42
Views
7
CrossRef citations to date
0
Altmetric
Review

New concepts for reconstruction of retinal and pigment epithelial tissues

, &
Pages 523-543 | Published online: 09 Jan 2014

References

  • Jaenisch R. Stem cells, pluripotency and nuclear reprogramming. J. Thromb. Haemost.7(Suppl. 1), 21–23 (2009).
  • Müller R, Lengerke C. Patient-specific pluripotent stem cells: promises and challenges. Nat. Rev. Endocrinol.5, 195–203 (2009).
  • Atala A, Lanza R, Thomson J, Nerem R. Principles of Regenerative Medicine. Academic Press, UT, USA (2009).
  • Southwell DG, Froemke RC, Alvarez-Buylla A et al. Cortical plasticity induced by inhibitory neuron transplantation. Science327, 1145–1148 (2010).
  • Kuhn NZ, Tuan RS. Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J. Cell Physiol.222, 268–277 (2010).
  • Peyman GA, Koziol J. Age-related macular degeneration and its management. J. Cataract Refract. Surg.14, 421–430 (1988).
  • Katta S, Kaur I, Chakrabarti S. The molecular genetic basis of age-related macular degeneration: an overview. J. Genet.88, 425–449 (2009).
  • Bressler NM. Antiangiogenic approaches to age-related macular degeneration today. Ophthalmology116(10 Suppl.), S15–S23 (2009).
  • Molday RS, Zhong M, Quazi F. The role of the photoreceptor ABC transporter ABCA4 in lipid transport and Stargardt macular degeneration. Biochim. Biophys. Acta1791, 573–583 (2009).
  • Boon CJ, den Hollander AI, Hoyng CB et al. The spectrum of retinal dystrophies caused by mutations in the peripherin/RDS gene. Prog. Retin. Eye Res.27, 213–235 (2008).
  • Simonelli F, Maguire AM, Testa F et al. Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol. Ther.18, 643–650 (2010).
  • Amato MA, Arnault E, Perron M. Retinal stem cells in vertebrates: parallels and divergences. Int. J. Dev. Biol.48, 993–1001 (2004).
  • Hyer J, Kuhlman J, Afif E, Mikawa T. Optic cup morphogenesis requires pre-lens ectoderm but not lens differentiation. Dev. Biol.259, 351–363 (2003).
  • Das AV, Mallya KB, Zhao X et al. Neural stem cell properties of Müller glia in the mammalian retina: regulation by Notch and Wnt signaling. Dev. Biol.299, 283–302 (2006).
  • Reh TA, Fischer AJ. Retinal stem cells. Methods Enzymol.419, 52–73 (2006).
  • Bernardos RL, Barthel LK, Meyers JR, Raymond PA. Late-stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells. J. Neurosci.27, 7028–7040 (2007).
  • Bhatia B, Singhal S, Jayaram H et al. Adult retinal stem cells revisited. Bentham Open Ophthalmol. J. (2010) (In Press).
  • Besch D, Sachs H, Szurman P et al. Extraocular surgery for implantation of an active subretinal visual prosthesis with external connections: feasibility and outcome in seven patients. Br. J. Ophthalmol.92, 1361–1368 (2008).
  • Strauss O. The retinal pigment epithelium in visual function. Physiol. Rev.85, 845–881 (2005).
  • Adler R, Canto-Soler MV. Molecular mechanisms of optic vesicle development: complexities, ambiguities and controversies. Dev. Biol.305, 1–13 (2007).
  • Clegg DO, Buchholz D, Hikita S et al. Retinal pigment epithelial cells: development in vivo and derivation from human embryonic stem cells in vitro for treatment of age-related macular degeneration. Stem Cell Res. Therap. Shi Y, Clegg DO (Eds). Springer Science, NY, USA, 1–24 (2008).
  • Hilfer SR. Development of the eye of the chick embryo. Scan. Electron Microsc.1983(Pt 3), 1353–1369 (1983).
  • Chow RL, Lang RA. Early eye development in vertebrates. Ann. Rev. Cell Dev. Biol.17, 255–296 (2001).
  • Zhang XM, Yang XJ. Temporal and spatial effects of Sonic hedgehog signaling in chick eye morphogenesis. Dev. Biol.233, 271–290 (2001).
  • Take-uchi M, Clarke JD, Wilson SW. Hedgehog signaling maintains the optic stalk-retinal interface through the regulation of Vax gene activity. Development130, 955–968 (2003).
