3
Views
5
CrossRef citations to date
0
Altmetric
Special Report

Androgens: they don’t just make a man out of you

&
Pages 23-36 | Published online: 10 Jan 2014

References

  • Quigley CA, De Bellis A, Marschke KB, el-Awady MK, Wilson EM, French FS. Androgen receptor defects: historical, clinical, and molecular perspectives. Endocr. Rev.16(3), 271–321 (1995).
  • Traish AM, Morgentaler A. Epidermal growth factor receptor expression escapes androgen regulation in prostate cancer: a potential molecular switch for tumour growth. Br. J. Cancer101(12), 1949–1956 (2009).
  • Heinlein CA, Chang C. Androgen receptor in prostate cancer. Endocr. Rev.25(2), 276–308 (2004).
  • Lange CA, Gioeli D, Hammes SR, Marker PC. Integration of rapid signaling events with steroid hormone receptor action in breast and prostate cancer. Annu. Rev. Physiol.69, 171–199 (2007).
  • Abbott DH, Dumesic DA, Eisner JR, Colman RJ, Kemnitz JW. Insights into the development of polycystic ovary syndrome (PCOS) from studies of prenatally androgenized female rhesus monkeys. Trends Endocrinol. Metab.9(2), 62–67 (1998).
  • Simpson ER. Aromatization of androgens in women: current concepts and findings. Fertil. Steril.77(Suppl. 4), S6–S10 (2002).
  • Hillier SG, Whitelaw PF, Smyth CD. Follicular oestrogen synthesis: the ‘two-cell, two-gonadotrophin’ model revisited. Mol. Cell Endocrinol.100(1–2), 51–54 (1994).
  • Stein IF, Leventhal ML. Amenorrhea associated with bilateral polycystic ovaries. Am. J. Obstet. Gynecol.29, 181–191 (1935).
  • Ehrmann DA. Polycystic ovary syndrome. N. Engl. J. Med.352(12), 1223–1236 (2005).
  • Ehrmann DA, Sturis J, Byrne MM, Karrison T, Rosenfield RL, Polonsky KS. Insulin secretory defects in polycystic ovary syndrome. Relationship to insulin sensitivity and family history of non-insulin-dependent diabetes mellitus. J. Clin. Invest.96(1), 520–527 (1995).
  • Dunaif A, Segal KR, Futterweit W, Dobrjansky A. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes38(9), 1165–1174 (1989).
  • Dunaif A. Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr. Rev.18(6), 774–800 (1997).
  • Walters KA, Simanainen U, Handelsman DJ. Molecular insights into androgen actions in male and female reproductive function from androgen receptor knockout models. Hum. Reprod. Update16(5), 543–558 (2010).
  • Zhou X. Roles of androgen receptor in male and female reproduction: lessons from global and cell-specific androgen receptor knockout (ARKO) mice. J. Androl.31(3), 235–243 (2010).
  • Bachmann G, Bancroft J, Braunstein G et al. Female androgen insufficiency: the Princeton consensus statement on definition, classification, and assessment. Fertil. Steril.77(4), 660–665 (2002).
  • Bachmann GA. The hypoandrogenic woman: pathophysiologic overview. Fertil. Steril.77(Suppl. 4), S72–S76 (2002).
  • Doldi N, Taccagni GL, Bassan M et al. Hashimoto’s disease in a papillary carcinoma of the thyroid originating in a teratoma of the ovary (malignant struma ovarii). Gynecol. Endocrinol.12(1), 41–42 (1998).
  • Bermudez JA, Moran C, Herrera J, Barahona E, Perez MC, Zarate A. Determination of the steroidogenic capacity in premature ovarian failure. Fertil. Steril.60(4), 668–671 (1993).
  • Hartmann BW, Kirchengast S, Albrecht A, Laml T, Soregi G, Huber JC. Androgen serum levels in women with premature ovarian failure compared to fertile and menopausal controls. Gynecol. Obstet. Invest.44(2), 127–131 (1997).
  • Richards JS. Perspective: the ovarian follicle – a perspective in 2001. Endocrinology142(6), 2184–2193 (2001).
  • Neill JD. Knobil and Neill’s Physiology of Reproduction. Challis JRG, Kretser DM, Pfaff DW, Richards JS, Plant TM, Wassarman PM (Eds). Elsevier Academic Press, Amsterdam, The Netherlands (2006).
  • Baerwald AR, Adams GP, Pierson RA. Characterization of ovarian follicular wave dynamics in women. Biol. Reprod.69(3), 1023–1031 (2003).
  • Ginther OJ, Beg MA, Bergfelt DR, Donadeu FX, Kot K. Follicle selection in monovular species. Biol. Reprod.65(3), 638–647 (2001).
  • Sunderland SJ, Crowe MA, Boland MP, Roche JF, Ireland JJ. Selection, dominance and atresia of follicles during the oestrous cycle of heifers. J. Reprod. Fertil.101(3), 547–555 (1994).
