24
Views
60
CrossRef citations to date
0
Altmetric
Review

Hypothermia for hypoxic–ischemic encephalopathy

&
Pages 227-239 | Published online: 10 Jan 2014

References

  • American College of Obstetricians and Gynecologists and American Academy of Pediatrics. Neonatal Encephalopathy and cerebral palsy. Defining the pathogenesis (2003).
  • Graham EM, Ruis KA, Hartman AL, Northington FJ, Fox HE. A systematic review of the role of intrapartum hypoxia–ischemia in the causation of neonatal encephalopathy. Am. J. Obstet. Gynecol.199(6), 587–595 (2008).
  • Airede AI. Birth asphyxia and hypoxic–ischaemic encephalopathy: incidence and severity. Ann. Trop. Paediatr.11(4), 331–335 (1991).
  • Lawn J, Shibuya K, Stein C. No cry at birth: global estimates of intrapartum stillbirths and intrapartum-related neonatal deaths. Bull. World Health Organ.83(6), 409–417 (2005).
  • Lawn JE, Cousens S, Zupan J. 4 million neonatal deaths: when? Where? Why? Lancet365(9462), 891–900 (2005).
  • Badawi N, Felix JF, Kurinczuk JJ et al. Cerebral palsy following term newborn encephalopathy: a population-based study. Dev. Med. Child. Neurol.47(5), 293–298 (2005).
  • Sarnat HB, Sarnat MS. Neonatal encephalopathy following fetal distress. A clinical and electroencephalographic study. Arch. Neurol.33(10), 696–705 (1976).
  • Robertson CM, Finer NN, Grace MG. School performance of survivors of neonatal encephalopathy associated with birth asphyxia at term. J. Pediatr.114(5), 753–760 (1989).
  • Shankaran S, Woldt E, Koepke T, Bedard MP, Nandyal R. Acute neonatal morbidity and long-term central nervous system sequelae of perinatal asphyxia in term infants. Early Hum. Dev.25(2), 135–148 (1991).
  • McKinstry RC, Miller JH, Snyder AZ et al. A prospective, longitudinal diffusion tensor imaging study of brain injury in newborns. Neurology59(6), 824–833 (2002).
  • Freeman JP. Brain injury in the term neonate. Semin. Perinatol. (28), 415–424 (2004).
  • Toet MC, Hellstrom-Westas L, Groenendaal F, Eken P, de Vries LS. Amplitude integrated EEG 3 and 6 hours after birth in full term neonates with hypoxic–ischaemic encephalopathy. Arch. Dis. Child. Fetal Neonatal Ed.81(1), F19–F23 (1999).
  • Toet MC, Lemmers PM. Brain monitoring in neonates. Early Hum. Dev.85(2), 77–84 (2009).
  • Lorek A, Takei Y, Cady EB et al. Delayed (‘secondary’) cerebral energy failure after acute hypoxia–ischemia in the newborn piglet: continuous 48-hour studies by phosphorus magnetic resonance spectroscopy. Pediatr. Res.36(6), 699–706 (1994).
  • Laptook AR, Corbett RJ, Ruley J, Olivares E. Blood flow and metabolism during and after repeated partial brain ischemia in neonatal piglets. Stroke23(3), 380–387 (1992).
  • Johnston MV, Trescher WH, Ishida A, Nakajima W. Neurobiology of hypoxic–ischemic injury in the developing brain. Pediatr. Res.49(6), 735–741 (2001).
  • Siesjo BK, Bengtsson F. Calcium fluxes, calcium antagonists, and calcium-related pathology in brain ischemia, hypoglycemia, and spreading depression: a unifying hypothesis. J. Cereb. Blood Flow Metab.9(2), 127–140 (1989).
  • Mehmet H, Yue X, Squier MV et al. Increased apoptosis in the cingulate sulcus of newborn piglets following transient hypoxia–ischaemia is related to the degree of high energy phosphate depletion during the insult. Neurosci. Lett.181(1–2), 121–125 (1994).
  • Fellman V, Raivio KO. Reperfusion injury as the mechanism of brain damage after perinatal asphyxia. Pediatr. Res.41(5), 599–606 (1997).
