18
Views
7
CrossRef citations to date
0
Altmetric
Review

’-omics’ technology and human reproduction: reproductomics

, , , &
Pages 493-506 | Published online: 10 Jan 2014

References

  • Lander ES, Linton LM, Birren B et al.; International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409(6822), 860–921 (2001).
  • Collins FS, Morgan M, Patrinos A. The Human Genome Project: lessons from large-scale biology. Science 300(5617), 286–290 (2003).
  • Han X, Gross RW. Global analyses of cellular lipidomes directly from crude extracts of biological samples by ESI mass spectrometry: a bridge to lipidomics. J. Lipid Res. 44(6), 1071–1079 (2003).
  • Berlanga O, Bradshaw HB, Vilella-Mitjana F, Garrido-Gómez T, Simón C. How endometrial secretomics can help in predicting implantation. Placenta 32(Suppl. 3), S271–S275 (2011).
  • Lee S, Brown A, Pitt WR et al. Structural interactomics: informatics approaches to aid the interpretation of genetic variation and the development of novel therapeutics. Mol. Biosyst. 5, 1456–1472 (2009).
  • Dominguez F, Pellicer A, Simón C. The human embryo proteome. Reprod. Sci. 16(2), 188–190 (2009).
  • Srinivasan BS, Evans EA, Flannick J et al. A universal carrier test for the long tail of Mendelian disease. Reprod. Biomed. Online 21(4), 537–551 (2010).
  • Lichter P, Boyle AL, Cremer T, Ward DC. Analysis of genes and chromosomes by nonisotopic in situ hybridization. Genet. Anal. Tech. Appl. 8(1), 24–35 (1991).
  • Kallioniemi A, Kallioniemi OP, Sudar D et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science 258(5083), 818–821 (1992).
  • Wells D, Levy B. Cytogenetics in reproductive medicine: the contribution of comparative genomic hybridization (CGH). Bioessays 25(3), 289–300 (2003).
  • Wilton L. Preimplantation genetic diagnosis and chromosome analysis of blastomeres using comparative genomic hybridization. Hum. Reprod. Update 11(1), 33–41 (2005).
  • Fiorentino F, Spizzichino L, Bono S et al. PGD for reciprocal and Robertsonian translocations using array comparative genomic hybridization. Hum. Reprod. 26(7), 1925–1935 (2011).
  • Alfarawati S, Fragouli E, Colls P, Wells D. First births after preimplantation genetic diagnosis of structural chromosome abnormalities using comparative genomic hybridization and microarray analysis. Hum. Reprod. 26(6), 1560–1574 (2011).
  • Osborne EC, Lynch M, McLachlan R, Trounson AO, Cram DS. Microarray detection of Y chromosome deletions associated with male infertility. Reprod. Biomed. Online 15(6), 673–680 (2007).
  • Tüttelmann F, Simoni M, Kliesch S et al. Copy number variants in patients with severe oligozoospermia and Sertoli-cell-only syndrome. PLoS ONE 6(4), e19426 (2011).
  • Perrin A, Delobel B, Andrieux J et al. Molecular cytogenetic analysis by genomic hybridization to determine the cause of recurrent miscarriage. Fertil. Steril. 93(6), 2075.e3–2075.e6 (2010).
  • Rajcan-Separovic E, Diego-Alvarez D, Robinson WP et al. Identification of copy number variants in miscarriages from couples with idiopathic recurrent pregnancy loss. Hum. Reprod. 25(11), 2913–2922 (2010).
  • Kleeman L, Bianchi DW, Shaffer LG et al. Use of array comparative genomic hybridization for prenatal diagnosis of fetuses with sonographic anomalies and normal metaphase karyotype. Prenat. Diagn. 29(13), 1213–1217 (2009).
  • Evangelidou P, Sismani C, Ioannides M et al. Clinical application of whole-genome array CGH during prenatal diagnosis: study of 25 selected pregnancies with abnormal ultrasound findings or apparently balanced structural aberrations. Mol. Cytogenet. 3, 24 (2010).
  • Lee CN, Lin SY, Lin CH, Shih JC, Lin TH, Su YN. Clinical utility of array comparative genomic hybridisation for prenatal diagnosis: a cohort study of 3171 pregnancies. BJOG 119(10), 1282 (2010).
  • Geraedts J, Montag M, Magli MC et al. Polar body array CGH for prediction of the status of the corresponding oocyte. Part I: clinical results. Hum. Reprod. 26(11), 3173–3180 (2011).
  • Harper JC, Sengupta SB. Preimplantation genetic diagnosis: state of the art 2011. Hum. Genet. 131(2), 175–186 (2012).
  • Grøndahl ML, Yding Andersen C, Bogstad J, Nielsen FC, Meinertz H, Borup R. Gene expression profiles of single human mature oocytes in relation to age. Hum. Reprod. 25(4), 957–968 (2010).