  • Mihm M, Good TE, Ireland JL, Ireland JJ, Knight PG, Roche JF. Decline in serum follicle-stimulating hormone concentrations alters key intrafollicular growth factors involved in selection of the dominant follicle in heifers. Biol. Reprod.57(6), 1328–1337 (1997).
  • Richards JS, Hedin L. Molecular aspects of hormone action in ovarian follicular development, ovulation, and luteinization. Annu. Rev. Physiol.50, 441–463 (1988).
  • Austin EJ, Mihm M, Evans AC et al. Alterations in intrafollicular regulatory factors and apoptosis during selection of follicles in the first follicular wave of the bovine estrous cycle. Biol. Reprod.64(3), 839–848 (2001).
  • Niswender GD, Juengel JL, Silva PJ, Rollyson MK, McIntush EW. Mechanisms controlling the function and life span of the corpus luteum. Physiol. Rev.80(1), 1–29 (2000).
  • Patel SS, Beshay VE, Escobar JC, Suzuki T, Carr BR. Molecular mechanism for repression of 17α-hydroxylase expression and androstenedione production in granulosa cells. J. Clin. Endocrinol. Metab.94(12), 5163–5168 (2009).
  • Sivasankaran S, Itam P, Ayensu-Coker L et al. Juvenile granulosa cell ovarian tumor: a case report and review of literature. J. Pediatr. Adolesc. Gynecol.22(5), e114–e117 (2009).
  • Kabaca C, Karateke A, Gurbuz A, Cesur S. Androgenic adult granulosa cell tumor in a teenager: a case report and review of the literature. Int. J. Gynecol. Cancer16(Suppl. 1), 368–374 (2006).
  • Magoffin DA. Ovarian enzyme activities in women with polycystic ovary syndrome. Fertil. Steril.86(Suppl. 1), S9–S11 (2006).
  • Wachs DS, Coffler MS, Malcom PJ, Shimasaki S, Chang RJ. Increased androgen response to follicle-stimulating hormone administration in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab.93(5), 1827–1833 (2008).
  • Barnes RB, Rosenfield RL, Namnoum A, Layman LC. Effect of follicle-stimulating hormone on ovarian androgen production in a woman with isolated follicle-stimulating hormone deficiency. N. Engl. J. Med.343(16), 1197–1198 (2000).
  • Barnes RB. The pathogenesis of polycystic ovary syndrome: lessons from ovarian stimulation studies. J. Endocrinol. Invest.21(9), 567–579 (1998).
  • Webber LJ, Stubbs S, Stark J et al. Formation and early development of follicles in the polycystic ovary. Lancet362(9389), 1017–1021 (2003).
  • Gilep AA, Sushko TA, Usanov SA. At the crossroads of steroid hormone biosynthesis: the role, substrate specificity and evolutionary development of CYP17. Biochim. Biophys. Acta1814(1), 200–209 (2011).
  • Conley AJ, Bird IM. The role of cytochrome P450 17 α-hydroxylase and 3 β-hydroxysteroid dehydrogenase in the integration of gonadal and adrenal steroidogenesis via the δ 5 and δ 4 pathways of steroidogenesis in mammals. Biol. Reprod.56(4), 789–799 (1997).
  • Jones MR, Mathur R, Cui J, Guo X, Azziz R, Goodarzi MO. Independent confirmation of association between metabolic phenotypes of polycystic ovary syndrome and variation in the type 6 17β-hydroxysteroid dehydrogenase gene. J. Clin. Endocrinol. Metab.94(12), 5034–5038 (2009).
  • Moghrabi N, Andersson S. 17β-hydroxysteroid dehydrogenases: physiological roles in health and disease. Trends Endocrinol. Metab.9(7), 265–270 (1998).
  • Pielecka J, Quaynor SD, Moenter SM. Androgens increase gonadotropin-releasing hormone neuron firing activity in females and interfere with progesterone negative feedback. Endocrinology147(3), 1474–1479 (2006).
  • Sullivan SD, Moenter SM. Prenatal androgens alter GABAergic drive to gonadotropin-releasing hormone neurons: implications for a common fertility disorder. Proc. Natl Acad. Sci. USA101(18), 7129–7134 (2004).
  • Sullivan SD, Moenter SM. GABAergic integration of progesterone and androgen feedback to gonadotropin-releasing hormone neurons. Biol. Reprod.72(1), 33–41 (2005).
  • Hirai J, Hirata S, Osada T, Hagihara K, Kato J. Androgen receptor mRNA in the rat ovary and uterus. J. Steroid Biochem. Mol. Biol. (137), 4392–4397 (1994).
  • Tetsuka M, Hillier SG. Androgen receptor gene expression in rat granulosa cells: the role of follicle-stimulating hormone and steroid hormones. Endocrinology137(10), 4392–4397 (1996).
