32
Views
0
CrossRef citations to date
0
Altmetric
Review

Does structural damage precede functional loss in glaucoma?

, &
Pages 451-462 | Published online: 09 Jan 2014

References

  • Gordon MO, Beiser JA, Brandt JD et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch. Ophthalmol.120(6), 714–720 (2002).
  • Leske MC, Heijl A, Hyman L et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology114(11), 1965–1972 (2007).
  • AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 7. The relationship between control of intraocular pressure and visual field deterioration. Am. J. Ophthalmol.130(4), 490–491 (2000).
  • Musch DC, Gillespie BW, Lichter PR, Niziol LM, Janz NK; CIGTS Study Investigators. Visual field progression in the Collaborative Initial Glaucoma Treatment Study the impact of treatment and other baseline factors. Ophthalmology116(2), 200–207 (2009).
  • Miglior S, Torri V, Zeyen T et al. Intercurrent factors associated with the development of open-angle glaucoma in the European glaucoma prevention study. Am. J. Ophthalmol.144(2), 266–275 (2007).
  • Medeiros FA, Sample PA, Zangwill LM, Bowd C, Aihara M, Weinreb RN. Corneal thickness as a risk factor for visual field loss in patients with preperimetric glaucomatous optic neuropathy. Am. J. Ophthalmol.136(5), 805–813 (2003).
  • Drance S, Anderson DR, Schulzer M. Risk factors for progression of visual field abnormalities in normal-tension glaucoma. Am. J. Ophthalmol.131(6), 699–708 (2001).
  • Doshi A, Singh K. Cost-effective evaluation of the glaucoma suspect. Curr. Opin. Ophthalmol.18(2), 97–103 (2007).
  • Parrish RK II, Gedde SJ, Scott IU et al. Visual function and quality of life among patients with glaucoma. Arch. Ophthalmol.115(11), 1447–1455 (1997).
  • McKean-Cowdin R, Wang Y, Wu J, Azen SP, Varma R; Los Angeles Latino Eye Study Group. Impact of visual field loss on health-related quality of life in glaucoma: the Los Angeles Latino Eye Study. Ophthalmology115(6), 941–948 (2008).
  • Weinreb RN, Greve EL (Eds). Glaucoma Diagnosis: Structure and Function. Kugler Publications, Amsterdam, The Netherlands (2004).
  • Gupta N, Greenberg G, de Tilly LN, Gray B, Polemidiotis M, Yücel YH. Atrophy of the lateral geniculate nucleus in human glaucoma detected by magnetic resonance imaging. Br. J. Ophthalmol.93(1), 56–60 (2009).
  • Yücel Y, Gupta N. Glaucoma of the brain: a disease model for the study of transsynaptic neural degeneration. Prog. Brain Res.173, 465–478 (2008).
  • Kupfer C, Ross K. The development of outflow facility in human eyes. Invest. Ophthalmol.10(7), 513–517 (1971).
  • Johnstone MA, Grant WG. Pressure-dependent changes in structures of the aqueous outflow system of human and monkey eyes. Am. J. Ophthalmol.75(3), 365–383 (1973).
  • Knox DL, Eagle RC Jr, Green WR. Optic nerve hydropic axonal degeneration and blocked retrograde axoplasmic transport: histopathologic features in human high-pressure secondary glaucoma. Arch. Ophthalmol.125(3), 347–353 (2007).
  • Yang H, Downs JC, Sigal IA, Roberts MD, Thompson H, Burgoyne CF. Deformation of the normal monkey optic nerve head connective tissue after acute IOP elevation within 3-D histomorphometric reconstructions. Invest. Ophthalmol. Vis. Sci.50(12), 5785–5799 (2009).
  • Liu Q, Ju WK, Crowston JG et al. Oxidative stress is an early event in hydrostatic pressure induced retinal ganglion cell damage. Invest. Ophthalmol. Vis. Sci.48(10), 4580–4589 (2007).
  • Tezel G, Yang X, Luo C, Peng Y, Sun SL, Sun D. Mechanisms of immune system activation in glaucoma: oxidative stress-stimulated antigen presentation by the retina and optic nerve head glia. Invest. Ophthalmol. Vis. Sci.48(2), 705–714 (2007).
