7
Views
4
CrossRef citations to date
0
Altmetric
Review

Vaginal innate immunity: alteration during pregnancy and its impact on pregnancy outcomes

&
Pages 629-641 | Published online: 10 Jan 2014

References

  • Donders G, De Wet HG, Hooft P, Desmyter J. Lactobacilli in Papanicolaou smears, genital infections, and pregnancy. Am. J. Perinatol.10(5), 358–361 (1993).
  • Donders GG. Bacterial vaginosis during pregnancy: screen and treat? Eur. J. Obstet. Gynecol. Reprod. Biol.83(1), 1–4 (1999).
  • Leitich H, Brunbauer M, Bodner-Adler B, Kaider A, Egarter C, Husslein P. Antibiotic treatment of bacterial vaginosis in pregnancy: a meta-analysis. Am. J. Obstet. Gynecol.188(3), 752–758 (2003).
  • Atashili J, Poole C, Ndumbe PM, Adimora AA, Smith JS. Bacterial vaginosis and HIV acquisition: a meta-analysis of published studies. AIDS22(12), 1493–1501 (2008).
  • Carey JC, Klebanoff MA. Is a change in the vaginal flora associated with an increased risk of preterm birth? Am. J. Obstet. Gynecol.192(4), 1341–1346; discussion 1346–1347 (2005).
  • Boris S, Barbes C. Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes Infec.2(5), 543–546 (2000).
  • Pybus V, Onderdonk AB. Microbial interactions in the vaginal ecosystem, with emphasis on the pathogenesis of bacterial vaginosis. Microbes Infec.1(4), 285–292 (1999).
  • Taha TE, Hoover DR, Dallabetta GA et al. Bacterial vaginosis and disturbances of vaginal flora: association with increased acquisition of HIV. AIDS12(13), 1699–1706 (1998).
  • Martin HL, Richardson BA, Nyange PM et al. Vaginal lactobacilli, microbial flora, and risk of human immunodeficiency virus type 1 and sexually transmitted disease acquisition. J. Infect. Dis.180(6), 1863–1868 (1999).
  • Hill JA, Anderson DJ. Human vaginal leukocytes and the effects of vaginal fluid on lymphocyte and macrophage defense functions. Am. J. Obstet. Gynecol.166(2), 720–726 (1992).
  • Donders GG, Bosmans E, Dekeersmaecker A, Vereecken A, Van Bulck B, Spitz B. Pathogenesis of abnormal vaginal bacterial flora. Am. J. Obstet. Gynecol.182(4), 872–878 (2000).
  • Fredricks DN, Fiedler TL, Marrazzo JM. Molecular identification of bacteria associated with bacterial vaginosis. N. Engl. J. Med.353(18), 1899–1911 (2005).
  • Donders GG, Vereecken A, Bosmans E, Dekeersmaecker A, Salembier G, Spitz B. Definition of a type of abnormal vaginal flora that is distinct from bacterial vaginosis: aerobic vaginitis. BJOG109(1), 34–43 (2002).
  • Gardiner GE, Heinemann C, Bruce AW, Beuerman D, Reid G. Persistence of Lactobacillus fermentum RC-14 and Lactobacillus rhamnosus GR-1 but not L. rhamnosus GG in the human vagina as demonstrated by randomly amplified polymorphic DNA. Clin. Diagn. Lab. Immunol.9(1), 92–96 (2002).
  • Shalev E, Battino S, Weiner E, Colodner R, Keness Y. Ingestion of yogurt containing Lactobacillus acidophilus compared with pasteurized yogurt as prophylaxis for recurrent candidal vaginitis and bacterial vaginosis. Arch. Fam. Med.5(10), 593–596 (1996).
  • Stapleton AE, Au-Yeung M, Hooton TM et al. Randomized, placebo-controlled Phase 2 trial of a Lactobacillus crispatus probiotic given intravaginally for prevention of recurrent urinary tract infection. Clin. Infect. Dis.52(10), 1212–1217 (2011).
  • Wira CR, Fahey JV. The innate immune system: gatekeeper to the female reproductive tract. Immunology111(1), 13–15 (2004).
