28
Views
15
CrossRef citations to date
0
Altmetric
Special Report

Modulating the tumor immune microenvironment as an ovarian cancer treatment strategy

&
Pages 413-419 | Published online: 10 Jan 2014

References

  • Hayat MJ, Howlader N, Reichman ME, Edwards BK. Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program. Oncologist 12(1), 20–37 (2007).
  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J. Clin. 59(4), 225–249 (2009).
  • Yancik R. Ovarian cancer. Age contrasts in incidence, histology, disease stage at diagnosis, and mortality. Cancer 71(2 Suppl.), 517–523 (1993).
  • Kurman RJ, Shih IeM. The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am. J. Surg. Pathol. 34(3), 433–443 (2010).
  • Kurman RJ, Shih IeM. Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer – shifting the paradigm. Hum. Pathol. 42(7), 918–931 (2011).
  • Presta LG, Chen H, O’Connor SJ et al. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res. 57(20), 4593–4599 (1997).
  • Burger RA, Brady MF, Bookman MA et al.; Gynecologic Oncology Group. Incorporation of bevacizumab in the primary treatment of ovarian cancer. N. Engl. J. Med. 365(26), 2473–2483 (2011).
  • Perren TJ, Swart AM, Pfisterer J et al.; ICON7 Investigators. A Phase 3 trial of bevacizumab in ovarian cancer. N. Engl. J. Med. 365(26), 2484–2496 (2011).
  • Huarte E, Cubillos-Ruiz JR, Nesbeth YC et al. Depletion of dendritic cells delays ovarian cancer progression by boosting antitumor immunity. Cancer Res. 68(18), 7684–7691 (2008).
  • Scarlett UK, Cubillos-Ruiz JR, Nesbeth YC et al. In situ stimulation of CD40 and Toll-like receptor 3 transforms ovarian cancer-infiltrating dendritic cells from immunosuppressive to immunostimulatory cells. Cancer Res. 69(18), 7329–7337 (2009).
  • Scarlett UK, Rutkowski MR, Rauwerdink AM et al. Ovarian cancer progression is controlled by phenotypic changes in dendritic cells. J. Exp. Med. 209(3), 495–506 (2012).
  • Pedroza-Gonzalez A, Xu K, Wu TC et al. Thymic stromal lymphopoietin fosters human breast tumor growth by promoting type 2 inflammation. J. Exp. Med. 208(3), 479–490 (2011).
  • Marigo I, Bosio E, Solito S et al. Tumor-induced tolerance and immune suppression depend on the C/EBPβ transcription factor. Immunity 32(6), 790–802 (2010).
  • Conejo-Garcia JR, Benencia F, Courreges MC et al. Tumor-infiltrating dendritic cell precursors recruited by a β-defensin contribute to vasculogenesis under the influence of VEGF-A. Nat. Med. 10(9), 950–958 (2004).
  • Conejo-Garcia JR, Buckanovich RJ, Benencia F et al. Vascular leukocytes contribute to tumor vascularization. Blood 105(2), 679–681 (2005).
  • Cubillos-Ruiz JR, Engle X, Scarlett UK et al. Polyethylenimine-based siRNA nanocomplexes reprogram tumor-associated dendritic cells via TLR5 to elicit therapeutic antitumor immunity. J. Clin. Invest. 119(8), 2231–2244 (2009).
  • Cubillos-Ruiz JR, Fiering S, Conejo-Garcia JR. Nanomolecular targeting of dendritic cells for ovarian cancer therapy. Future Oncol. 5(8), 1189–1192 (2009).
  • Cubillos-Ruiz JR, Rutkowski M, Conejo-Garcia JR. Blocking ovarian cancer progression by targeting tumor microenvironmental leukocytes. Cell Cycle 9(2), 260–268 (2010).
  • Nagaraj S, Gabrilovich DI. Myeloid-derived suppressor cells in human cancer. Cancer J. 16(4), 348–353 (2010).
  • Cubillos-Ruiz JR, Conejo-Garcia JR. It never rains but it pours: potential role of butyrophilins in inhibiting anti-tumor immune responses. Cell Cycle 10(3), 368–369 (2011).
  • Cubillos-Ruiz JR, Martinez D, Scarlett UK et al. CD277 is a negative co-stimulatory molecule universally expressed by ovarian cancer microenvironmental cells. Oncotarget 1(5), 329–338 (2010).
  • Nesbeth Y, Conejo-Garcia JR. Harnessing the effect of adoptively transferred tumor-reactive T cells on endogenous (host-derived) antitumor immunity. Clin. Dev. Immunol. 2010, 139304 (2010).
  • Nesbeth Y, Scarlett U, Cubillos-Ruiz J et al. CCL5-mediated endogenous antitumor immunity elicited by adoptively transferred lymphocytes and dendritic cell depletion. Cancer Res. 69(15), 6331–6338 (2009).
  • Nesbeth YC, Martinez DG, Toraya S et al. CD4+ T cells elicit host immune responses to MHC class II-negative ovarian cancer through CCL5 secretion and CD40-mediated licensing of dendritic cells. J. Immunol. 184(10), 5654–5662 (2010).
  • Son DS, Parl AK, Rice VM, Khabele D. Keratinocyte chemoattractant (KC)/human growth-regulated oncogene (GRO) chemokines and pro-inflammatory chemokine networks in mouse and human ovarian epithelial cancer cells. Cancer Biol. Ther. 6(8), 1302–1312 (2007).