  • Perron M, Boy S, Amato MA et al. A novel function for Hedgehog signaling in retinal pigment epithelium differentiation. Development130, 1565–1577 (2003).
  • Dakubo GD, Mazerolle C, Furimsky M et al. Indian hedgehog signaling from endothelial cells is required for sclera and retinal pigment epithelium development in the mouse eye. Dev. Biol.320, 242–255 (2008).
  • Fuhrmann S, Levine EM, Reh T. Extraocular mesenchyme patterns the optic vesicle during early eye development in the embryonic chick. Development127, 4599–4609 (2000).
  • Müller F, Rohrer H, Vogel-Höpker A. Bone morphogenetic proteins specify the retinal pigment epithelium in the chick embryo. Development134, 3483–3493 (2007).
  • Rojas-Muñoz A, Dahm R, Nüsslein-Volhard C. Chokh/rx3 specifies the retinal pigment epithelium fate independently of eye morphogenesis. Dev. Biol.288, 348–362 (2005).
  • Kagiyama Y, Gotouda N, Sakagami K et al. Extraocular dorsal signal affects the developmental fate of the optic vesicle and patterns the optic neuroepithelium. Dev. Growth Differ.47, 523–536 (2005).
  • Evans AL, Gage PJ. Expression of the homeobox gene Pitx2 in neural crest is required for optic stalk and ocular anterior segment development. Hum. Mol. Genet.14(22), 3347–3359 (2005).
  • Fuji J, Wakasugi N. Transdifferentiation from retinal pigment epithelium (RPE) into neural retina due to silver plumage mutant gene in Japanese quail. Dev. Growth Differ.35, 487–493 (1993).
  • Araki M, Yamao M, Tudzuki M. Early embryonic interaction of retinal pigment epithelium and mesenchymal tissue induces conversion of pigment epithelium to neural retinal fate in the silver mutation of the Japanese quail. Dev. Growth Differ.40, 167–176 (1998).
  • Araki M, Takano T, Uemonsa T et al. Epithelia–mesenchyme interaction plays an essential role in transdifferentiation of retinal pigment epithelium of silver mutant quail: localization of FGF and related molecules and aberrant migration pattern of neural crest cells during eye rudiment formation. Dev. Biol.244, 358–371 (2002).
  • Uemonsa T, Sakagami K, Yasuda K, Araki M. Development of dorsal-ventral polarity in the optic vesicle and its presumptive role in eye morphogenesis as shown by embryonic transplantation and in ovo explant culturing. Dev. Biol.248, 319–330 (2002).
  • Kobayashi T, Yasuda K, Araki M. Coordinated regulation of dorsal BMP4 and ventral Shh signaling specifies the dorso–ventral polarity in the optic vesicle and governs ocular morphogenesis through FGF8 upregulation. Dev. Growth Differ.52(4), 351–363 (2010).
  • Horsford DJ, Nguyen MT, Sellar GC et al.Chx10 repression of Mitf is required for the maintenance of mammalian neuroretinal identity. Development132, 177–187 (2005).
  • Rowan S, Chen A, Young TL et al. Transdifferentiation of the retina into pigmented cells in ocular retardation mice defines a new function of the homeodomain gene Chx10.Development131, 5139–5152 (2004).
  • Bharti K, Liu W, Csermely T et al. Alternative promoter use in eye development: the complex role and regulation of the transcription factor MITF. Development135, 1169–1178 (2008).
  • Minvielle F, Bed’hom B, Coville JL et al. The ‘silver’ Japanese quail and the MITF gene: causal mutation, associated traits and homology with the ‘blue’ chicken plumage. BMC Genet.11, 15 (2010).
  • Hyer J, Mima T, Mikawa T. FGF-1 patterns the optic vesicle by directing the placement of the neural retina domain. Development125, 869–877 (1998).
  • Nguyen MT, Arnheiter H. Signaling and transcriptional regulation in early mammalian eye development: a link between FGF and MITF. Development127, 3581–3591 (2000).
  • Guillemot F, Cepko CL. Retinal fate and ganglion cell differentiation are potentiated by acidic FGF in an in vitro assay of early retinal development. Development114, 743–754 (1992).
  • Galy A, Néron B, Planque N et al. Activated MAPK/ERK kinase (MEK-1) induces transdifferentiation of pigmented epithelium into neural retina. Dev. Biol.248, 251–264 (2002).
  • Vogel-Höpker A, Momose T, Rohrer H et al. Multiple functions of fibroblast growth factor-8 (FGF-8) in chick eye development. Mech. Dev.94, 25–36 (2000).