  • Cole AM, Cole AL. Antimicrobial polypeptides are key anti-HIV-1 effector molecules of cervicovaginal host defense. Am. J. Reprod. Immunol.59(1), 27–34 (2008).
  • Ganz T, Selsted ME, Szklarek D et al. Defensins. Natural peptide antibiotics of human neutrophils. J. Clin. Invest.76(4), 1427–1435 (1985).
  • Chang TL, Vargas J Jr, DelPortillo A, Klotman ME. Dual role of α-defensin-1 in anti-HIV-1 innate immunity. J. Clin. Invest.115(3), 765–773 (2005).
  • Quinones-Mateu ME, Lederman MM et al. Human epithelial β-defensins 2 and 3 inhibit HIV-1 replication. AIDS17(16), F39–F48 (2003).
  • Trabattoni D, Caputo SL, Maffeis G et al. Human α defensin in HIV-exposed but uninfected individuals. J. Acquir. Immune Defic. Syndr.35(5), 455–463 (2004).
  • McNeely TB, Dealy M, Dripps DJ, Orenstein JM, Eisenberg SP, Wahl SM. Secretory leukocyte protease inhibitor: a human saliva protein exhibiting anti-human immunodeficiency virus 1 activity in vitro. J. Clin. Invest.96(1), 456–464 (1995).
  • Hocini H, Becquart P, Bouhlal H, Adle-Biassette H, Kazatchkine MD, Belec L. Secretory leukocyte protease inhibitor inhibits infection of monocytes and lymphocytes with human immunodeficiency virus type 1 but does not interfere with transcytosis of cell-associated virus across tight epithelial barriers. Clin. Diagn. Lab. Immunol.7(3), 515–518 (2000).
  • Pillay K, Coutsoudis A, Agadzi-Naqvi AK, Kuhn L, Coovadia HM, Janoff EN. Secretory leukocyte protease inhibitor in vaginal fluids and perinatal human immunodeficiency virus type 1 transmission. J. Infect. Dis.183(4), 653–656 (2001).
  • Novak RM, Donoval BA, Graham PJ et al. Cervicovaginal levels of lactoferrin, secretory leukocyte protease inhibitor, and RANTES and the effects of coexisting vaginoses in human immunodeficiency virus (HIV)-seronegative women with a high risk of heterosexual acquisition of HIV infection. Clin. Vaccine Immunol.14(9), 1102–1107 (2007).
  • Draper DL, Landers DV, Krohn MA, Hillier SL, Wiesenfeld HC, Heine RP. Levels of vaginal secretory leukocyte protease inhibitor are decreased in women with lower reproductive tract infections. Am. J. Obstet. Gynecol.183(5), 1243–1248 (2000).
  • Moriyama A, Shimoya K, Ogata I et al. Secretory leukocyte protease inhibitor (SLPI) concentrations in cervical mucus of women with normal menstrual cycle. Mol. Hum. Reprod.5(7), 656–661 (1999).
  • Shimoya K, Zhang Q, Temma K et al. Secretory leukocyte protease inhibitor levels in cervicovaginal secretion of elderly women. Maturitas54(2), 141–148 (2006).
  • King AE, Kelly RW, Sallenave JM, Bocking AD, Challis JRG. Innate immune defences in the human uterus during pregnancy. Placenta28(11–12), 1099–1106 (2007).
  • Moreau T, Baranger K, Dade S, Dallet-Choisy S, Guyot N, Zani ML. Multifaceted roles of human elafin and secretory leukocyte proteinase inhibitor (SLPI), two serine protease inhibitors of the chelonianin family. Biochimie90(2), 284–295 (2008).
  • Ghosh M, Shen Z, Fahey JV, Cu-Uvin S, Mayer K, Wira CR. Trappin-2/Elafin: a novel innate anti-human immunodeficiency virus-1 molecule of the human female reproductive tract. Immunology129(2), 207–219 (2010).
  • Iqbal SM, Ball TB, Levinson P et al. Elevated elafin/trappin-2 in the female genital tract is associated with protection against HIV acquisition. AIDS23(13), 1669–1677 (2009).