  • Wax MB, Tezel G. Immunoregulation of retinal ganglion cell fate in glaucoma. Exp. Eye Res.88(4), 825–830 (2009).
  • Van Buskirk EM, Cioffi GA. Glaucomatous optic neuropathy. Am. J. Ophthalmol.113(4), 447–452 (1992).
  • Susanna R Jr, Vessani RM. New findings in the evaluation of the optic disc in glaucoma diagnosis. Curr. Opin. Ophthalmol.18(2), 122–128 (2007).
  • Bathija R, Zangwill L, Berry CC, Sample PA, Weinreb RN. Detection of early glaucomatous structural damage with confocal scanning laser tomography. J. Glaucoma7(2), 121–127 (1998).
  • Weinreb RN, Zangwill L, Berry CC, Bathija R, Sample PA. Detection of glaucoma with scanning laser polarimetry. Arch. Ophthalmol.116(12), 1583–1589 (1998).
  • Schuman JS, Hee MR, Arya AV et al. Optical coherence tomography: a new tool for glaucoma diagnosis. Curr. Opin. Ophthalmol.6(2), 89–95 (1995).
  • Quigley HA, Flower RW, Addicks EM, McLeod DS. The mechanism of optic nerve damage in experimental acute intraocular pressure elevation. Invest. Ophthalmol. Vis. Sci.19(5), 505–517 (1980).
  • Quigley HA, Addicks EM. Quantitative studies of retinal nerve fiber layer defects. Arch. Ophthalmol.100(5), 807–814 (1982).
  • Quigley HA, Miller NR, George T. Clinical evaluation of nerve fiber layer atrophy as an indicator of glaucomatous optic nerve damage. Arch. Ophthalmol.98(9), 1564–1571 (1980).
  • Sommer A, Quigley HA, Robin AL, Miller NR, Katz J, Arkell S. Evaluation of nerve fiber layer assessment. Arch. Ophthalmol.102(12), 1766–1771 (1984).
  • Quigley HA, Miller NR, George T. Clinical evaluation of nerve fiber layer atrophy as an indicator of glaucomatous optic nerve damage. Arch. Ophthalmol.98(9), 1564–1571 (1980).
  • Tuulonen A, Lehtola J, Airaksinen PJ. Nerve fiber layer defects with normal visual fields. Do normal optic disc and normal visual field indicate absence of glaucomatous abnormality? Ophthalmology100(5), 587–597 (1993).
  • Miglior S, Zeyen T, Pfeiffer N et al. Results of the European Glaucoma Prevention Study. Ophthalmology112(3), 366–375 (2005).
  • Johnson CA, Sample PA, Cioffi GA, Liebmann JR, Weinreb RN. Structure and function evaluation (SAFE): I. Criteria for glaucomatous visual field loss using standard automated perimetry (SAP) and short wavelength automated perimetry (SWAP). Am. J. Ophthalmol.134(2), 177–185 (2002).
  • Wall M, Johnson CA, Kardon RH, Crabb DP. Use of a continuous probability scale to display visual field damage. Arch. Ophthalmol.127(6), 749–756 (2009).
  • Anderson DR, Patella VM. Automated Static Perimetry (2nd Edition). Mosby Inc., St Louis, MO, USA (1999).
  • Susanna R Jr, Vessani RM. Staging glaucoma patient: why and how? Open Ophthalmol. J.3, 59–64 (2009).
  • Johnson CA. Diagnostic value of short-wavelength automated perimetry. Curr. Opin. Ophthalmol.7(2), 54–58 (1996).
  • Hart WM Jr, Hartz RK, Hagen RW, Clark KW. Color contrast perimetry. Invest. Ophthalmol. Vis. Sci.25(4), 400–413 (1984).
  • Hart WM Jr, Gordon MO. Color perimetry of glaucomatous visual field defects. Ophthalmology91(4), 338–346 (1984).
  • Sample PA. Short-wavelength automated perimetry: its role in the clinic and for understanding ganglion cell function. Prog. Retin. Eye Res.19(4), 369–383 (2000).
  • Johnson CA, Adams AJ, Casson EJ, Brandt JD. Blue-on-yellow perimetry can predict the development of glaucomatous visual field loss. Arch. Ophthalmol.111(5), 645–650 (1993).