  • Park CM, Hollenberg MJ. Induction of retinal regeneration in vivo by growth factors. Dev. Biol.148, 322–333 (1991).
  • Pittack CB, Grunwald GB, Reh TA. Fibroblast growth factors are necessary for neural retina but not pigmented epithelium differentiation in chick embryo. Development124, 805–816 (1997).
  • Zhao S, Hung FC, Colvin JS et al. Patterning the optic neuroepithelium by FGF signaling and Ras activation. Development128, 5051–5060 (2001).
  • Murali D, Yoshikawa S, Corrigan RR et al. Distinct developmental programs require different levels of BMP signaling during mouse retinal development. Development132, 913–923 (2005).
  • Haynes T, Gutierrez C, Aycinena JC et al. BMP signaling mediates stem/progenitor cell-induced retina regeneration. Proc. Natl Acad. Sci. USA104, 20380–20385 (2007).
  • Belecky-Adams TL, Adler R, Beebe DC. Bone morphogenetic protein signaling and the initiation of lens fiber cell differentiation. Development129, 3795–3802 (2002).
  • Sakai D, Tanaka Y, Endo Y et al. Regulation of Slug transcription in embryonic ectoderm by β-catenin–Lef/Tcf and BMP–Smad signaling. Dev. Growth Differ.47, 471–482 (2005).
  • Ohkubo Y, Chiang C, Rubenstein JLR. Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles. Neuroscience111, 1–17 (2002).
  • Zhao S, Thornquist SC, Barnstable CJ. In vitro transdifferentiation of embryonic rat retinal pigment epithelium to neural retina. Brain Res.677, 300–310 (1995).
  • Azuma N, Tadokoro K, Asaka A et al. Transdifferentiation of the retinal pigment epithelia to the neural retina by transfer of the Pax6 transcriptional factor. Hum. Mol. Genet.14, 1059–1068 (2005).
  • Moshiri A, Close J, Reh TA. Retinal stem cells and regeneration. Int. J. Dev. Biol.48, 1003–1014 (2004).
  • Fuhrmann S. Wnt signaling in eye organogenesis. Organogenesis4, 60–67 (2009).
  • Kreslova J, Machon O, Ruzickova J et al. Abnormal lens morphogenesis and ectopic lens formation in the absence of β-catenin function. Genesis45, 157–168 (2007).
  • Liu H, Thurig S, Mohamed O et al. Mapping canonical Wnt signaling in the developing and adult retina. Invest. Ophthalmol. Vis. Sci.47, 5088–5097 (2006).
  • Liu H, Xu S, Wang Y et al. Ciliary margin transdifferentiation from neural retina is controlled by canonical Wnt signaling. Dev. Biol.308, 54–67 (2007).
  • Maretto S, Cordenonsi M, Dupont S et al. Mapping Wnt/β-catenin signaling during mouse development and in colorectal tumors. Proc. Natl Acad. Sci. USA100, 3299–3304 (2003).
  • Miller LA, Smith AN, Taketo MM, Lang RA. Optic cup and facial patterning defects in ocular ectoderm β-catenin gain-of-function mice. BMC Dev. Biol.6, 14 (2006).
  • Fujimura N, Taketo MM, Mori M et al. Spatial and temporal regulation of Wnt/β-catenin signaling is essential for development of the retinal pigment epithelium. Dev. Biol.334(1), 31–45 (2009).
  • Westenskow P, Piccolo S, Fuhrmann S. β-catenin controls differentiation of the retinal pigment epithelium in the mouse optic cup by regulating Mitf and Otx2 expression. Development136, 2505–2510 (2009).
  • Cho SH, Cepko CL. Wnt2b/β-catenin-mediated canonical Wnt signaling determines the peripheral fates of the chick eye. Development133, 3167–3177 (2006).
  • Fu X, Sun H, Klein WH, Mu X. β-catenin is essential for lamination but not neurogenesis in mouse retinal development. Dev. Biol.299, 424–437 (2006).
  • Okada TS. Transdifferentiation. Oxford University Press, NY, USA (1991).
  • Raymond PA, Reifler MJ, Rivlin PK. Regeneration of goldfish retina: rod precursors are a likely source of regenerated cells. J. Neurobiol.19, 431–463 (1988).
  • Del Rio-Tsonis K, Tsonis PA. Eye regeneration at the molecular age. Dev. Dyn.226, 211–224 (2003).