  • Szoltys M, Slomczynska M. Changes in distribution of androgen receptor during maturation of rat ovarian follicles. Exp. Clin. Endocrinol. Diabetes108(3), 228–234 (2000).
  • Gill A, Jamnongjit M, Hammes SR. Androgens promote maturation and signaling in mouse oocytes independent of transcription: a release of inhibition model for mammalian oocyte meiosis. Mol. Endocrinol.18(1), 97–104 (2004).
  • Hampton JH, Manikkam M, Lubahn DB, Smith MF, Garverick HA. Androgen receptor mRNA expression in the bovine ovary. Domest. Anim. Endocrinol.27(1), 81–88 (2004).
  • Juengel JL, Heath DA, Quirke LD, McNatty KP. Oestrogen receptor α and β, androgen receptor and progesterone receptor mRNA and protein localisation within the developing ovary and in small growing follicles of sheep. Reproduction131(1), 81–92 (2006).
  • Slomczynska M, Tabarowski Z. Localization of androgen receptor and cytochrome P450 aromatase in the follicle and corpus luteum of the porcine ovary. Anim. Reprod. Sci.65(1–2), 127–134 (2001).
  • Weil SJ, Vendola K, Zhou J et al. Androgen receptor gene expression in the primate ovary: cellular localization, regulation, and functional correlations. J. Clin. Endocrinol. Metab.83(7), 2479–2485 (1998).
  • Hillier SG, Tetsuka M, Fraser HM. Location and developmental regulation of androgen receptor in primate ovary. Hum. Reprod.12(1), 107–111 (1997).
  • Suzuki T, Sasano H, Kimura N et al. Immunohistochemical distribution of progesterone, androgen and oestrogen receptors in the human ovary during the menstrual cycle: relationship to expression of steroidogenic enzymes. Hum. Reprod.9(9), 1589–1595 (1994).
  • Chadha S, Pache TD, Huikeshoven JM, Brinkmann AO, van der Kwast TH. Androgen receptor expression in human ovarian and uterine tissue of long-term androgen-treated transsexual women. Hum. Pathol.25(11), 1198–1204 (1994).
  • Horie K, Takakura K, Fujiwara H, Suginami H, Liao S, Mori T. Immunohistochemical localization of androgen receptor in the human ovary throughout the menstrual cycle in relation to oestrogen and progesterone receptor expression. Hum. Reprod.7(2), 184–190 (1992).
  • Walters KA, Allan CM, Handelsman DJ. Androgen actions and the ovary. Biol. Reprod.78(3), 380–389 (2008).
  • Slomczynska M, Duda M, Slęzak K. The expression of androgen receptor, cytochrome P450 aromatase and FSH receptor mRNA in the porcine ovary. Folia Histochem. Cytobiol.39(1), 9–13 (2001).
  • Cardenas H, Pope WF. Androgen receptor and follicle-stimulating hormone receptor in the pig ovary during the follicular phase of the estrous cycle. Mol. Reprod. Dev.62(1), 92–98 (2002).
  • Duffy DM, Abdelgadir SE, Stott KR, Resko JA, Stouffer RL, Zelinski-Wooten MB. Androgen receptor mRNA expression in the rhesus monkey ovary. Endocrine11(1), 23–30 (1999).
  • Tetsuka M, Whitelaw PF, Bremner WJ, Millar MR, Smyth CD, Hillier SG. Developmental regulation of androgen receptor in rat ovary. J. Endocrinol.145(3), 535–543 (1995).
  • Chaffin CL, Stouffer RL, Duffy DM. Gonadotropin and steroid regulation of steroid receptor and aryl hydrocarbon receptor messenger ribonucleic acid in macaque granulosa cells during the periovulatory interval. Endocrinology140(10), 4753–4760 (1999).
  • Cardenas H, Herrick JR, Pope WF. Increased ovulation rate in gilts treated with dihydrotestosterone. Reproduction123(4), 527–533 (2002).
  • Farookhi R. Effects of aromatizable and nonaromatizable androgen treatments on luteinizing hormone receptors and ovulation induction in immature rats. Biol. Reprod.33(2), 363–369 (1985).
  • Hillier SG, Ross GT. Effects of exogenous testosterone on ovarian weight, follicular morphology and intraovarian progesterone concentration in estrogen-primed hypophysectomized immature female rats. Biol. Reprod.20(2), 261–268 (1979).
  • Billig H, Furuta I, Hsueh AJ. Estrogens inhibit and androgens enhance ovarian granulosa cell apoptosis. Endocrinology133(5), 2204–2212 (1993).
  • Jia XC, Kessel B, Welsh TH Jr, Hsueh AJ. Androgen inhibition of follicle-stimulating hormone-stimulated luteinizing hormone receptor formation in cultured rat granulosa cells. Endocrinology117(1), 13–22 (1985).
  • Almahbobi G, Nagodavithane A, Trounson AO. Effects of epidermal growth factor, transforming growth factor α and androstenedione on follicular growth and aromatization in culture. Hum. Reprod.10(10), 2767–2772 (1995).