  • Jones GM, Cram DS, Song B et al. Gene expression profiling of human oocytes following in vivo or in vitro maturation. Hum. Reprod. 23(5), 1138–1144 (2008).
  • Psychoyos A. Uterine receptivity for nidation. Ann. N. Y. Acad. Sci. 476, 36–42 (1986).
  • Garry R, Hart R, Karthigasu KA, Burke C. A re-appraisal of the morphological changes within the endometrium during menstruation: a hysteroscopic, histological and scanning electron microscopic study. Hum. Reprod. 24(6), 1393–1401 (2009).
  • Aghajanova L, Simón C, Horcajadas JA. Are favorite molecules of endometrial receptivity still in favor? Exp. Rev. Obstet. Gynecol. 2008, 487–501 (2008).
  • Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Fertil. Steril. 1, 3–25 (1950).
  • Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Am. J. Obstet. Gynecol. 122(2), 262–263 (1975).
  • Murray MJ, Meyer WR, Zaino RJ et al. A critical analysis of the accuracy, reproducibility, and clinical utility of histologic endometrial dating in fertile women. Fertil. Steril. 81(5), 1333–1343 (2004).
  • Coutifaris C, Myers ER, Guzick DS et al.; NICHD National Cooperative Reproductive Medicine Network. Histological dating of timed endometrial biopsy tissue is not related to fertility status. Fertil. Steril. 82(5), 1264–1272 (2004).
  • Giudice LC, Saleh W. Growth factors in reproduction. Trends Endocrinol. Metab. 6(2), 60–69 (1995).
  • Develioglu OH, Hsiu JG, Nikas G, Toner JP, Oehninger S, Jones HW Jr. Endometrial estrogen and progesterone receptor and pinopode expression in stimulated cycles of oocyte donors. Fertil. Steril. 71(6), 1040–1047 (1999).
  • Lessey BA, Killam AP, Metzger DA, Haney AF, Greene GL, McCarty KS Jr. Immunohistochemical analysis of human uterine estrogen and progesterone receptors throughout the menstrual cycle. J. Clin. Endocrinol. Metab. 67(2), 334–340 (1988).
  • Dubowy RL, Feinberg RF, Keefe DL et al. Improved endometrial assessment using cyclin E and p27. Fertil. Steril. 80(1), 146–156 (2003).
  • Kliman HJ, Honig S, Walls D, Luna M, McSweet JC, Copperman AB. Optimization of endometrial preparation results in a normal endometrial function test (EFT) and good reproductive outcome in donor ovum recipients. J. Assist. Reprod. Genet. 23(7–8), 299–303 (2006).
  • Schena M, Shalon D, Davis RW, Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235), 467–470 (1995).
  • Martínez-Conejero JA, Simón C, Pellicer A, Horcajadas JA. Is ovarian stimulation detrimental to the endometrium? Reprod. Biomed. Online 15(1), 45–50 (2007).
  • Kao LC, Germeyer A, Tulac S et al. Expression profiling of endometrium from women with endometriosis reveals candidate genes for disease-based implantation failure and infertility. Endocrinology 144(7), 2870–2881 (2003).
  • Abu-Asab M, Zhang M, Amini D, Abu-Asab N, Amri H. Endometriosis gene expression heterogeneity and biosignature: a phylogenetic analysis. Obstet. Gynecol. Int. 2011, 719059 (2011).
  • Sherwin R, Catalano R, Sharkey A. Large-scale gene expression studies of the endometrium: what have we learnt? Reproduction 132(1), 1–10 (2006).
  • Horcajadas JA, Pellicer A, Simón C. Wide genomic analysis of human endometrial receptivity: new times, new opportunities. Hum. Reprod. Update 13(1), 77–86 (2007).
  • Carson DD, Lagow E, Thathiah A et al. Changes in gene expression during the early to mid-luteal (receptive phase) transition in human endometrium detected by high-density microarray screening. Mol. Hum. Reprod. 8(9), 871–879 (2002).
  • Kao LC, Tulac S, Lobo S et al. Global gene profiling in human endometrium during the window of implantation. Endocrinology 143(6), 2119–2138 (2002).
  • Borthwick JM, Charnock-Jones DS, Tom BD et al. Determination of the transcript profile of human endometrium. Mol. Hum. Reprod. 9(1), 19–33 (2003).
  • Riesewijk A, Martín J, van Os R et al. Gene expression profiling of human endometrial receptivity on days LH+2 versus LH+7 by microarray technology. Mol. Hum. Reprod. 9(5), 253–264 (2003).
  • Mirkin S, Arslan M, Churikov D et al. In search of candidate genes critically expressed in the human endometrium during the window of implantation. Hum. Reprod. 20(8), 2104–2117 (2005).