  • Araki M. Regeneration of the amphibian retina. Role of tissue interaction and related signaling molecules on the transdifferentiation. Dev. Growth Differ.49, 109–120 (2007).
  • Araki M. A comparative study of amphibian retinal regeneration by tissue culture technology – a review. In: Strategies of Retinal Tissue Repair and Regeneration in Vertebrates: From Fish to Human. Chiba C (Ed.). Research Signpost, Kerala, India, 77–95 (2007).
  • Zhou Y, Opas M. Cell shape, intracellular pH, and fibroblast growth factor responsiveness during transdifferentiation of retinal pigment epithelium into neuroepithelium in vitro.Biochem. Cell Biol.72, 257–265 (1994).
  • Wetts R, Serbedzija GN, Fraser SE. Cell lineage analysis reveals multipotent precursors in the ciliary margin of the frog retina. Dev. Biol.136, 254–263 (1989).
  • Burke JM, McKay BS, Jaffe GJ. Retinal pigment epithelial cells of the posterior pole have fewer Na/K adenosine triphosphatase pumps than peripheral cells. Invest. Ophthalmol. Vis. Sci.32, 2042–2046 (1991).
  • Perron M, Harris WA. Retinal stem cells in vertebrates. BioEssays22, 685–688 (2000).
  • Hitchcock PF, Raymond PA. Retinal regeneration. Trends Neurosci.15, 103–108 (1992).
  • Chiba C, Saito T. Gap junctional coupling between progenitor cells of regenerating retina in the adult newt. J. Neurobiol.42, 258–269 (2000).
  • Umino Y, Saito T. Spatial and temporal patterns of distribution of the gap junctional protein connexin-43 during retinal regeneration of adult newt. J. Comp. Neurol.454, 255–262 (2002).
  • Ikegami Y, Mitsuda S, Araki M. Neural cell differentiation from retinal pigment epithelial cells of the newt: an organ culture model for the urodele retinal regeneration. J. Neurobiol.50, 209–220 (2002).
  • Kaneko Y, Matsumoto G, Hanyu Y. Pax-6 expression during retinal regereration in the adult newt. Dev. Growth Differ.41, 723–729 (1999).
  • Kaneko Y, Hirota K, Matsumoto G, Hanyu Y. Expression pattern of a newt Notch homologue in regenerating newt retina. Dev. Brain Res.128, 53–62 (2001).
  • Kaneko J, Chiba C. Immunohistochemical analysis of Musashi-1 expression during retinal regeneration of adult newt. Neurosci Lett.450, 252–257 (2009).
  • Mitsuda S, Yoshii C, Ikegami Y, Araki M. Tissue interaction between the retinal pigment epithelium and the choroid triggers retinal regeneration of the newt Cynops pyrrhogaster.Dev. Biol.280, 122–132 (2005).
  • Hitchcock P, Ochocinska M, Sieh A, Otteson D. Persistent and injury-induced neurogenesis in the vertebrate retina. Prog. Ret. Eye Res.23, 183–194 (2004).
  • Yoshii C, Ueda Y, Okamoto M, Araki M. Neural retina regeneration in anuran amphibian Xenopus laevis post-metamorphosis: transdifferentiation of retina pigmented epithelium regenerates the neural retina. Dev. Biol.303, 45–56 (2007).
  • Kuriyama F, Ueda Y, Araki M. Complete reconstruction of the retinal laminar structure from a cultured retinal pigment epithelium is triggered by altered tissue interaction and promoted by overlaid extracellular matrices. Dev. Neurobiol.69, 950–958 (2009).
  • Vollmer G, Layer PG. An in vitro model of proliferation and differentiation of the chick retina: coaggregates of retinal and pigment epithelial cells. J. Neurosci.6, 1885–1896 (1986).
  • Liu L, Cheng SH, Jiang LZ et al. The pigmented epithelium sustains cell growth and tissue differentiation of chicken retinal explants in vitro.Exp. Eye Res.46, 801–812 (1988).
  • Layer PG, Willbold E. Embryonic chicken retinal cells can regenerate all cell layers in vitro, but ciliary pigmented cells induce their correct polarity. Cell Tissue Res.258, 233–242 (1989).
  • Wolburg H, Willbold E, Layer PG. Müller glia endfeet, a basal lamina and the polarity of retinal layers form properly in vitro only in the presence of marginal pigmented epithelium. Cell Tissue Res.264, 437–451 (1991).