  • Vendola K, Zhou J, Wang J, Famuyiwa OA, Bievre M, Bondy CA. Androgens promote oocyte insulin-like growth factor I expression and initiation of follicle development in the primate ovary. Biol. Reprod.61(2), 353–357 (1999).
  • Vendola KA, Zhou J, Adesanya OO, Weil SJ, Bondy CA. Androgens stimulate early stages of follicular growth in the primate ovary. J. Clin. Invest.101(12), 2622–2629 (1998).
  • Weil S, Vendola K, Zhou J, Bondy CA. Androgen and follicle-stimulating hormone interactions in primate ovarian follicle development. J. Clin. Endocrinol. Metab.84(8), 2951–2956 (1999).
  • Hamel M, Vanselow J, Nicola ES, Price CA. Androstenedione increases cytochrome P450 aromatase messenger ribonucleic acid transcripts in nonluteinizing bovine granulosa cells. Mol. Reprod. Dev.70(2), 175–183 (2005).
  • Wang H, Andoh K, Hagiwara H et al. Effect of adrenal and ovarian androgens on type 4 follicles unresponsive to FSH in immature mice. Endocrinology142(11), 4930–4936 (2001).
  • Harlow CR, Shaw HJ, Hillier SG, Hodges JK. Factors influencing follicle-stimulating hormone-responsive steroidogenesis in marmoset granulosa cells: effects of androgens and the stage of follicular maturity. Endocrinology122(6), 2780–2787 (1988).
  • Harlow CR, Hillier SG, Hodges JK. Androgen modulation of follicle-stimulating hormone-induced granulosa cell steroidogenesis in the primate ovary. Endocrinology119(3), 1403–1405 (1986).
  • Lenie S, Smitz J. Functional AR signaling is evident in an in vitro mouse follicle culture bioassay that encompasses most stages of folliculogenesis. Biol. Reprod.80(4), 685–695 (2009).
  • Mehta RV, Malcom PJ, Chang RJ. The effect of androgen blockade on granulosa cell estradiol production after follicle-stimulating hormone stimulation in women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab.91(9), 3503–3506 (2006).
  • Hillier SG, Tetsuka M. Role of androgens in follicle maturation and atresia. Baillieres Clin. Obstet. Gynaecol.11(2), 249–260 (1997).
  • Hickey TE, Marrocco DL, Amato F et al. Androgens augment the mitogenic effects of oocyte-secreted factors and growth differentiation factor 9 on porcine granulosa cells. Biol. Reprod.73(4), 825–832 (2005).
  • Hickey TE, Marrocco DL, Gilchrist RB, Norman RJ, Armstrong DT. Interactions between androgen and growth factors in granulosa cell subtypes of porcine antral follicles. Biol. Reprod.71(1), 45–52 (2004).
  • Orisaka M, Jiang JY, Orisaka S, Kotsuji F, Tsang BK. Growth differentiation factor 9 promotes rat preantral follicle growth by up-regulating follicular androgen biosynthesis. Endocrinology150(6), 2740–2748 (2009).
  • Murray AA, Gosden RG, Allison V, Spears N. Effect of androgens on the development of mouse follicles growing in vitro. J. Reprod. Fertil.113(1), 27–33 (1998).
  • Smith P, Steckler TL, Veiga-Lopez A, Padmanabhan V. Developmental programming: differential effects of prenatal testosterone and dihydrotestosterone on follicular recruitment, depletion of follicular reserve, and ovarian morphology in sheep. Biol. Reprod.80(4), 726–736 (2009).
  • Abbott DH, Padmanabhan V, Dumesic DA. Contributions of androgen and estrogen to fetal programming of ovarian dysfunction. Reprod. Biol. Endocrinol.4, 17 (2006).
  • Yang MY, Fortune JE. Testosterone stimulates the primary to secondary follicle transition in bovine follicles in vitro. Biol. Reprod.75(6), 924–932 (2006).
  • Peluso JJ, Charlesworth J, England-Charlesworth C. Role of estrogen and androgen in maintaining the preovulatory follicle. Cell Tissue Res.216(3), 615–624 (1981).
  • McNatty KP, Makris A, Osathanondh R, Ryan KJ. Effects of luteinizing hormone on steroidogenesis by thecal tissue from human ovarian follicles in vitro. Steroids36(1), 53–63 (1980).
  • Henderson KM, Weaver A, Wards RL et al. Oocyte production and ovarian steroid concentrations of immature rats in response to some commercial gonadotrophin preparations. Reprod. Fertil. Dev.2(6), 671–682 (1990).
  • McNatty KP, Heath DA, Henderson KM et al. Some aspects of thecal and granulosa cell function during follicular development in the bovine ovary. J. Reprod. Fertil.72(1), 39–53 (1984).
  • Leung PC, Armstrong DT. Interactions of steroids and gonadotropins in the control of steroidogenesis in the ovarian follicle. Annu. Rev. Physiol.42, 71–82 (1980).