  • Sit AJ, Medeiros FA, Weinreb RN. Short-wavelength automated perimetry can predict glaucomatous standard visual field loss by ten years. Semin. Ophthalmol.19(3–4), 122–124 (2004).
  • Johnson CA, Sample PA, Zangwill LM et al. Structure and function evaluation (SAFE): II. Comparison of optic disk and visual field characteristics. Am. J. Ophthalmol.135(2), 148–154 (2003).
  • Van der Schoot J, Reus NJ, Colen TP, Lemij HG. The ability of short-wavelength automated perimetry to predict conversion to glaucoma. Ophthalmology117(1), 30–34 (2010).
  • Ferreras A, Polo V, Larrosa JM et al. Can frequency-doubling technology and short-wavelength automated perimetries detect visual field defects before standard automated perimetry in patients with preperimetric glaucoma? J. Glaucoma16(4), 372–383 (2007).
  • Sample PA, Bosworth CF, Blumenthal EZ, Girkin C, Weinreb RN. Visual function-specific perimetry for indirect comparison of different ganglion cell populations in glaucoma. Invest. Ophthalmol. Vis. Sci.41(7), 1783–1790 (2000).
  • Johnson CA, Samuels SJ. Screening for glaucomatous visual field loss with frequency-doubling perimetry. Invest. Ophthalmol. Vis. Sci.38(2), 413–425 (1997).
  • Landers JA, Goldberg I, Graham SL. Detection of early visual field loss in glaucoma using frequency-doubling perimetry and short-wavelength automated perimetry. Arch. Ophthalmol.121(12), 1705–1710 (2003).
  • Landers JA, Goldberg I, Graham SL. Comparison of clinical optic disc assessment with tests of early visual field loss. Clin. Experiment. Ophthalmol.30(5), 338–342 (2002).
  • Clement CI, Goldberg I, Healey PR, Graham S. Humphrey matrix frequency doubling perimetry for detection of visual-field defects in open-angle glaucoma. Br. J. Ophthalmol.93(5), 582–588 (2009).
  • Racette L, Medeiros FA, Zangwill LM, Ng D, Weinreb RN, Sample PA. Diagnostic accuracy of the Matrix 24-22 and original N-30 frequency-doubling technology tests compared with standard automated perimetry. Invest. Ophthalmol. Vis. Sci.49(3), 954–960 (2008).
  • Kim TW, Zangwill LM, Bowd C, Sample PA, Shah N, Weinreb RN. Retinal nerve fiber layer damage as assessed by optical coherence tomography in eyes with a visual field defect detected by frequency doubling technology perimetry but not by standard automated perimetry. Ophthalmology114(6), 1053–1057 (2007).
  • Hood DC, Ritch R. Use of the multifocal visual evoked potential in glaucoma. In: Pearls of Glaucoma Management. Giaconi JA, Law SK, Coleman AL, Caprioli J (Eds). Springer-Verlag, Heidelberg, Germany (2009).
  • Baseler HA, Sutter EE, Klein SA et al. The topography of visual evoked response properties across the visual field. Electroenceph. Clin. Neurophysiol.90(1), 65–81 (1994).
  • Klistorner AI, Graham SL, Grigg JR et al. Multifocal topographic visual evoked potential: improving objective detection of local visual field defects. Invest. Ophthalmol. Vis. Sci.39(6), 937–950 (1998).
  • Hood DC, Greenstein VC. Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma. Prog. Retin. Eye Res.22(2), 201–251 (2003).
  • Klistorner A, Graham SL. Objective perimetry in glaucoma. Ophthalmology107(12), 2283–2299 (2000).
  • Graham SL, Klistorner AI, Goldberg I. Clinical application of objective perimetry using multifocal visual evoked potentials in glaucoma practice. Arch. Ophthalmol.123(6), 729–739 (2005).
  • Thienprasiddhi P, Greenstein VC, Chu DH et al. Detecting early functional damage in glaucoma suspect and ocular hypertensive patients with the multifocal VEP technique. J. Glaucoma15(4), 321–327 (2006).
  • Thienprasiddhi P, Greenstein VC, Chen CS et al. Multifocal visual evoked potential responses in glaucoma patients with unilateral hemifield defects. Am. J. Ophthalmol.136(1), 34–40 (2003).