  • Sheedlo HJ, Li L, Turner JE. Photoreceptor cell rescue in the RCS rat by RPE transplantation: a therapeutic approach in a model of inherited retinal dystrophy. Prog. Clin. Biol. Res.314, 645–658 (1989).
  • Mochii M, Mazaki Y, Mizuno N et al. Role of Mitf in differentiation and transdifferentiation of chicken pigmented epithelial cell. Dev. Biol.193, 47–62 (1998).
  • Spence JR, Madhavan M, Aycinena JC, Del Rio-Tsonis K. Retina regeneration in the chick embryo is not induced by spontaneous Mitf downregulation but requires FGF/FGFR/MEK/Erk dependent upregulation of Pax6. Mol. Vision13, 57–65 (2007).
  • Yan RT, Ma WX, Wang SZ. Neurogenin2 elicits the genesis of retinal neurons from cultures of nonneural cells. Proc. Natl Acad. Sci. USA98, 15014–15019 (2001).
  • Zhao S, Rizzolo LJ, Barnstable CJ. Differentiation and transdifferentiation of the retinal pigment epithelium. Int. Rev. Cytol.171, 225–266 (1997).
  • Neill JM, Barnstable CJ. Expression of the cell surface antigens RET-PE2 and N-CAM by rat retinal pigment epithelial cells during development and in tissue culture. Exp. Eye Res.51, 573–583 (1990).
  • Haruta M, Kosaka M, Kanegae Y et al. Induction of photoreceptor-specific phenotypes in adult mammalian iris tissue. Nat. Neurosci.4, 1163–1164 (2001).
  • Sun G, Asami M, Ohta H et al. Retinal stem/progenitor properties of iris pigment epithelial cells. Dev. Biol.289, 243–252 (2006).
  • Asami M, Sun G, Yamaguchi M, Kosaka M. Multipotent cells from mammalian iris pigment epithelium. Dev. Biol.304, 433–446 (2007).
  • Coles BL, Angénieux B, Inoue T et al. Facile isolation and the characterization of human retinal stem cells. Proc. Natl Acad. Sci. USA101, 15772–15777 (2004).
  • Gu P, Harwood LJ, Zhang X et al. Isolation of retinal progenitor and stem cells from the porcine eye. Mol. Vis.13, 1045–1057 (2007).
  • Bhatia B, Singhal S, Lawrence JM et al. Distribution of Müller stem cells within the neural retina: evidence for the existence of a ciliary margin-like zone in the adult human eye. Exp. Eye Res.89, 373–382 (2009).
  • Inoue T, Coles BL, Dorval K et al. Maximizing functional photoreceptor differentiation from adult human retinal stem cells. Stem Cells28, 489–500 (2010).
  • Abbott A. Cell culture: biology’s new dimension. Nature424, 870–872 (2003).
  • Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol.8, 839–845 (2007).
  • Wilson HV. On some phenomena of coalescence and regeneration in sponges. J. Exp. Zool.5, 245–258 (1907).
  • Sheffield JB, Moscona AA. Electron microscopic analysis of aggregation of embryonic cells: the structure and differentiation of aggregates of neural retina cells. Dev. Biol.23, 36–61 (1970).
  • Gierer A, Berking S, Bode H et al. Regeneration of hydra from reaggregated cells. Nature239, 98–101 (1972).
  • Adler R. Cell interactions and histogenesis in embryonic neural aggregates. Exp. Cell Res.77, 367–375 (1973).
  • Rieke M, Gottwald E, Weibezahn KF, Layer PG. Tissue reconstruction in 3D-spheroids from rodent retina in a motion-free, bioreactor-based microstructure. Lab Chip8, 2206–2213 (2008).
  • Layer PG, Rothermel A, Willbold E. From stem cells towards neural layers: a lesson from re-aggregated embryonic retinal cells. NeuroReport12, A39–A46 (2001).
  • Shacoori V, Khan NA, Saiag B, Rault B. Rat pineal cell aggregates: ultrastructural and functional characteristics. Brain Res. Bull.38, 215–220 (1995).
  • Müller-Klieser W. Three-dimensional cell cultures: from molecular mechanisms to clinical applications. Am. J. Physiol.273, C1109–C1123 (1997).
  • Gähwiler BH. Organotypic monolayer cultures of nervous tissue. J. Neurosci. Methods4, 329–342 (1981).
  • Potter SW, Morris JE. Development of mouse embryos in hanging drop culture. Anat. Rec.211, 48–56 (1985).
  • Bjerkvig R, Lund-Johansen M, Edvardsen K et al. Tumor cell invasion and angiogenesis in the central nervous system. Curr. Opin. Oncol.9, 223–229 (1997).