  • McNatty KP, Smith DM, Makris A, Osathanondh R, Ryan KJ. The microenvironment of the human antral follicle: interrelationships among the steroid levels in antral fluid, the population of granulosa cells, and the status of the oocyte in vivo and in vitro. J. Clin. Endocrinol. Metab.49(6), 851–860 (1979).
  • Westergaard L, Christensen IJ, McNatty KP. Steroid levels in ovarian follicular fluid related to follicle size and health status during the normal menstrual cycle in women. Hum. Reprod.1(4), 227–232 (1986).
  • McNatty KP, Smith DM, Makris A, Osathanondh R, Ryan KJ. Steroidogenesis by the human oocyte–cumulus cell complex in vitro. Steroids35(6), 643–651 (1980).
  • Solovyeva EV, Hayashi M, Margi K et al. Growth differentiation factor-9 stimulates rat theca–interstitial cell androgen biosynthesis. Biol. Reprod.63(4), 1214–1218 (2000).
  • Yamamoto N, Christenson LK, McAllister JM, Strauss JF 3rd. Growth differentiation factor-9 inhibits 3´5´-adenosine monophosphate-stimulated steroidogenesis in human granulosa and theca cells. J. Clin. Endocrinol. Metab.87(6), 2849–2856 (2002).
  • Jonard S, Dewailly D. The follicular excess in polycystic ovaries, due to intra-ovarian hyperandrogenism, may be the main culprit for the follicular arrest. Hum. Reprod. Update10(2), 107–117 (2004).
  • Blank SK, McCartney CR, Helm KD, Marshall JC. Neuroendocrine effects of androgens in adult polycystic ovary syndrome and female puberty. Semin. Reprod. Med.25(5), 352–359 (2007).
  • Gilling-Smith C, Willis DS, Beard RW, Franks S. Hypersecretion of androstenedione by isolated thecal cells from polycystic ovaries. J. Clin. Endocrinol. Metab.79(4), 1158–1165 (1994).
  • Taylor AE, McCourt B, Martin KA et al. Determinants of abnormal gonadotropin secretion in clinically defined women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab.82(7), 2248–2256 (1997).
  • Carr BR, Breslau NA, Givens C, Byrd W, Barnett-Hamm C, Marshburn PB. Oral contraceptive pills, gonadotropin-releasing hormone agonists, or use in combination for treatment of hirsutism: a clinical research center study. J. Clin. Endocrinol. Metab.80(4), 1169–1178 (1995).
  • Barnes RB, Namnoum AB, Rosenfield RL, Layman LC. The role of LH and FSH in ovarian androgen secretion and ovarian follicular development: clinical studies in a patient with isolated FSH deficiency and multicystic ovaries: case report. Hum. Reprod.17(1), 88–91 (2002).
  • Nelson VL, Legro RS, Strauss JF 3rd, McAllister JM. Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Mol. Endocrinol.13(6), 946–957 (1999).
  • Nelson VL, Qin KN, Rosenfield RL et al. The biochemical basis for increased testosterone production in theca cells propagated from patients with polycystic ovary syndrome. J. Clin. Endocrinol. Metab.86(12), 5925–5933 (2001).
  • Hillier SG, Yong EL, Illingworth PJ, Baird DT, Schwall RH, Mason AJ. Effect of recombinant inhibin on androgen synthesis in cultured human thecal cells. Mol. Cell Endocrinol.75(2), R1–R6 (1991).
  • Pigny P, Merlen E, Robert Y et al. Elevated serum level of anti-Müllerian hormone in patients with polycystic ovary syndrome: relationship to the ovarian follicle excess and to the follicular arrest. J. Clin. Endocrinol. Metab.88(12), 5957–5962 (2003).
  • Cook CL, Siow Y, Brenner AG, Fallat ME. Relationship between serum Müllerian-inhibiting substance and other reproductive hormones in untreated women with polycystic ovary syndrome and normal women. Fertil. Steril.77(1), 141–146 (2002).
  • Carlsen SM, Vanky E, Fleming R. Anti-Müllerian hormone concentrations in androgen-suppressed women with polycystic ovary syndrome. Hum. Reprod.24(7), 1732–1738 (2009).
  • Shah NA, Antoine HJ, Pall M, Taylor KD, Azziz R, Goodarzi MO. Association of androgen receptor CAG repeat polymorphism and polycystic ovary syndrome. J. Clin. Endocrinol. Metab.93(5), 1939–1945 (2008).
  • Manneras L, Cajander S, Holmang A et al. A new rat model exhibiting both ovarian and metabolic characteristics of polycystic ovary syndrome. Endocrinology148(8), 3781–3791 (2007).
  • Luchetti CG, Solano ME, Sander V et al. Effects of dehydroepiandrosterone on ovarian cystogenesis and immune function. J. Reprod. Immunol.64(1–2), 59–74 (2004).