  • Liu XH, Kwon D, Schielke GP, Yang GY, Silverstein FS, Barks JD. Mice deficient in interleukin-1 converting enzyme are resistant to neonatal hypoxic–ischemic brain damage. J. Cereb. Blood Flow Metab.19(10), 1099–1108 (1999).
  • Tan WK, Williams CE, During MJ et al. Accumulation of cytotoxins during the development of seizures and edema after hypoxic–ischemic injury in late gestation fetal sheep. Pediatr. Res.39(5), 791–797 (1996).
  • Gluckman PD, Guan J, Williams C et al. Asphyxial brain injury – the role of the IGF system. Mol. Cell. Endocrinol.140(1–2), 95–99 (1998).
  • Roth SC, Edwards AD, Cady EB et al. Relation between cerebral oxidative metabolism following birth asphyxia, and neurodevelopmental outcome and brain growth at one year. Dev. Med. Child. Neurol.34(4), 285–295 (1992).
  • Samejima K, Tone S, Kottke TJ et al. Transition from caspase-dependent to caspase-independent mechanisms at the onset of apoptotic execution. J. Cell Biol.143(1), 225–239 (1998).
  • Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell88(3), 347–354 (1997).
  • Blaschke AJ, Staley K, Chun J. Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex. Development122(4), 1165–1174 (1996).
  • Martin LJ, Al-Abdulla NA, Brambrink AM, Kirsch JR, Sieber FE, Portera-Cailliau C. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: a perspective on the contributions of apoptosis and necrosis. Brain Res. Bull.46(4), 281–309 (1998).
  • Ferriero DM. Neonatal brain injury. N. Engl. J. Med.351(19), 1985–1995 (2004).
  • Hu BR, Liu CL, Ouyang Y, Blomgren K, Siesjo BK. Involvement of caspase-3 in cell death after hypoxia–ischemia declines during brain maturation. J. Cereb. Blood Flow Metab.20(9), 1294–1300 (2000).
  • Edwards AD, Yue X, Squier MV et al. Specific inhibition of apoptosis after cerebral hypoxia–ischaemia by moderate post-insult hypothermia. Biochem. Biophys. Res. Commun.217(3), 1193–1199 (1995).
  • Rothstein RP, Levison SW. Gray matter oligodendrocyte progenitors and neurons die caspase-3 mediated deaths subsequent to mild perinatal hypoxic/ischemic insults. Dev. Neurosci.27(2–4), 149–159 (2005).
  • Shankaran S, Laptook AR, Ehrenkranz RA et al. Whole-body hypothermia for neonates with hypoxic–ischemic encephalopathy. N. Engl. J. Med.353(15), 1574–1584 (2005).
  • Williams GR, Spencer FC. The clinical use of hypothermia following cardiac arrest. Ann. Surg.148(3), 462–468 (1958).
  • Lougheed WM, Kahn DS. Circumvention of anoxia during arrest of cerebral circulation for intracranial surgery. J. Neurosurg.12(3), 226–239 (1955).
  • Westin B, Miller JA Jr, Nyberg R, Wedenberg E. Neonatal asphyxia pallida treated with hypothermia alone or with hypothermia and transfusion of oxygenated blood. Surgery45(5), 868–879 (1959).
  • Cordey R. Hypothermia in resuscitating newborns in white asphyxia; a report of 14 cases. Obstet. Gynecol.24, 760–767 (1964).
  • Drage JS, Berendes H. Apgar scores and outcome of the newborn. Pediatr. Clin. North. Am.13(3), 637–643 (1966).
  • Dunn JM, Miller JA Jr. Hypothermia combined with positive pressure ventilation in resuscitation of the asphyxiated neonate. Clinical observations in 28 infants. Am. J. Obstet. Gynecol.104(1), 58–67 (1969).
  • Silverman WA, Fertig JW, Berger AP. The influence of the thermal environment upon the survival of newly born premature infants. Pediatrics22(5), 876–886 (1958).
  • Daniel SS, Dawes GS, James LS, Ross BB, Windle WF. Hypothermia and the resuscitation of asphyxiated fetal rhesus monkeys. J. Pediatr.68(1), 45–53 (1966).
  • Oates RK, Harvey D. Failure of hypothermia as treatment for asphyxiated newborn rabbits. Arch. Dis. Child.51(7), 512–516 (1976).