  • Stock SJ, Duthie L, Tremaine T, Calder AA, Kelly RW, Riley SC. Elafin (SKALP/Trappin-2/proteinase inhibitor-3) is produced by the cervix in pregnancy and cervicovaginal levels are diminished in bacterial vaginosis. Reprod. Sci.16(12), 1125–1134 (2009).
  • Striz I, Trebichavsky I. Calprotectin – a pleiotropic molecule in acute and chronic inflammation. Physiol. Res.53(3), 245–253 (2004).
  • Kostakis ID, Cholidou KG, Kallianidis K, Perrea D, Antsaklis A. The role of calprotectin in obstetrics and gynecology. Eur. J. Obstet. Gynecol. Reprod. Biol.151(1), 3–9 (2010).
  • Kunimi K, Maegawa M, Kamada M et al. Myeloid-related protein-8/14 is associated with proinflammatory cytokines in cervical mucus. J. Reprod. Immunol.71(1), 3–11 (2006).
  • Yano J, Lilly E, Barousse M, Fidel PL Jr. Epithelial cell-derived S100 calcium-binding proteins as key mediators in the hallmark acute neutrophil response during Candida vaginitis. Infect. Immun.78(12), 5126–5137 (2010).
  • Harmsen MC, Swart PJ, de Bethune MP et al. Antiviral effects of plasma and milk proteins: lactoferrin shows potent activity against both human immunodeficiency virus and human cytomegalovirus replication in vitro. J. Infect. Dis.172(2), 380–388 (1995).
  • Lee-Huang S, Huang PL, Sun Y, Kung HF, Blithe DL, Chen HC. Lysozyme and RNases as anti-HIV components in β-core preparations of human chorionic gonadotropin. Proc. Natl Acad. Sci. USA96(6), 2678–2681 (1999).
  • Miller CJ, McChesney M, Moore PF. Langerhans cells, macrophages and lymphocyte subsets in the cervix and vagina of Rhesus macaques. Lab. Invest.67(5), 628–634 (1992).
  • Pudney J, Quayle AJ, Anderson DJ. Immunological microenvironments in the human vagina and cervix: mediators of cellular immunity are concentrated in the cervical transformation zone. Biol. Reprod.73(6), 1253–1263 (2005).
  • Wira CR, Rossoll RM. Antigen-presenting cells in the female reproductive tract: influence of the estrous cycle on antigen presentation by uterine epithelial and stromal cells. Endocrinology136(10), 4526–4534 (1995).
  • Wira CR, Roche MA, Rossoll RM. Antigen presentation by vaginal cells: role of TGFβ as a mediator of estradiol inhibition of antigen presentation. Endocrinology143(8), 2872–2879 (2002).
  • Murphy SP, Hanna NN, Fast LD et al. Evidence for participation of uterine natural killer cells in the mechanisms responsible for spontaneous preterm labor and delivery. Am. J. Obstet. Gynecol.200(3), 308.e1–9 (2009).
  • Gardner L, Moffett A. Dendritic cells in the human decidua. Biol. Reprod.69(4), 1438–1446 (2003).
  • Hachisuga T, Fukuda K, Nakamura S, Iwasaka T, Sugimori H. Local immune response in endometrial carcinomas. Br. J. Obstet. Gynaecol.104(1), 110–114 (1997).
  • Ma C, Zhang WY, Wang JD. [Expressions of Th, DC, NK cells in cervical tissue and the relationship with immune functions]. Zhonghua Yi Xue Za Zhi89(23), 1650–1653 (2009).
  • Li XF, Charnock-Jones DS, Zhang E et al. Angiogenic growth factor messenger ribonucleic acids in uterine natural killer cells. J. Clin. Endocrinol. Metab.86(4), 1823–1834 (2001).
  • Zhang J, Chen Z, Smith GN, Croy BA. Natural killer cell-triggered vascular transformation: maternal care before birth? Cell. Mol. Immunol.8(1), 1–11 (2011).