  • Sangaletti S, Tripodo C, Ratti C et al. Oncogene-driven intrinsic inflammation induces leukocyte production of tumor necrosis factor that critically contributes to mammary carcinogenesis. Cancer Res. 70(20), 7764–7775 (2010).
  • Burke F, Relf M, Negus R, Balkwill F. A cytokine profile of normal and malignant ovary. Cytokine 8(7), 578–585 (1996).
  • Fleming JS, Beaugié CR, Haviv I, Chenevix-Trench G, Tan OL. Incessant ovulation, inflammation and epithelial ovarian carcinogenesis: revisiting old hypotheses. Mol. Cell. Endocrinol. 247(1–2), 4–21 (2006).
  • Kulbe H, Chakravarty P, Leinster DA et al. Australian Ovarian Cancer Study Group. A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res. 72(1), 66–75 (2012).
  • Zhang L, Conejo-Garcia JR, Katsaros D et al.; Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N. Engl. J. Med. 348(3), 203–213 (2003).
  • Coukos G, Conejo-Garcia JR, Roden RB, Wu TC. Immunotherapy for gynaecological malignancies. Expert Opin. Biol. Ther. 5(9), 1193–1210 (2005).
  • Conejo-Garcia JR, Benencia F, Courreges MC et al. Ovarian carcinoma expresses the NKG2D ligand Letal and promotes the survival and expansion of CD28-antitumor T cells. Cancer Res. 64(6), 2175–2182 (2004).
  • Hamanishi J, Mandai M, Iwasaki M et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc. Natl Acad. Sci. USA 104(9), 3360–3365 (2007).
  • Sato E, Olson SH, Ahn J et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T-cell ratio are associated with favorable prognosis in ovarian cancer. Proc. Natl Acad. Sci. USA 102(51), 18538–18543 (2005).
  • Kryczek I, Banerjee M, Cheng P et al. Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114(6), 1141–1149 (2009).
  • Curiel TJ, Coukos G, Zou L et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10(9), 942–949 (2004).
  • Diefenbach CS, Gnjatic S, Sabbatini P et al. Safety and immunogenicity study of NY-ESO-1b peptide and montanide ISA-51 vaccination of patients with epithelial ovarian cancer in high-risk first remission. Clin. Cancer Res. 14(9), 2740–2748 (2008).
  • Sabbatini PJ, Ragupathi G, Hood C et al. Pilot study of a heptavalent vaccine-keyhole limpet hemocyanin conjugate plus QS21 in patients with epithelial ovarian, fallopian tube, or peritoneal cancer. Clin. Cancer Res. 13(14), 4170–4177 (2007).
  • Kelly RJ, Sharon E, Pastan I, Hassan R. Mesothelin-targeted agents in clinical trials and in preclinical development. Mol. Cancer Ther. 11(3), 517–525 (2012).
  • Carpenito C, Milone MC, Hassan R et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl Acad. Sci. USA 106(9), 3360–3365 (2009).
  • Tchou J, Wang LC, Selven B et al. Mesothelin, a novel immunotherapy target for triple-negative breast cancer. Breast Cancer Res. Treat. 133(2), 799–804 (2012).
  • Pardoll D, Drake C. Immunotherapy earns its spot in the ranks of cancer therapy. J. Exp. Med. 209(2), 201–209 (2012).
  • Beatty GL, Chiorean EG, Fishman MP et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331(6024), 1612–1616 (2011).
  • Grossman SA, Ye X, Piantadosi S et al.; NABTT CNS Consortium. Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clin. Cancer Res. 16(8), 2443–2449 (2010).
  • Ahonen CL, Wasiuk A, Fuse S et al. Enhanced efficacy and reduced toxicity of multifactorial adjuvants compared with unitary adjuvants as cancer vaccines. Blood 111(6), 3116–3125 (2008).
  • Ahonen CL, Doxsee CL, McGurran SM et al. Combined TLR and CD40 triggering induces potent CD8+ T-cell expansion with variable dependence on type I IFN. J. Exp. Med. 199(6), 775–784 (2004).
  • Cubillos-Ruiz JR, Baird JR, Tesone AJ et al. Reprogramming tumor-associated dendritic cells in vivo using miRNA mimetics triggers protective immunity against ovarian cancer. Cancer Res. 72(7), 1683–1693 (2012).
  • Nick AM, Stone RL, Armaiz-Pena G et al. Silencing of p130cas in ovarian carcinoma: a novel mechanism for tumor cell death. J. Natl Cancer Inst. 103(21), 1596–1612 (2011).
  • Buckanovich RJ, Facciabene A, Kim S et al. Endothelin B receptor mediates the endothelial barrier to T-cell homing to tumors and disables immune therapy. Nat. Med. 14(1), 28–36 (2008).
  • Motz GT, Coukos G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat. Rev. Immunol. 11(10), 702–711 (2011).
  • Kraman M, Bambrough PJ, Arnold JN et al. Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-α. Science 330(6005), 827–830 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.