and histone variants. Mol. Endocrinol.19(3), 563–573 (2005).
  • Bateson P, Barker D, Clutton-Brock T et al. Developmental plasticity and human health. Nature430(6998), 419–421 (2004).
  • Godfrey KM, Barker DJ. Fetal nutrition and adult disease. Am. J. Clin. Nutr.71(Suppl. 5), 1344S–1352S (2000).
  • Morrison AG, Callanan JJ, Evans NP, Aldridge TC, Sweeney T. Effects of endocrine disrupting compounds on the pathology and oestrogen receptor α and β distribution in the uterus and cervix of ewe lambs. Domest. Anim. Endocrinol.25(4), 329–343 (2003).
  • Colborn T, vom Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ. Health. Perspect.101(5), 378–384 (1993).
  • Newbold RR, Hanson RB, Jefferson WN, Bullock BC, Haseman J, McLachlan JA. Proliferative lesions and reproductive tract tumors in male descendants of mice exposed developmentally to diethylstilbestrol. Carcinogenesis21(7), 1355–1363 (2000).
  • Herbst AL, Ulfelder H, Poskanzer DC. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N. Engl. J. Med.284(15), 878–881 (1971).
  • Block K, Kardana A, Igarashi P, Taylor HS. In utero diethylstilbestrol (DES) exposure alters Hox gene expression in the developing Müllerian system. FASEB J.14(9), 1101–1108 (2000).
  • Bromer JG, Wu J, Zhou Y, Taylor HS. Hypermethylation of homeobox A10 by in utero diethylstilbestrol exposure: an epigenetic mechanism for altered developmental programming. Endocrinology150(7), 3376–3382 (2009).
  • Taylor HS, Vanden Heuvel GB, Igarashi P. A conserved Hox axis in the mouse and human female reproductive system: late establishment and persistent adult expression of the Hoxa cluster genes. Biol. Reprod.57(6), 1338–1345 (1997).
  • Gendron RL, Paradis H, Hsieh-Li HM, Lee DW, Potter SS, Markoff E. Abnormal uterine stromal and glandular function associated with maternal reproductive defects in Hoxa-11 null mice. Biol. Reprod.56(5), 1097–1105 (1997).
  • Hsieh-Li HM, Witte DP, Weinstein M et al. Hoxa 11 structure, extensive antisense transcription, and function in male and female fertility. Development121(5), 1373–1385 (1995).
  • Mortlock DP, Innis JW. Mutation of Hoxa13 in hand–foot–genital syndrome. Nat. Genet.15(2), 179–180 (1997).
  • Warot X, Fromental-Ramain C, Fraulob V, Chambon P, Dollé P. Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development124(23), 4781–4791 (1997).
  • Bagot CN, Troy PJ, Taylor HS. Alteration of maternal Hoxa10 expression by in vivo gene transfection affects implantation. Gene Ther.7(16), 1378–1384 (2000).
  • Benson GV, Lim H, Paria BC, Satokata I, Dey SK, Maas RL. Mechanisms of reduced fertility in Hoxa-10 mutant mice: uterine homeosis and loss of maternal Hoxa-10 expression. Development122(9), 2687–2696 (1996).
  • Satokata I, Benson G, Maas R. Sexually dimorphic sterility phenotypes in Hoxa10-deficient mice. Nature374(6521), 460–463 (1995).
  • Taylor HS, Arici A, Olive D, Igarashi P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J. Clin. Invest.101(7), 1379–1384 (1998).
  • Dolinoy DC, Weidman JR, Jirtle RL. Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod. Toxicol.23(3), 297–307 (2007).
  • Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL. Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ. Health Perspect.113(4), 391–395 (2005).
  • Mountfort KA, Kelly J, Jickells SM, Castle L. Investigations into the potential degradation of polycarbonate baby bottles during sterilization with consequent release of bisphenol A. Food Addit. Contam.14(6–7), 737–740 (1997).
  • Cao X, Corriveau J. Migration of bisphenol A from polycarbonate baby and water bottles into water under severe conditions. J. Agric. Food Chem.56(15), 6378–6381 (2008).
  • Olea N, Pulgar R, Pérez P et al. Estrogenicity of resin-based composites and sealants used in dentistry. Environ. Health Perspect.104(3), 298–305 (1996).
  • Howdeshell KL, Hotchkiss AK, Thayer KA, Vandenbergh JG, vom Saal FS. Exposure to bisphenol A advances puberty. Nature401(6755), 763–764 (1999).
  • Markey CM, Luque EH, Munoz de Toro M, Sonnenschein C, Soto AM. In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol. Reprod.65(4), 1215–1233 (2001).
  • Maffini MV, Rubin BS, Sonnenschein C, Soto AM. Endocrine disruptors and reproductive health: the case of bisphenol-A. Mol. Cell. Endocrinol.254–255, 179–186 (2006).
  • Takahashi O, Oishi S. Disposition of orally administered 2,2-Bis(4-hydroxyphenyl)propane (bisphenol A) in pregnant rats and the placental transfer of fetuses. Environ. Health Perspect.108(10), 931–935 (2000).
  • Sugiura-Ogasawara M, Ozaki Y, Sonta S, Makino T, Suzumori K. Exposure to bisphenol A is associated with recurrent miscarriage. Hum. Reprod.20(8), 2325–2329 (2005).
  • Hiroi H, Tsutsumi O, Takeuchi T et al. Differences in serum bisphenol a concentrations in premenopausal normal women and women with endometrial hyperplasia. Endocr. J.51(6), 595–600 (2004).