  • Hayreh SS. Optic disc changes in glaucoma. Br. J. Ophthalmol.56(3), 175–185 (1972).
  • Kottler MS, Drance SM, Schulzer M. Simultaneous stereophotography. Its value in clinical assessment of the topography of the optic cup. Can. J. Ophthalmol.10(4), 453–457 (1975).
  • Hoyt WF, Schlicke B, Eckelhoff RJ. Fundoscopic appearance of a nerve-fibre-bundle defect. Br. J. Ophthalmol.56(8), 577–583 (1972).
  • Airaksinen PJ, Alanko HI. Effect of retinal nerve fibre loss on the optic nerve head configuration in early glaucoma. Graefes Arch. Clin. Exp. Ophthalmol.220(4), 193–196 (1983).
  • Tuulonen A, Lehtola J, Airaksinen PJ. Nerve fiber layer defects with normal visual fields. Do normal optic disc and normal visual field indicate absence of glaucomatous abnormality? Ophthalmology100(5), 587–597 (1993).
  • Zeyen T, Miglior S, Pfeiffer N, Cunha-Vaz J, Adamsons I; European Glaucoma Prevention Study Group. Reproducibility of evaluation of optic disc change for glaucoma with stereo optic disc photographs. Ophthalmology110(2), 340–344 (2003).
  • Susanna R, Medeiros FA. The Optic Nerve in Glaucoma (2nd Edition). Cultura Medica, Rio de Janeiro, Brazil (2006).
  • Read RM, Spaeth GL. The practical clinical appraisal of the optic disc in glaucoma: the natural history of cup progression and some specific disc-field correlations. Trans. Am. Acad. Ophthalmol. Otolaryngol.78(2), 255–274 (1974).
  • Drance SM. Correlation between optic disc changes and visual field defects in chronic open-angle glaucoma. Trans. Sect. Ophthalmol. Am. Acad. Ophthalmol. Otolaryngol.81(2), 224–226 (1976).
  • Hoskins HD Jr, Gelber EC. Optic disk topography and visual field defects in patients with increased intraocular pressure. Am. J. Ophthalmol.80(2), 284–290 (1975).
  • Susanna R, Drance SM. Use of discriminant analysis I. Prediction of visual field defects from features of the glaucoma disc. Arch. Ophthalmol.96(9), 1568–1570 (1978).
  • Jonas JB, Martus P, Budde WM, Jünemann A, Hayler J. Small neuroretinal rim and large parapapillary atrophy as predictive factors for progression of glaucomatous optic neuropathy. Ophthalmology109(8), 1561–1567 (2002).
  • Jonas JB, Martus P, Horn FK, Jünemann A, Korth M, Budde WM. Predictive factors of the optic nerve head for development or progression of glaucomatous visual field loss. Invest. Ophthalmol. Vis. Sci.45(8), 2613–2618 (2004).
  • Medeiros FA, Alencar LM, Zangwill LM, Bowd C, Sample PA, Weinreb RN. Prediction of functional loss in glaucoma from progressive optic disc damage. Arch. Ophthalmol.127(10), 1250–1256 (2009).
  • Iester M, Broadway DC, Mikelberg FS, Drance SM. A comparison of healthy, ocular hypertensive, and glaucomatous optic disc topographic parameters. J. Glaucoma6(6), 363–370 (1997).
  • Oddone F, Centofanti M, Rossetti L et al. Exploring the Heidelberg Retinal Tomograph 3 diagnostic accuracy across disc sizes and glaucoma stages: a multicenter study. Ophthalmology115(8), 1358–1365 (2008).
  • Weinreb RN, Shakiba S, Sample PA et al. Association between quantitative nerve fiber layer measurement and visual field loss in glaucoma. Am. J. Ophthalmol.120(6), 732–738 (1995).
  • Mistlberger A, Liebmann JM, Greenfield DS et al. Heidelberg retina tomography and optical coherence tomography in normal, ocular-hypertensive, and glaucomatous eyes. Ophthalmology106(10), 2027–2032 (1999).
  • Bathija R, Zangwill L, Berry CC, Sample PA, Weinreb RN. Detection of early glaucomatous structural damage with confocal scanning laser tomography. J. Glaucoma7(2), 121–127 (1998).