  • Sander V, Solano ME, Elia E et al. The influence of dehydroepiandrosterone on early pregnancy in mice. Neuroimmunomodulation12(5), 285–292 (2005).
  • Sander V, Luchetti CG, Solano ME et al. Role of the N, N´-dimethylbiguanide metformin in the treatment of female prepuberal BALB/c mice hyperandrogenized with dehydroepiandrosterone. Reproduction131(3), 591–602 (2006).
  • Manikkam M, Steckler TL, Welch KB, Inskeep EK, Padmanabhan V. Fetal programming: prenatal testosterone treatment leads to follicular persistence/luteal defects; partial restoration of ovarian function by cyclic progesterone treatment. Endocrinology147(4), 1997–2007 (2006).
  • Birch RA, Padmanabhan V, Foster DL, Unsworth WP, Robinson JE. Prenatal programming of reproductive neuroendocrine function: fetal androgen exposure produces progressive disruption of reproductive cycles in sheep. Endocrinology144(4), 1426–1434 (2003).
  • Clarke IJ, Scaramuzzi RJ, Short RV. Ovulation in prenatally androgenized ewes. J. Endocrinol.73(2), 385–389 (1977).
  • Foecking EM, Szabo M, Schwartz NB, Levine JE. Neuroendocrine consequences of prenatal androgen exposure in the female rat: absence of luteinizing hormone surges, suppression of progesterone receptor gene expression, and acceleration of the gonadotropin-releasing hormone pulse generator. Biol. Reprod.72(6), 1475–1483 (2005).
  • Resko JA, Buhl AE, Phoenix CH. Treatment of pregnant rhesus macaques with testosterone propionate: observations on its fate in the fetus. Biol. Reprod.37(5), 1185–1191 (1987).
  • Dumesic DA, Abbott DH, Eisner JR, Goy RW. Prenatal exposure of female rhesus monkeys to testosterone propionate increases serum luteinizing hormone levels in adulthood. Fertil. Steril.67(1), 155–163 (1997).
  • Abbott DH, Barnett DK, Bruns CM, Dumesic DA. Androgen excess fetal programming of female reproduction: a developmental aetiology for polycystic ovary syndrome? Hum. Reprod. Update11(4), 357–374 (2005).
  • Dumesic DA, Abbott DH, Padmanabhan V. Polycystic ovary syndrome and its developmental origins. Rev. Endocr. Metab. Disord.8(2), 127–141 (2007).
  • Dumesic DA, Schramm RD, Peterson E, Paprocki AM, Zhou R, Abbott DH. Impaired developmental competence of oocytes in adult prenatally androgenized female rhesus monkeys undergoing gonadotropin stimulation for in vitro fertilization. J. Clin. Endocrinol. Metab.87(3), 1111–1119 (2002).
  • Dumesic DA, Schramm RD, Bird IM et al. Reduced intrafollicular androstenedione and estradiol levels in early-treated prenatally androgenized female rhesus monkeys receiving follicle-stimulating hormone therapy for in vitro fertilization. Biol. Reprod.69(4), 1213–1219 (2003).
  • Eisner JR, Dumesic DA, Kemnitz JW, Abbott DH. Timing of prenatal androgen excess determines differential impairment in insulin secretion and action in adult female rhesus monkeys. J. Clin. Endocrinol. Metab.85(3), 1206–1210 (2000).
  • Eisner JR, Dumesic DA, Kemnitz JW, Colman RJ, Abbott DH. Increased adiposity in female rhesus monkeys exposed to androgen excess during early gestation. Obes. Res.11(2), 279–286 (2003).
  • Zhou R, Bruns CM, Bird IM et al. Pioglitazone improves insulin action and normalizes menstrual cycles in a majority of prenatally androgenized female rhesus monkeys. Reprod. Toxicol.23(3), 438–448 (2007).
  • Burns CM, Baum ST, Colman RJ et al. Prenatal androgen excess negatively impact body fat distribution in nonhuman primate model of polycystic ovary syndrome. Int. J. Obes. (Lond.)31(10), 1579–1585 (2007).
  • Sarma HN, Manikkam M, Herkimer C et al. Fetal programming: excess prenatal testosterone reduces postnatal luteinizing hormone, but not follicle-stimulating hormone responsiveness, to estradiol negative feedback in the female. Endocrinology146(10), 4281–4291 (2005).
  • Padmanabhan V, Manikkam M, Recabarren S, Foster D. Prenatal testosterone excess programs reproductive and metabolic dysfunction in the female. Mol. Cell Endocrinol.246(1–2), 165–174 (2006).
  • Foster DL, Jackson LM, Padmanabhan V. Programming of GnRH feedback controls timing puberty and adult reproductive activity. Mol. Cell Endocrinol.254–255, 109–119 (2006).
  • Robinson JE, Forsdike RA, Taylor JA. In utero exposure of female lambs to testosterone reduces the sensitivity of the gonadotropin-releasing hormone neuronal network to inhibition by progesterone. Endocrinology140(12), 5797–5805 (1999).