  • Bellver J, Martínez-Conejero JA, Labarta E et al. Endometrial gene expression in the window of implantation is altered in obese women especially in association with polycystic ovary syndrome. Fertil. Steril. 95(7), 2335–2341, 2341.e1 (2011).
  • Díaz-Gimeno P, Horcajadas JA, Martínez-Conejero JA et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil. Steril. 95(1), 50–60, 60.e1 (2011).
  • Díaz-Gimeno P, Martínez-Conejero JA, Garrido N, Pellicer A, Simón C, Horcajadas JA. The Endometrial Receptivity Array (ERA) improves the histological dating and provides an objective method for clinical evaluation of endometrial receptivity. Presented at: American Society of Reproductive Medicine Annual Meeting. San Diego, California, USA, 12–17 October 2010.
  • Huang Z, Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol. Hum. Reprod. 16(10), 715–725 (2010).
  • Fauser BC, Diedrich K, Bouchard P et al. Evian Annual Reproduction (EVAR) Workshop Group 2010. Contemporary genetic technologies and female reproduction. Hum. Reprod. Update 17(6), 829–847 (2011).
  • Haouzi D, Assou S, Mahmoud K et al. LH/hCGR gene expression in human cumulus cells is linked to the expression of the extracellular matrix modifying gene TNFAIP6 and to serum estradiol levels on day of hCG administration. Hum. Reprod. 24(11), 2868–2878 (2009).
  • Assou S, Anahory T, Pantesco V et al. The human cumulus–oocyte complex gene-expression profile. Hum. Reprod. 21(7), 1705–1719 (2006).
  • Assou S, Haouzi D, Mahmoud K et al. A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: a proof of concept study. Mol. Hum. Reprod. 14(12), 711–719 (2008).
  • Assou S, Haouzi D, De Vos J, Hamamah S. Human cumulus cells as biomarkers for embryo and pregnancy outcomes. Mol. Hum. Reprod. 16(8), 531–538 (2010).
  • Cooper TG, Noonan E, von Eckardstein S et al. World Health Organization reference values for human semen characteristics. Hum. Reprod. Update 16(3), 231–245 (2010).
  • Rubio C, Gil-Salom M, Simón C et al. Incidence of sperm chromosomal abnormalities in a risk population: relationship with sperm quality and ICSI outcome. Hum. Reprod. 16(10), 2084–2092 (2001).
  • Maurer B, Simoni M. Y chromosome microdeletion screening in infertile men. J. Endocrinol. Invest. 23(10), 664–670 (2000).
  • Garrido N, Remohí J, Martínez-Conejero JA, García-Herrero S, Pellicer A, Meseguer M. Contribution of sperm molecular features to embryo quality and assisted reproduction success. Reprod. Biomed. Online 17(6), 855–865 (2008).
  • Garrido N, Martínez-Conejero JA, Jauregui J et al. Microarray analysis in sperm from fertile and infertile men without basic sperm analysis abnormalities reveals a significantly different transcriptome. Fertil. Steril. 91(4 Suppl.), 1307–1310 (2009).
  • Wykes SM, Visscher DW, Krawetz SA. Haploid transcripts persist in mature human spermatozoa. Mol. Hum. Reprod. 3(1), 15–19 (1997).
  • Miller D, Briggs D, Snowden H et al. A complex population of RNAs exists in human ejaculate spermatozoa: implications for understanding molecular aspects of spermiogenesis. Gene 237(2), 385–392 (1999).
  • García-Herrero S, Meseguer M, Martínez-Conejero JA, Remohí J, Pellicer A, Garrido N. The transcriptome of spermatozoa used in homologous intrauterine insemination varies considerably between samples that achieve pregnancy and those that do not. Fertil. Steril. 94(4), 1360–1373 (2010).
  • García-Herrero S, Garrido N, Martínez-Conejero JA, Remohí J, Pellicer A, Meseguer M. Differential transcriptomic profile in spermatozoa achieving pregnancy or not via ICSI. Reprod. Biomed. Online 22(1), 25–36 (2011).
  • Hess AP, Hamilton AE, Talbi S et al. Decidual stromal cell response to paracrine signals from the trophoblast: amplification of immune and angiogenic modulators. Biol. Reprod. 76(1), 102–117 (2007).
  • Haouzi D, Dechaud H, Assou S, Monzo C, de Vos J, Hamamah S. Transcriptome analysis reveals dialogues between human trophectoderm and endometrial cells during the implantation period. Hum. Reprod. 26(6), 1440–1449 (2011).
  • Marchand M, Horcajadas JA, Esteban FJ, McElroy SL, Fisher SJ, Giudice LC. Transcriptomic signature of trophoblast differentiation in a human embryonic stem cell model. Biol. Reprod. 84(6), 1258–1271 (2011).