  • Behrman RE, James LS, Klaus M, Nelson N, Oliver T. Treatment of the asphyxiated newborn infant. Current opinions and practices as expressed by a panel. J. Pediatr.74(6), 981–988 (1969).
  • Westin B. Hypothermia in the resuscitation of the neonate: a glance in my rear-view mirror. Acta Paediatr.95(10), 1172–1174 (2006).
  • Busto R, Dietrich WD, Globus MY, Valdes I, Scheinberg P, Ginsberg MD. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J. Cereb. Blood Flow Metab.7(6), 729–738 (1987).
  • Thoresen M, Bagenholm R, Loberg EM, Apricena F, Kjellmer I. Posthypoxic cooling of neonatal rats provides protection against brain injury. Arch. Dis. Child. Fetal Neonatal Ed.74(1), F3–F9 (1996).
  • Thoresen M, Satas S, Puka-Sundvall M et al. Post-hypoxic hypothermia reduces cerebrocortical release of NO and excitotoxins. Neuroreport8(15), 3359–3362 (1997).
  • Fukuda H, Tomimatsu T, Watanabe N et al. Post-ischemic hypothermia blocks caspase-3 activation in the newborn rat brain after hypoxia–ischemia. Brain Res.910(1–2), 187–191 (2001).
  • Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature391(6662), 43–50 (1998).
  • Namura S, Zhu J, Fink K et al. Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J. Neurosci.18(10), 3659–3668 (1998).
  • Laptook AR, Corbett RJ, Sterett R, Garcia D, Tollefsbol G. Quantitative relationship between brain temperature and energy utilization rate measured in vivo using 31P and 1H magnetic resonance spectroscopy. Pediatr. Res.38(6), 919–925 (1995).
  • Laptook AR, Shalak L, Corbett RJ. Differences in brain temperature and cerebral blood flow during selective head versus whole-body cooling. Pediatrics108(5), 1103–1110 (2001).
  • Sirimanne ES, Blumberg RM, Bossano D et al. The effect of prolonged modification of cerebral temperature on outcome after hypoxic–ischemic brain injury in the infant rat. Pediatr. Res.39(4 Pt 1), 591–597 (1996).
  • Bona E, Hagberg H, Loberg EM, Bagenholm R, Thoresen M. Protective effects of moderate hypothermia after neonatal hypoxia–ischemia: short- and long-term outcome. Pediatr. Res.43(6), 738–745 (1998).
  • Gunn AJ, Gunn TR. The ‘pharmacology’ of neuronal rescue with cerebral hypothermia. Early Hum. Dev.53(1), 19–35 (1998).
  • Gunn AJ, Gunn TR, de Haan HH, Williams CE, Gluckman PD. Dramatic neuronal rescue with prolonged selective head cooling after ischemia in fetal lambs. J. Clin. Invest.99(2), 248–256 (1997).
  • Gunn AJ, Gunn TR, Gunning MI, Williams CE, Gluckman PD. Neuroprotection with prolonged head cooling started before postischemic seizures in fetal sheep. Pediatrics102(5), 1098–1106 (1998).
  • Gunn AJ, Bennet L, Gunning MI, Gluckman PD, Gunn TR. Cerebral hypothermia is not neuroprotective when started after postischemic seizures in fetal sheep. Pediatr. Res.46(3), 274–280 (1999).
  • Gunn AJ, Gluckman PD, Gunn TR. Selective head cooling in newborn infants after perinatal asphyxia: a safety study. Pediatrics102(4 Pt 1), 885–892 (1998).
  • Shankaran S, Laptook A, Wright LL et al. Whole-body hypothermia for neonatal encephalopathy: animal observations as a basis for a randomized, controlled pilot study in term infants. Pediatrics110(2 Pt 1), 377–385 (2002).
  • Gluckman PD, Wyatt JS, Azzopardi D et al. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicentre randomised trial. Lancet365(9460), 663–670 (2005).
  • Azzopardi DV, Strohm B, Edwards AD et al. Moderate hypothermia to treat perinatal asphyxial encephalopathy. N. Engl. J. Med.361(14), 1349–1358 (2009).
  • Eicher DJ, Wagner CL, Katikaneni LP et al. Moderate hypothermia in neonatal encephalopathy: efficacy outcomes. Pediatr. Neurol.32(1), 11–17 (2005).