  • Darville T, O’Neill JM, Andrews CW Jr, Nagarajan UM, Stahl L, Ojcius DM. Toll-like receptor-2, but not Toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection. J. Immunol.171(11), 6187–6197 (2003).
  • Abrahams VM, Visintin I, Aldo PB, Guller S, Romero R, Mor G. A role for TLRs in the regulation of immune cell migration by first trimester trophoblast cells. J. Immunol.175(12), 8096–8104 (2005).
  • Holmlund U, Cebers G, Dahlfors AR et al. Expression and regulation of the pattern recognition receptors Toll-like receptor-2 and Toll-like receptor-4 in the human placenta. Immunology107(1), 145–151 (2002).
  • Bulut Y, Faure E, Thomas L et al. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J. Immunol.168(3), 1435–1440 (2002).
  • O’Connell CM, Ionova IA, Quayle AJ, Visintin A, Ingalls RR. Localization of TLR2 and MyD88 to Chlamydia trachomatis inclusions. Evidence for signaling by intracellular TLR2 during infection with an obligate intracellular pathogen. J. Biol. Chem.281(3), 1652–1659 (2006).
  • Ilievski V, Lu SJ, Hirsch E. Activation of TLRs 2 or 3 and preterm delivery in the mouse. Reprod. Sci.14(4), 315–320 (2007).
  • Lorenz E, Hallman M, Marttila R, Haataja R, Schwartz DA. Association between the Asp299Gly polymorphisms in the Toll-like receptor 4 and premature births in the Finnish population Pediatr. Res.52(3), 373–376 (2002).
  • Kumazaki K, Nakayama M, Yanagihara I, Suehara N, Wada Y. Immunohistochemical distribution of Toll-like receptor 4 in term and preterm human placentas from normal and complicated pregnancy including chorioamnionitis. Hum. Pathol.35(1), 47–54 (2004).
  • Platz-Christensen JJ, Mattsby-Baltzer I, Thomsen P, Wiqvist N. Endotoxin and interleukin-1 α in the cervical mucus and vaginal fluid of pregnant women with bacterial vaginosis. Am. J. Obstet. Gynecol.169(5), 1161–1166 (1993).
  • Sturm-Ramirez K, Gaye-Diallo A, Eisen G, Mboup S, Kanki PJ. High levels of tumor necrosis factor-α and interleukin-1β in bacterial vaginosis may increase susceptibility to human immunodeficiency virus. J. Infect. Dis.182(2), 467–473 (2000).
  • Imseis HM, Greig PC, Livengood CH 3rd, Shunior E, Durda P, Erikson M. Characterization of the inflammatory cytokines in the vagina during pregnancy and labor and with bacterial vaginosis. J. Soc. Gynecol. Investig.4(2), 90–94 (1997).
  • Yudin MH, Landers DV, Meyn L, Hillier SL. Clinical and cervical cytokine response to treatment with oral or vaginal metronidazole for bacterial vaginosis during pregnancy: a randomized trial. Obstet. Gynecol.102(3), 527–534 (2003).
  • Hedges SR, Sibley DA, Mayo MS, Hook EW 3rd, Russell MW. Cytokine and antibody responses in women infected with Neisseria gonorrhoeae: effects of concomitant infections. J. Infect. Dis.178(3), 742–751 (1998).
  • Dybul M, Connors M, Fauci AS. Immunology of HIV Infection. In: Fundamental Immunology. Paul WE (Ed.). Lippincott Williams & Wilkins, PA, USA, 11285–11318 (2003).
  • Poli G, Kinter AL, Vicenzi E, Fauci AS. Cytokine regulation of acute and chronic HIV infection in vitro: from cell lines to primary mononuclear cells. Res. Immunol.145(8–9), 578–582 (1994).
  • Shehzad M. Iqbal RK. Mucosal innate immunity as a determinant of HIV Susceptibility. Am. J.Reprod. Immunology59(1), 44–54 (2008).
  • Giudice LC. Potential biochemical markers of uterine receptivity. Hum. Reprod.14(Suppl. 2), 3–16 (1999).