  • Lang IA, Galloway TS, Scarlett A et al. Association of urinary bisphenol A concentration with medical disorders and laboratory abnormalities in adults. JAMA300(11), 1303–1310 (2008).
  • Smith CC, Taylor HS. Xenoestrogen exposure imprints expression of genes (Hoxa10) required for normal uterine development. FASEB J.21(1), 239–246 (2007).
  • Bromer JG, Zhou Y, Taylor MB, Doherty L, Taylor HS. Bisphenol-A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. FASEB J.24(7), 2273–2280 (2010).
  • Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum. Dev.82(8), 485–491 (2006).
  • Barker DJ. The fetal and infant origins of adult disease. Br. Med. J.301(6761), 1111 (1990).
  • Heijmans BT, Tobi EW, Stein AD et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc. Natl Acad. Sci. USA105(44), 17046–17049 (2008).
  • Petronis A. The origin of schizophrenia: genetic thesis, epigenetic antithesis, and resolving synthesis. Biol. Psychiatr.55(10), 965–970 (2004).
  • Waterland RA, Garza C. Potential mechanisms of metabolic imprinting that lead to chronic disease. Am. J. Clin. Nutr.69(2), 179–197 (1999).
  • Laurence KM, James N, Miller MH, Tennant GB, Campbell H. Double-blind randomised controlled trial of folate treatment before conception to prevent recurrence of neural-tube defects. Br. Med. J. (Clin. Res. Ed.)282(6275), 1509–1511 (1981).
  • Mathers JC. Reversal of DNA hypomethylation by folic acid supplements: possible role in colorectal cancer prevention. Gut54(5), 579–581 (2005).
  • Chen Z, Karaplis AC, Ackerman SL et al. Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum. Mol. Genet.10(5), 433–443 (2001).
  • Steegers-Theunissen RP, Obermann-Borst SA, Kremer D et al. Periconceptional maternal folic acid use of 400 µg per day is related to increased methylation of the IGF2 gene in the very young child. PLoS One16(4), e7845 (2009)
  • U.S. Preventive Services Task Force. Folic acid for the prevention of neural tube defects: U.S. Preventive Servies Task Force recommendation statement. Ann. Intern. Med.150(9), 626–631 (2009).
  • MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet338(8760) 131–137 (1991).
  • CDC. Recommendations for use of folic acid to reduce the number of spina bifida cases and other neural tube defects. MMWR41(RR-14), 1–7 (1992).
  • CDC. Spina bifida and anencephaly before and after folic acid mandate – United States, 1995–1996 and 1999–2000. MMWR53(17), 362–365 (2004).
  • CDC. Use of supplements containing folic acid among women of childbearing age – United States, 2007. MMWR57(1), 5–8 (2008).
  • Pilsner JR, Hu H, Ettinger A et al. Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environ. Health Perspect.117(9), 1466–1471 (2009).
  • Gulson BL, Jameson CW, Mahaffey KR, Mizon KJ, Korsch MJ, Vimpani G. Pregnancy increases mobilization of lead from maternal skeleton. J. Lab. Clin. Med.130(1), 51–62 (1997).
  • Goyer RA. Transplacental transport of lead. Environ. Health Perspect.89, 101–105 (1990).
  • Hertz-Picciotto L. The evidence that lead increases the risk for spontaneous abortion. Am. J. Ind. Med.38(3), 300–309 (2000).
  • Bellinger D, Leviton A, Rabinowitz M, Allred E, Needleman H, Shoenbaum S. Weight gain and maturity in fetuses exposed to low levels of lead. Environ. Res.54(2), 151–158 (1991).
  • Salnikow K, Zhitkovich A. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic and chromium. Chem. Res. Toxicol.21(1), 28–44 (2008).
  • Valinluck V, Tsai HH, Rogstad DK, Burdzy A, Bird A, Sowers LC. Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic Acids Res.32(14), 4100–4108 (2004).
  • CDC. Adult blood lead epidemiology and surveillance – United States 2005–2007. MMWR58(14), 365–369 (2009).
  • Cleveland LM, Minter ML, Cobb KA, Scott AA, German VF. Lead hazards for pregnant women and children: part 1: immigrants and the poor shoulder most of the burden of lead exposure in this country. Part 1 of a two-part article details how exposure happens, whom it affects, and the harm it can do. Am. J. Nurs.108(10), 40–49 (2008).
  • Gardella C. Lead exposure in pregnancy: a review of the literature and argument for routine prenatal screening. Obstet. Gynecol. Surv.56(4), 231–238 (2001).
  • Bryant SD. Lead-contaminated drinking waters in the public schools of Philadelphia. J. Toxicol. Clin. Toxicol.42(3), 287–294 (2004).
  • Horner RD, Lackey CJ, Kolasa K, Warren K. Pica practices of pregnant women. J. Am. Diet. Assoc.91(1), 34–38 (1991).
  • CDC. Trends in smoking before, during, and after pregnancy – Pregnancy Risk Assessment Monitoring System (PRAMS) – United States, 31 sites, 2000–2005. MMWR58(SS-4), 1–29 (2009).
  • Breton CV, Byun HM, Wenten M, Pan F, Yang A, Gilliland FD. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am. J. Respir. Crit. Care Med.180(5), 462–467 (2009).
  • Lumley J, Oliver SS, Chamberlain C, Oakley L. Interventions for promoting smoking cessation during pregnancy. Cochrane Database Syst. Rev.4, CD001055 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.