  • Shah PS, Ohlsson A, Perlman M. Hypothermia to treat neonatal hypoxic ischemic encephalopathy: systematic review. Arch. Pediatr. Adolesc. Med.161(10), 951–958 (2007).
  • Hayashi N. Management of pitfalls for the successful clinical use of hypothermia treatment. J. Neurotrauma26(3), 445–453 (2009).
  • Jones MD Jr, Burd LI, Makowski EL, Meschia G, Battaglia FC. Cerebral metabolism in sheep: a comparative study of the adult, the lamb, and the fetus. Am. J. Physiol.229(1), 235–239 (1975).
  • Basu P, Som S, Choudhuri N, Das H. Contribution of the blood glucose level in perinatal asphyxia. Eur. J. Pediatr.168(7), 833–838 (2009).
  • Vannucci RC. Cerebral carbohydrate and energy metabolism in perinatal hypoxic–ischemic brain damage. Brain Pathol.2(3), 229–234 (1992).
  • Salhab WA, Wyckoff MH, Laptook AR, Perlman JM. Initial hypoglycemia and neonatal brain injury in term infants with severe fetal acidemia. Pediatrics114(2), 361–366 (2004).
  • Gandy GM, Adamson K, Cunningham N, et al. Thermal environment and acid–base homeostasis in human infants during the first few hours of life. J. Clin. Invest.41, 751–758 (1964).
  • Shankaran S, Pappas A, Laptook AR et al. Outcomes of safety and effectiveness in a multicenter randomized, controlled trial of whole-body hypothermia for neonatal hypoxic–ischemic encephalopathy. Pediatrics122(4), e791–e798 (2008).
  • Edwards AD, Azzopardi DV. Therapeutic hypothermia following perinatal asphyxia. Arch. Dis. Child. Fetal Neonatal Ed.91(2), F127–F131 (2006).
  • Schulzke SM, Rao S, Patole SK. A systematic review of cooling for neuroprotection in neonates with hypoxic ischemic encephalopathy – are we there yet? BMC Pediatr.7, 30 (2007).
  • Jacobs S, Hunt R, Tarnow-Mordi W, Inder T, Davis P. Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Syst. Rev.4, CD003311 (2007).
  • Gunn AJ, Wyatt JS, Whitelaw A et al. Therapeutic hypothermia changes the prognostic value of clinical evaluation of neonatal encephalopathy. J. Pediatr.152(1), 55–58, 58.e1 (2008).
  • Toet MC, van der Meij W, de Vries LS, Uiterwaal CS, van Huffelen KC. Comparison between simultaneously recorded amplitude integrated electroencephalogram (cerebral function monitor) and standard electroencephalogram in neonates. Pediatrics109(5), 772–779 (2002).
  • Spitzmiller RE, Phillips T, Meinzen-Derr J, Hoath SB. Amplitude-integrated EEG is useful in predicting neurodevelopmental outcome in full-term infants with hypoxic–ischemic encephalopathy: a meta-analysis. J. Child Neurol.22(9), 1069–1078 (2007).
  • ter Horst HJ, Sommer C, Bergman KA, Fock JM, van Weerden TW, Bos AF. Prognostic significance of amplitude-integrated EEG during the first 72 hours after birth in severely asphyxiated neonates. Pediatr. Res.55(6), 1026–1033 (2004).
  • van Rooij LG, Toet MC, Osredkar D, van Huffelen AC, Groenendaal F, de Vries LS. Recovery of amplitude integrated electroencephalographic background patterns within 24 hours of perinatal asphyxia. Arch. Dis. Child. Fetal Neonatal Ed.90(3), F245–F251 (2005).
  • Shankaran S, Laptook A, Tyson J et al. Evolution of encephalopathy with whole body hypothermia for neonatal hypoxic–ischemic encephalopathy (HIE) 2009 Pediatric Academic Society. E-Pas 2160.9 (2009).
  • Laskowitz DT, Kasner SE, Saver J, Remmel KS, Jauch EC. Clinical usefulness of a biomarker-based diagnostic test for acute stroke: the Biomarker Rapid Assessment in Ischemic Injury (BRAIN) study. Stroke40(1), 77–85 (2009).