  • Wollstein G, Garway-Heath DF, Fontana L, Hitchings RA. Identifying early glaucomatous changes. Comparison between expert clinical assessment of optic disc photographs and confocal scanning ophthalmoscopy. Ophthalmology107(12), 2272–2277 (2000).
  • Bowd C, Zangwill LM, Medeiros FA et al. Confocal scanning laser ophthalmoscopy classifiers and stereophotograph evaluation for prediction of visual field abnormalities in glaucoma-suspect eyes. Invest. Ophthalmol. Vis. Sci.45(7), 2255–2262 (2004).
  • Huang XR, Knighton RW. Microtubules contribute to the birefringence of the retinal nerve fiber layer. Invest. Ophthalmol. Vis. Sci.46(12), 4588–4593 (2005).
  • Holló G, Szabó A, Vargha P. Scanning laser polarimetry versus frequency-doubling perimetry and conventional threshold perimetry: changes during a 12-month follow-up in preperimetric glaucoma. A pilot study. Acta Ophthalmol. Scand.79(4), 403–407 (2001).
  • Susanna R Jr, Galvão-Filho RP. Study of the contralateral eye in patients with glaucoma and a unilateral perimetric defect. J. Glaucoma9(1), 34–37 (2000).
  • Kook MS, Sung K, Kim S, Park R, Kang W. Study of retinal nerve fibre layer thickness in eyes with high tension glaucoma and hemifield defect. Br. J. Ophthalmol.85(10), 1167–1170 (2001).
  • Gunvant P, Zheng Y, Essock EA et al. Predicting subsequent visual field loss in glaucomatous subjects with disc hemorrhage using retinal nerve fiber layer polarimetry. J. Glaucoma14(1), 20–25 (2005).
  • Reus NJ, Lemij HG. The relationship between standard automated perimetry and GDx VCC measurements. Invest. Ophthalmol. Vis. Sci.45(3), 840–845 (2004).
  • Lalezary M, Medeiros FA, Weinreb RN et al. Baseline optical coherence tomography predicts the development of glaucomatous change in glaucoma suspects. Am. J. Ophthalmol.142(4), 576–582 (2006).
  • Medeiros FA, Vizzeri G, Zangwill LM, Alencar LM, Sample PA, Weinreb RN. Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease. Ophthalmology115(8), 1340–1346 (2008).
  • Medeiros FA, Zangwill LM, Alencar LM et al. Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements. Invest. Ophthalmol. Vis. Sci.50(12), 5741–5748 (2009).
  • Lee EJ, Kim TW, Park KH, Seong M, Kim H, Kim DM. Ability of Stratus OCT to detect progressive retinal nerve fiber layer atrophy in glaucoma. Invest. Ophthalmol. Vis. Sci.50(2), 662–668 (2009).
  • Bowd C, Zangwill LM, Medeiros FA et al. Structure–function relationships using confocal scanning laser ophthalmoscopy, optical coherence tomography, and scanning laser polarimetry. Invest. Ophthalmol. Vis. Sci.47(7), 2889–2895 (2006).
  • Zangwill LM, Williams J, Berry CC, Knauer S, Weinreb RN. A comparison of optical coherence tomography and retinal nerve fiber layer photography for detection of nerve fiber layer damage in glaucoma. Ophthalmology107(7), 1309–1315 (2000).
  • Medeiros FA, Moura FC, Vessani RM, Susanna R Jr. Axonal loss after traumatic optic neuropathy documented by optical coherence tomography. Am. J. Ophthalmol.135(3), 406–408 (2003).
  • Kim JS, Ishikawa H, Sung KR et al. Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography. Br. J. Ophthalmol.93(8), 1057–1063 (2009).
  • Tan O, Chopra V, Lu AT et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology116(12), 2305–2314 (2009).
  • Wang M, Hood DC, Cho JS et al. Measurement of local retinal ganglion cell layer thickness in patients with glaucoma using frequency-domain optical coherence tomography. Arch. Ophthalmol.127(7), 875–881 (2009).