  • Aghajanova L, Stavreus-Evers A, Nikas Y, Hovatta O, Landgren BM. Coexpression of pinopodes and leukemia inhibitory factor, as well as its receptor, in human endometrium. Fertil. Steril.79(Suppl. 1), 808–814 (2003).
  • Tjernlund A, Walther-Jallow L, Behbahani H et al. Leukemia inhibitor factor (LIF) inhibits HIV-1 replication via restriction of stat 3 activation. AIDS Res. Hum. Retroviruses23(3), 398–406 (2007).
  • Aboul Enien WM, El Metwally HA. Association of abnormal vaginal flora with increased cervical tumour necrosis factor-α and interferon-γ levels in idiopathic infertility. J. Immunol.12(2), 53–59 (2005).
  • Conrady CD, Halford WP, Carr DJ. Loss of the type I interferon pathway increases vulnerability of mice to genital herpes simplex virus 2 infection. J. Virol.85(4), 1625–1633 (2011).
  • Lu H, Xing Z, Brunham RC. GM-CSF transgene-based adjuvant allows the establishment of protective mucosal immunity following vaccination with inactivated Chlamydia trachomatis. J. Immunol.169(11), 6324–6331 (2002).
  • Rasmussen SJ, Eckmann L, Quayle AJ et al. Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis. J. Clin. Invest.99(1), 77–87 (1997).
  • Pellis V, De Seta F, Crovella S et al. Mannose binding lectin and C3 act as recognition molecules for infectious agents in the vagina. Clin. Exp. Immunol.139(1), 120–126 (2005).
  • Wojitani MD, de Aguiar LM, Baracat EC, Linhares IM. Association between mannose-binding lectin and interleukin-1 receptor antagonist gene polymorphisms and recurrent vulvovaginal candidiasis. Arch. Gynecol. Obstet. DOI: 10.1007/s00404-011-1920-z (2011) (Epub ahead of print).
  • Than NG, Romero R, Erez O et al. A role for mannose-binding lectin, a component of the innate immune system in pre-eclampsia. Am. J. Reprod Immunol.60(4), 333–345 (2008).
  • Goplerud CP, Ohm MJ, Galask RP. Aerobic and anaerobic flora of the cervix during pregnancy and the puerperium. Am. J. Obstet. Gynecol.126(7), 858–868 (1976).
  • Koumans EH, Sternberg M, Bruce C et al. The prevalence of bacterial vaginosis in the United States, 2001–2004; associations with symptoms, sexual behaviors, and reproductive health. Sex. Transm. Dis.34(11), 864–869 (2007).
  • Beigi RH, Yudin MH, Cosentino L, Meyn LA, Hillier SL. Cytokines, pregnancy, and bacterial vaginosis: comparison of levels of cervical cytokines in pregnant and nonpregnant women with bacterial vaginosis. J. Infect. Dis.196(9), 1355–1360 (2007).
  • Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. N. Engl. J. Med.342(20), 1500–1507 (2000).
  • Helmig BR, Romero R, Espinoza J et al. Neutrophil elastase and secretory leukocyte protease inhibitor in prelabor rupture of membranes, parturition and intra-amniotic infection. J. Matern. Fetal Neonatal Med.12(4), 237–246 (2002).
  • Kutteh WH, Franklin RD. Quantification of immunoglobulins and cytokines in human cervical mucus during each trimester of pregnancy. Am. J. Obstet. Gynecol.184(5), 865–874 (2001).
  • Shimaoka Y, Hidaka Y, Tada H et al. Changes in cytokine production during and after normal pregnancy. Am. J. Reprod. Immunol.44(3), 143–147 (2000).
  • Donders GG, Vereecken A, Bosmans E, Spitz B. Vaginal cytokines in normal pregnancy. Am. J. Obstet. Gynecol.189(5), 1433–1438 (2003).
  • Lee CL, Chiu PC, Lam KK et al. Differential actions of glycodelin-A on Th-1 and Th-2 cells: a paracrine mechanism that could produce the Th-2 dominant environment during pregnancy. Hum. Reprod.26(3), 517–526 (2011).
  • Doria A, Iaccarino L, Arienti S et al. Th2 immune deviation induced by pregnancy: the two faces of autoimmune rheumatic diseases. Reprod. Toxicol.22(2), 234–241 (2006).