  • Ortega HH, Salvetti NR, Padmanabhan V. Developmental programming: prenatal androgen excess disrupts ovarian steroid receptor balance. Reproduction137(5), 865–877 (2009).
  • West C, Foster DL, Evans NP, Robinson J, Padmanabhan V. Intra-follicular activin availability is altered in prenatally-androgenized lambs. Mol. Cell Endocrinol.185(1–2), 51–59 (2001).
  • Steckler T, Wang J, Bartol FF, Roy SK, Padmanabhan V. Fetal programming: prenatal testosterone treatment causes intrauterine growth retardation, reduces ovarian reserve and increases ovarian follicular recruitment. Endocrinology146(7), 3185–3193 (2005).
  • King AJ, Olivier NB, Mohankumar PS, Lee JS, Padmanabhan V, Fink GD. Hypertension caused by prenatal testosterone excess in female sheep. Am. J. Physiol. Endocrinol. Metab.292(6), E1837–E1841 (2007).
  • Recabarren SE, Padmanabhan V, Codner E et al. Postnatal developmental consequences of altered insulin sensitivity in female sheep treated prenatally with testosterone. Am. J. Physiol. Endocrinol. Metab.289(5), E801–E806 (2005).
  • Sharma TP, Herkimer C, West C et al. Fetal programming: prenatal androgen disrupts positive feedback actions of estradiol but does not affect timing of puberty in female sheep. Biol. Reprod.66(4), 924–933 (2002).
  • Crespi EJ, Steckler TL, Mohankumar PS, Padmanabhan V. Prenatal exposure to excess testosterone modifies the developmental trajectory of the insulin-like growth factor system in female sheep. J. Physiol.572(Pt 1), 119–130 (2006).
  • Manikkam M, Crespi EJ, Doop DD et al. Fetal programming: prenatal testosterone excess leads to fetal growth retardation and postnatal catch-up growth in sheep. Endocrinology145(2), 790–798 (2004).
  • Herman RA, Jones B, Mann DR, Wallen K. Timing of prenatal androgen exposure: anatomical and endocrine effects on juvenile male and female rhesus monkeys. Horm. Behav.38(1), 52–66 (2000).
  • Roland AV, Nunemaker CS, Keller SR, Moenter SM. Prenatal androgen exposure programs metabolic dysfunction in female mice. J. Endocrinol.207(2), 213–223 (2010).
  • Lyon MF, Glenister PH. Evidence from Tfm-O that androgen is essential for reproduction in female mice. Nature247, 366–367 (1974).
  • Ohno S, Christian L, Attardi B. Role of testosterone in normal female function. Nat. New Biol.243, 119–120 (1973).
  • Hu YC, Wang PH, Yeh S et al. Subfertility and defective folliculogenesis in female mice lacking androgen receptor. Proc. Natl Acad. Sci. USA101(31), 11209–11214 (2004).
  • Shiina H, Matsumoto T, Sato T et al. Premature ovarian failure in androgen receptor-deficient mice. Proc. Natl Acad. Sci. USA103(1), 224–229 (2006).
  • Walters KA, Allan CM, Jimenez M et al. Female mice haploinsufficient for an inactivated androgen receptor (AR) exhibit age-dependent defects that resemble the AR null phenotype of dysfunctional late follicle development, ovulation, and fertility. Endocrinology148(8), 3674–3684 (2007).
  • Sen A, Hammes SR. Granulosa cell-specific androgen receptors are critical regulators of ovarian development and function. Mol. Endocrinol.24(7), 1393–1403 (2010).
  • Walters KA, McTavish KJ, Seneviratne MG et al. Subfertile female androgen receptor knockout mice exhibit defects in neuroendocrine signaling, intraovarian function, and uterine development but not uterine function. Endocrinology150(7), 3274–3282 (2009).
  • De Gendt K, Swinnen JV, Saunders PT et al. A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc. Natl Acad. Sci. USA101(5), 1327–1332 (2004).
  • Arango NA, Szotek PP, Manganaro TF, Oliva E, Donahoe PK, Teixeira J. Conditional deletion of β-catenin in the mesenchyme of the developing mouse uterus results in a switch to adipogenesis in the myometrium. Dev. Biol.288(1), 276–283 (2005).
  • Teixeira J, Maheswaran S, Donahoe PK. Müllerian inhibiting substance: an instructive developmental hormone with diagnostic and possible therapeutic applications. Endocr. Rev.22(5), 657–674 (2001).
  • Reddy P, Liu L, Adhikari D et al. Oocyte-specific deletion of PTEN causes premature activation of the primordial follicle pool. Science319(5863), 611–613 (2008).
  • Rasar MA, Hammes SR. The physiology of the Xenopus laevis ovary. Methods Mol. Biol.322, 17–30 (2006).
  • Hammes SR. Steroids and oocyte maturation – a new look at an old story. Mol. Endocrinol.18(4), 769–775 (2004).