  • Katz-Jaffe MG, McReynolds S, Gardner DK, Schoolcraft WB. The role of proteomics in defining the human embryonic secretome. Mol. Hum. Reprod. 15(5), 271–277 (2009).
  • Katz-Jaffe MG, Gardner DK. Symposium: innovative techniques in human embryo viability assessment. Can proteomics help to shape the future of human assisted conception? Reprod. Biomed. Online 17(4), 497–501 (2008).
  • Hathout Y. Approaches to the study of the cell secretome. Expert Rev. Proteomics 4(2), 239–248 (2007).
  • Katz-Jaffe MG, Linck DW, Schoolcraft WB, Gardner DK. A proteomic analysis of mammalian preimplantation embryonic development. Reproduction 130(6), 899–905 (2005).
  • Scotchie JG, Fritz MA, Mocanu M, Lessey BA, Young SL. Proteomic analysis of the luteal endometrial secretome. Reprod. Sci. 16(9), 883–893 (2009).
  • Dong M, Ding G, Zhou J, Wang H, Zhao Y, Huang H. The effect of trophoblasts on T lymphocytes: possible regulatory effector molecules – a proteomic analysis. Cell. Physiol. Biochem. 21(5–6), 463–472 (2008).
  • Domínguez F, Garrido-Gómez T, López JA et al. Proteomic analysis of the human receptive versus non-receptive endometrium using differential in-gel electrophoresis and MALDI-MS unveils stathmin 1 and annexin A2 as differentially regulated. Hum. Reprod. 24(10), 2607–2617 (2009).
  • Gardner DK, Lane M. Culture of viable human blastocysts in defined sequential serum-free media. Hum. Reprod. 13(Suppl. 3), 148–159; discussion 160 (1998).
  • Gardner DK, Sakkas D. Assessment of embryo viability: the ability to select a single embryo for transfer – a review. Placenta 24(Suppl. B), S5–S12 (2003).
  • Gardner DK, Lane M. Ex vivo early embryo development and effects on gene expression and imprinting. Reprod. Fertil. Dev. 17(3), 361–370 (2005).
  • Conaghan J, Hardy K, Handyside AH, Winston RM, Leese HJ. Selection criteria for human embryo transfer: a comparison of pyruvate uptake and morphology. J. Assist. Reprod. Genet. 10(1), 21–30 (1993).
  • Gardner DK, Lane M, Stevens J, Schoolcraft WB. Noninvasive assessment of human embryo nutrient consumption as a measure of developmental potential. Fertil. Steril. 76(6), 1175–1180 (2001).
  • Houghton FD, Hawkhead JA, Humpherson PG et al. Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum. Reprod. 17(4), 999–1005 (2002).
  • Brison DR, Houghton FD, Falconer D et al. Identification of viable embryos in IVF by non-invasive measurement of amino acid turnover. Hum. Reprod. 19(10), 2319–2324 (2004).
  • Stokes PJ, Hawkhead JA, Fawthrop RK et al. Metabolism of human embryos following cryopreservation: implications for the safety and selection of embryos for transfer in clinical IVF. Hum. Reprod. 22(3), 829–835 (2007).
  • Vergouw CG, Botros LL, Roos P et al. Metabolomic profiling by near-infrared spectroscopy as a tool to assess embryo viability: a novel, non-invasive method for embryo selection. Hum. Reprod. 23(7), 1499–1504 (2008).
  • Scott R, Seli E, Miller K, Sakkas D, Scott K, Burns DH. Noninvasive metabolomic profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: a prospective blinded pilot study. Fertil. Steril. 90(1), 77–83 (2008).
  • Seli E, Sakkas D, Scott R, Kwok SC, Rosendahl SM, Burns DH. Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertil. Steril. 88(5), 1350–1357 (2007).
  • Hardarson T, Ahlström A, Rogberg L et al. Non-invasive metabolomic profiling of day 2 and 5 embryo culture medium: a prospective randomized trial. Hum. Reprod. 27(1), 89–96 (2012).
  • Lindon JC, Nicholson JK, Holmes E. The Handbook of Metabonomics and Metabolomics. Elsevier BV, The Netherlands.
  • Horcajadas JA, Mínguez P, Dopazo J et al. Controlled ovarian stimulation induces a functional genomic delay of the endometrium with potential clinical implications. J. Clin. Endocrinol. Metab. 93(11), 4500–4510 (2008).
  • Aghajanova L, Tatsumi K, Horcajadas JA et al. Unique transcriptome, pathways, and networks in the human endometrial fibroblast response to progesterone in endometriosis. Biol. Reprod. 84(4), 801–815 (2011).
  • Altmäe S, Reimand J, Hovatta O et al. Research resource: interactome of human embryo implantation: identification of gene expression pathways, regulation, and integrated regulatory networks. Mol. Endocrinol. 26(1), 203–217 (2012).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.