  • Kim JS, Ishikawa H, Gabriele ML et al. Retinal nerve fiber layer thickness measurement comparability between time domain optical coherence tomography (OCT) and spectral domain OCT. Invest. Ophthalmol. Vis. Sci.51(2), 896–902 (2010).
  • Sehi M, Grewal DS, Sheets CW, Greenfield DS. Diagnostic ability of Fourier-domain vs time-domain optical coherence tomography for glaucoma detection. Am. J. Ophthalmol.148(4), 597–605 (2009).
  • Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology107(10), 1809–1815 (2000).
  • Kanamori A, Naka M, Nagai-Kusuhara A, Yamada Y, Nakamura M, Negi A. Regional relationship between retinal nerve fiber layer thickness and corresponding visual field sensitivity in glaucomatous eyes. Arch. Ophthalmol.126(11), 1500–1506 (2008).
  • Ferreras A, Pablo LE, Garway-Heath DF, Fogagnolo P, García-Feijoo J. Mapping standard automated perimetry to the peripapillary retinal nerve fiber layer in glaucoma. Invest. Ophthalmol. Vis. Sci.49(7), 3018–3025 (2008).
  • Turpin A, Sampson GP, McKendrick AM. Combining ganglion cell topology and data of patients with glaucoma to determine a structure–function map. Invest. Ophthalmol. Vis. Sci.50(7), 3249–3256 (2009).
  • Galvão Filho RP, Vessani RM, Susanna R Jr. Comparison of retinal nerve fibre layer thickness and visual field loss between different glaucoma groups. Br. J. Ophthalmol.89(8), 1004–1007 (2005).
  • Reus NJ, Lemij HG. Relationships between standard automated perimetry, HRT confocal scanning laser ophthalmoscopy, and GDx VCC scanning laser polarimetry. Invest. Ophthalmol. Vis. Sci.46(11), 4182–4188 (2005).
  • Hood DC, Kardon RH. A framework for comparing structural and functional measures of glaucomatous damage. Prog. Retin. Eye Res.26(6), 688–710 (2007).
  • Hood DC, Anderson SC, Wall M, Raza AS, Kardon RH. A test of a linear model of glaucomatous structure–function loss reveals sources of variability in retinal nerve fiber and visual field measurements. Invest. Ophthalmol. Vis. Sci.50(9), 4254–4266 (2009).
  • Chauhan BC, Nicolela MT, Artes PH. Incidence and rates of visual field progression after longitudinally measured optic disc change in glaucoma. Ophthalmology116(11), 2110–2118 (2009).
  • Budenz DL, Anderson DR, Feuer WJ et al. Detection and prognostic significance of optic disc hemorrhages during the Ocular Hypertension Treatment Study. Ophthalmology113(12), 2137–2143 (2006).
  • Bengtsson B, Leske MC, Yang Z, Heijl A; EMGT Group. Disc hemorrhages and treatment in the early manifest glaucoma trial. Ophthalmology115(11), 2044–2048 (2008).
  • De Moraes CG, Prata TS, Liebmann CA, Tello C, Ritch R, Liebmann JM. Spatially consistent, localized visual field loss before and after disc hemorrhage. Invest. Ophthalmol. Vis. Sci.50(10), 4727–4733 (2009).
  • Teng CC, De Moraes CG, Prata TS, Tello C, Ritch R, Liebmann JM. β-zone parapapillary atrophy and the velocity of glaucoma progression. Ophthalmology117(5), 909–915 (2010).
  • Jampel HD, Friedman D, Quigley H et al. Agreement among glaucoma specialists in assessing progressive disc changes from photographs in open-angle glaucoma patients. Am. J. Ophthalmol.147(1), 39–44 (2009).
  • Torti C, Povazay B, Hofer B et al. Adaptive optics optical coherence tomography at 120,000 depth scans/s for non-invasive cellular phenotyping of the living human retina. Opt. Express17(22), 19382–19400 (2009).
  • Leung CK, Weinreb RN. Experimental detection of retinal ganglion cell damage in vivo. Exp. Eye Res.88(4), 831–836 (2009).
  • Tosi J, Wang NK, Zhao J et al. Rapid and noninvasive imaging of retinal ganglion cells in live mouse models of glaucoma. Mol. Imaging Biol. DOI: 10.1007/s11307-009-0292-2 (2009) (Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.