  • Helmig R, Uldbjerg N, Ohlsson K. Secretory leukocyte protease inhibitor in the cervical mucus and in the fetal membranes. Eur. J. Obstets. Gynecol. Reprod. Biol.59(1), 95–101 (1995).
  • Draper DL, Landers DV, Krohn MA, Hillier SL, Wiesenfeld HC, Heine RP. Levels of vaginal secretory leukocyte protease inhibitor are decreased in women with lower reproductive tract infections. Am. J. Obstet. Gynecol.183, 1243–1248 (2000).
  • Vogel I, Thorsen P, Curry A, Sandager P, Uldbjerg N. Biomarkers for the prediction of preterm delivery. Acta. Obstet. Gynecol. Scand.84(6), 516–525 (2005).
  • Rizzo G, Capponi A, Vlachopoulou A, Angelini E, Grassi C, Romanini C. Ultrasonographic assessment of the uterine cervix and interleukin-8 concentrations in cervical secretions predict intrauterine infection in patients with preterm labor and intact membranes. Ultrasound Obstet. Gynecol.12(2), 86–92 (1998).
  • Simhan HN, Krohn MA. First-trimester cervical inflammatory milieu and subsequent early preterm birth. Am. J. Obstet. Gynecol.200(4), 377.e371–e374 (2009).
  • Balu RB, Savitz DA, Ananth CV et al. Bacterial vaginosis, vaginal fluid neutrophil defensins, and preterm birth. Obstet. Gynecol.101(5 Pt 1), 862–868 (2003).
  • Buhimschi IA, Jabr M, Buhimschi CS, Petkova AP, Weiner CP, Saed GM. The novel antimicrobial peptide β3-defensin is produced by the amnion: a possible role of the fetal membranes in innate immunity of the amniotic cavity. Am. J. Obstet. Gynecol.191(5), 1678–1687 (2004).
  • Tromp G, Kuivaniemi H, Romero R et al. Genome-wide expression profiling of fetal membranes reveals a deficient expression of proteinase inhibitor 3 in premature rupture of membranes. Am. J. Obstet. Gynecol.191(4), 1331–1338 (2004).
  • Simhan HN, Caritis SN, Krohn MA, Hillier SL. Elevated vaginal pH and neutrophils are associated strongly with early spontaneous preterm birth. Am. J. Obstet. Gynecol.189(4), 1150–1154 (2003).
  • Ramsey PS, Lyon MD, Goepfert AR et al. Use of vaginal polymorphonuclear to epithelial cell ratios for the prediction of preterm birth. Obstet. Gynecol.105(1), 139–144 (2005).
  • Jacobsson B, Holst RM, Wennerholm UB, Andersson B, Lilja H, Hagberg H. Monocyte chemotactic protein-1 in cervical and amniotic fluid: relationship to microbial invasion of the amniotic cavity, intra-amniotic inflammation, and preterm delivery. Am. J. Obstet. Gynecol.189(4), 1161–1167 (2003).
  • Shennan A, Crawshaw S, Briley A et al. A randomised controlled trial of metronidazole for the prevention of preterm birth in women positive for cervicovaginal fetal fibronectin: the PREMET Study. BJOG113(1), 65–74 (2006).
  • Carey JC, Klebanoff MA, Hauth JC et al. Metronidazole to prevent preterm delivery in pregnant women with asymptomatic bacterial vaginosis. National Institute of Child Health and Human Development Network of Maternal–Fetal Medicine Units. N. Engl. J. Med.342(8), 534–540 (2000).
  • Duff P, Lee ML, Hillier SL, Herd LM, Krohn MA, Eschenbach DA. Amoxicillin treatment of bacterial vaginosis during pregnancy. Obstet. Gynecol.77(3), 431–435 (1991).
  • Guaschino S, Ricci E, Franchi M et al. Treatment of asymptomatic bacterial vaginosis to prevent pre-term delivery: a randomised trial. Eur. J. Obstet. Gynecol. Reprod. Biol.110(2), 149–152 (2003).