  • Yang WH, Lutz LB, Hammes SR. Xenopus laevis ovarian CYP17 is a highly potent enzyme expressed exclusively in oocytes. Evidence that oocytes play a critical role in Xenopus ovarian androgen production. J. Biol. Chem.278(11), 9552–9559 (2003).
  • Gill A, Hammes SR. Gβγ signaling reduces intracellular cAMP to promote meiotic progression in mouse oocytes. Steroids72(2), 117–123 (2007).
  • Jamnongjit M, Gill A, Hammes SR. Epidermal growth factor receptor signaling is required for normal ovarian steroidogenesis and oocyte maturation. Proc. Natl Acad. Sci. USA102(45), 16257–16262 (2005).
  • Jamnongjit M, Hammes SR. Oocyte maturation: the coming of age of a germ cell. Semin. Reprod. Med.23(3), 234–241 (2005).
  • Jamnongjit M, Hammes SR. Ovarian steroids: the good, the bad, and the signals that raise them. Cell Cycle5(11), 1178–1183 (2006).
  • Li M, Schatten H, Sun QY. Androgen receptor’s destiny in mammalian oocytes: a new hypothesis. Mol. Hum. Reprod.15(3), 149–154 (2009).
  • Li M, Ai JS, Xu BZ et al. Testosterone potentially triggers meiotic resumption by activation of intra-oocyte SRC and MAPK in porcine oocytes. Biol. Reprod.79(5), 897–905 (2008).
  • Dekel N. Molecular control of meiosis. Trends Endocrinol. Metab.6(5), 165–169 (1995).
  • Eppig JJ, Viveiros MM, Marin-Bivensm C, De La Fuente R. Regulation of mammalian oocyte maturation. In: The Ovary (2nd Edition). Leung PCK, Adashi EY (Eds). Elsevier Academic Press, CA, USA, 113–129 (2004).
  • Mehlmann LM. Stops and starts in mammalian oocytes: recent advances in understanding the regulation of meiotic arrest and oocyte maturation. Reproduction130(6), 791–799 (2005).
  • Conti M, Andersen CB, Richard F et al. Role of cyclic nucleotide signaling in oocyte maturation. Mol. Cell Endocrinol.187(1–2), 153–159 (2002).
  • Hammes SR. The further redefining of steroid-mediated signaling. Proc. Natl Acad. Sci. USA100(5), 2168–2170 (2003).
  • Deng J, Carbajal L, Evaul K, Rasar M, Jamnongjit M, Hammes SR. Nongenomic steroid-triggered oocyte maturation: of mice and frogs. Steroids74(7), 595–601 (2009).
  • Evaul K, Jamnongjit M, Bhagavath B, Hammes SR. Testosterone and progesterone rapidly attenuate plasma membrane Gbg-mediated signaling in Xenopus laevis oocytes by signaling through classical steroid receptors. Mol. Endocrinol.21(1), 186–196 (2007).
  • Haas D, White SN, Lutz LB, Rasar M, Hammes SR. The modulator of nongenomic actions of the estrogen receptor (MNAR) regulates transcription-independent androgen receptor-mediated signaling: evidence that MNAR participates in G protein-regulated meiosis in Xenopus laevis oocytes. Mol. Endocrinol.19(8), 2035–2046 (2005).
  • Unni E, Sun S, Nan B et al. Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence. Cancer Res.64(19), 7156–7168 (2004).
  • Wong CW, McNally C, Nickbarg E, Komm BS, Cheskis BJ. Estrogen receptor-interacting protein that modulates its nongenomic activity-crosstalk with Src/Erk phosphorylation cascade. Proc. Natl Acad. Sci. USA99(23), 14783–14788 (2002).
  • Rasar M, DeFranco DB, Hammes SR. Paxillin regulates steroid-triggered meiotic resumption in oocytes by enhancing an all-or-none positive feedback kinase loop. J. Biol. Chem.281(51), 39455–39464 (2006).
  • Mehlmann LM, Saeki Y, Tanaka S et al. The Gs-linked receptor GPR3 maintains meiotic arrest in mammalian oocytes. Science306(5703), 1947–1950 (2004).
  • Ledent C, Demeestere I, Blum D et al. Premature ovarian aging in mice deficient for Gpr3. Proc. Natl Acad. Sci. USA102(25), 8922–8926 (2005).
  • Norris RP, Freudzon L, Freudzon M, Hand AR, Mehlmann LM, Jaffe LA. A G(s)-linked receptor maintains meiotic arrest in mouse oocytes, but luteinizing hormone does not cause meiotic resumption by terminating receptor-G(s) signaling. Dev. Biol.310(2), 240–249 (2007).
  • Freudzon L, Norris RP, Hand AR et al. Regulation of meiotic prophase arrest in mouse oocytes by GPR3, a constitutive activator of the Gs G protein. J. Cell Biol.171(2), 255–265 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.