  • Saenger AK, Christenson RH. Stroke biomarkers: progress and challenges for diagnosis, prognosis, differentiation, and treatment. Clin. Chem.56(1), 21–33 (2010).
  • Laptook A, Tyson J, Shankaran S et al. Elevated temperature after hypoxic–ischemic encephalopathy: risk factor for adverse outcomes. Pediatrics122(3), 491–499 (2008).
  • Alfirevic Z, Devane D, Gyte GM. Continuous cardiotocography (CTG) as a form of electronic fetal monitoring (EFM) for fetal assessment during labour. Cochrane Database Syst. Rev.3, CD006066 (2006).
  • East CE, Chan FY, Colditz PB, Begg LM. Fetal pulse oximetry for fetal assessment in labour. Cochrane Database Syst. Rev.2, CD004075 (2007).
  • Noren H, Blad S, Carlsson A et al. STAN in clinical practice – the outcome of 2 years of regular use in the city of Gothenburg. Am. J. Obstet. Gynecol.195(1), 7–15 (2006).
  • Devoe LD, Ross M, Wilde C et al. United States multicenter clinical usage study of the STAN 21 electronic fetal monitoring system. Am. J. Obstet. Gynecol.195(3), 729–734 (2006).
  • Smith J, Wells L, Dodd K. The continuing fall in incidence of hypoxic–ischaemic encephalopathy in term infants. BJOG107(4), 461–466 (2000).
  • Bhat MA, Charoo BA, Bhat JI, Ahmad SM, Ali SW, Mufti MU. Magnesium sulfate in severe perinatal asphyxia: a randomized, placebo-controlled trial. Pediatrics123(5), e764–e769 (2009).
  • Levene M, Blennow M, Whitelaw A, Hanko E, Fellman V, Hartley R. Acute effects of two different doses of magnesium sulphate in infants with birth asphyxia. Arch. Dis. Child. Fetal Neonatal Ed.73(3), F174–F177 (1995).
  • Hobbs C, Thoresen M, Tucker A, Aquilina K, Chakkarapani E, Dingley J. Xenon and hypothermia combine additively, offering long-term functional and histopathologic neuroprotection after neonatal hypoxia/ischemia. Stroke39(4), 1307–1313 (2008).
  • Chakkarapani E, Dingley J, Hoque N, Liu X, Thoresen M. Xenon is cardiosupportive in newborn piglets after global hypoxia–ischaemia. In: E-Pas. 2335.8 (2009).
  • Juul SE, McPherson RJ, Bammler TK, Wilkerson J, Beyer RP, Farin FM. Recombinant erythropoietin is neuroprotective in a novel mouse oxidative injury model. Dev. Neurosci.30(4), 231–242 (2008).
  • Zhu C, Kang W, Xu F et al. Erythropoietin improved neurologic outcomes in newborns with hypoxic–ischemic encephalopathy. Pediatrics124(2), e218–e226 (2009).
  • Chen J, Sanberg PR, Li Y et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke32(11), 2682–2688 (2001).
  • Vendrame M, Cassady J, Newcomb J et al. Infusion of human umbilical cord blood cells in a rat model of stroke dose-dependently rescues behavioral deficits and reduces infarct volume. Stroke35(10), 2390–2395 (2004).
  • Taguchi A, Soma T, Tanaka H et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J. Clin. Invest.114(3), 330–338 (2004).
  • Meier C, Middelanis J, Wasielewski B et al. Spastic paresis after perinatal brain damage in rats is reduced by human cord blood mononuclear cells. Pediatr. Res.59(2), 244–249 (2006).
  • de Paula S, Vitola AS, Greggio S et al. Hemispheric brain injury and behavioral deficits induced by severe neonatal hypoxia–ischemia in rats are not attenuated by intravenous administration of human umbilical cord blood cells. Pediatr. Res.65(6), 631–635 (2009).
  • Higgins RD, Raju TN, Perlman J et al. Hypothermia and perinatal asphyxia: executive summary of the National Institute of Child Health and Human Development workshop. J. Pediatr.148(2), 170–175 (2006).
  • Inder TE, Hunt RW, Morley CJ et al. Randomized trial of systemic hypothermia selectively protects the cortex on MRI in term hypoxic–ischemic encephalopathy. J. Pediatr.145(6), 835–837 (2004).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.