  • Hauth JC, Goldenberg RL, Andrews WW, DuBard MB, Copper RL. Reduced incidence of preterm delivery with metronidazole and erythromycin in women with bacterial vaginosis. N. Engl. J. Med.333(26), 1732–1736 (1995).
  • Joesoef MR, Hillier SL, Wiknjosastro G et al. Intravaginal clindamycin treatment for bacterial vaginosis: effects on preterm delivery and low birthweight. Am. J. Obstet. Gynecol.173(5), 1527–1531 (1995).
  • Kekki M, Kurki T, Pelkonen J, Kurkinen-Raty M, Cacciatore B, Paavonen J. Vaginal clindamycin in preventing preterm birth and peripartal infections in asymptomatic women with bacterial vaginosis: a randomized, controlled trial. Obstet. Gynecol.97(5 Pt 1), 643–648 (2001).
  • Kiss H, Petricevic L, Husslein P. Prospective randomised controlled trial of an infection screening programme to reduce the rate of preterm delivery. BMJ329(7462), 371 (2004).
  • Kurkinen-Räty M, Vuopala S, Koskela M et al. A randomised controlled trial of vaginal clindamycin for early pregnancy bacterial vaginosis. BJOG107(11), 1427–1432 (2000).
  • Lamont RF, Duncan SL, Mandal D, Bassett P. Intravaginal clindamycin to reduce preterm birth in women with abnormal genital tract flora. Obstet. Gynecol.101(3), 516–522 (2003).
  • McDonald HM, O’Loughlin JA, Vigneswaran R et al. Impact of metronidazole therapy on preterm birth in women with bacterial vaginosis flora (Gardnerella vaginalis): a randomised, placebo controlled trial. Br. J. Obstet. Gynaecol.104(12), 1391–1397 (1997).
  • Morales WJ, Schorr S, Albritton J. Effect of metronidazole in patients with preterm birth in preceding pregnancy and bacterial vaginosis: a placebo-controlled, double-blind study. Am. J. Obstet. Gynecol.171(2), 345–347; discussion 348–349 (1994).
  • Odendaal HJ, Popov I, Schoeman J, Smith M, Grove D. Preterm labour – is bacterial vaginosis involved? S. Afr. Med. J.92(3), 231–234 (2002).
  • Ugwumadu A, Manyonda I, Reid F, Hay P. Effect of early oral clindamycin on late miscarriage and preterm delivery in asymptomatic women with abnormal vaginal flora and bacterial vaginosis: a randomised controlled trial. Lancet361(9362), 983–988 (2003).
  • Vermeulen GM, Bruinse HW. Prophylactic administration of clindamycin 2% vaginal cream to reduce the incidence of spontaneous preterm birth in women with an increased recurrence risk: a randomised placebo-controlled double-blind trial. Br. J. Obstet. Gynaecol.106(7), 652–657 (1999).
  • Jacobsson B, Pernevi P, Chidekel L, Jorgen Platz-Christensen J. Bacterial vaginosis in early pregnancy may predispose for preterm birth and postpartum endometritis. Acta. Obstet. Gynecol. Scand.81(11), 1006–1010 (2002).
  • Genc MR, Vardhana S, Delaney ML, Witkin SS, Onderdonk AB. TNFA-308G>A polymorphism influences the TNF-α response to altered vaginal flora. Eur. J. Obstet. Gynecol. Reprod. Biol.134(2), 188–191 (2007).
  • Macones GA, Parry S, Elkousy M, Clothier B, Ural SH, Strauss JF 3rd. A polymorphism in the promoter region of TNF and bacterial vaginosis: preliminary evidence of gene–environment interaction in the etiology of spontaneous preterm birth. Am. J. Obstet. Gynecol.190(6), 1504–1508; discussion 1503A (2004).
  • Gomez LM, Sammel MD, Appleby DH et al. Evidence of a gene–environment interaction that predisposes to spontaneous preterm birth: a role for asymptomatic bacterial vaginosis and DNA variants in genes that control the inflammatory response. Am. J. Obstet. Gynecol.202(4), 386.e1–6 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.