  • Burdett E, Kasper FK, Mikos AG, Ludwig JA. Engineering tumors: a tissue engineering perspective in cancer biology. Tissue Eng. Part B Rev.16(3), 351–359 (2010).
  • Hirschhaeuser F, Menne H, Dittfeld C et al. Multicellular tumor spheroids: an underestimated tool is catching up again. J. Biotechnol.148(1), 3–15 (2010).
  • Robitzki A, Mack A, Hoppe U et al. Butyrylcholinesterase antisense transfection increases apoptosis in differentiating retinal reaggregates of the chick embryo. J. Neurochem.71, 1413–1420 (1998).
  • Rothermel A, Volpert K, Burghardt M et al. Knock-down of GFRa4 expression by RNA interference affects the development of retinal cell types in three-dimensional histiotypic retinal spheres. Invest. Ophthalmol. Vis. Sci.47, 2716–2725 (2006).
  • Daston GP, Baines D, Yonker JE. Chick embryo neural retina cell culture as a screen for developmental toxicity. Toxicol. Appl. Pharmacol.109, 352–366 (1991).
  • Layer PG, Weikert T, Willbold E. Chicken retinospheroids as developmental and pharmacological in vitro models: acetylcholinesterase is regulated by its own and by butyrylcholinesterase activity. Cell Tissue Res.268, 409–418 (1992).
  • Pardo B, Honegger P. Differentiation of rat striatal embryonic stem cells in vitro : monolayer culture vs. three-dimensional coculture with differentiated brain cells. J. Neurosci. Res.15, 504–512 (2000).
  • Layer PG, Willbold E. Histogenesis of the avian retina in reaggregation culture: from dissociated cells to laminar neuronal networks. Int. Rev. Cytol.146, 1–47 (1993).
  • Layer PG, Willbold E. Regeneration of the avian retina by retinospheroid technology. Prog. Ret. Res.13, 197–229 (1994).
  • Layer PG, Robitzki A, Rothermel A, Willbold E. Of layers and spheres: the reaggregate approach in tissue engineering. Trends Neurosci.25, 131–134 (2002).
  • Fujisawa H. The process of reconstruction of histological architecture from dissociated retinal cells. Wilhelm Roux Arch. Entwicklungsmech. Org.171, 312–330 (1973).
  • Rothermel A, Layer PG. Photoreceptor plasticity in reaggregates of embryonic chick retina: rods depend on proximal cones and on tissue organization. Eur. J. Neurosci.13, 949–958 (2001).
  • Frohns F, Mager M, Layer PG. FGF-2 increases the precursor pool of photoreceptors, but inhibits their differentiation and apoptosis in chicken retinal reaggregates. Eur. J. Neurosci.29, 1931–1942 (2009).
  • Willbold E, Layer PG. Müller glia cells and their possible roles during retina differentiation in vivo and in vitro.Histol. Histopathol.13, 531–552 (1998).
  • Rothermel A, Layer PG. GDNF regulates chicken rod photoreceptor development and survival in reaggregated histotypic retinal spheres. Invest. Ophthalmol. Vis. Sci.44, 2221–2228 (2003).
  • Rothermel A, Biedermann T, Weigel W et al. Artificial design of 3D retina-like tissue from dissociated cells of the mammalian retina by rotation-mediated cell aggregation. Tissue Eng.11, 1749–1756 (2005).
  • Naruoka H, Kojima R, Ohmasa M et al. Transient muscarinic calcium mobilisation in transdifferentiating as in reaggregating embryonic chick retinae. Dev. Brain Res.143, 233–244 (2003).
  • Willbold E, Huhn J, Korf HW et al. Circadian rhythms of melatonin synthesis and secretion are established autonomously in chicken retinal reaggregates. Dev. Neurosci.24, 504–511 (2002).
  • Volpert KN, Rothermel A, Layer PG. GDNF stimulates rod photoreceptors and dopaminergic amacrine cells in chicken retinal reaggregates. Invest. Ophthalmol. Vis. Sci.48, 5306–5314 (2007).
  • Volpert KN, Tombran-Tink J, Barnstable C, Layer PG. PEDF and GDNF are key regulators of photoreceptor development and retinal neurogenesis in reaggregates from chick embryonic retina. J. Ocul. Biol. Dis. Inform.2, 1–11 (2009).
  • Akagawa K, Hicks D, Barnstable CJ. Histiotypic organization and cell differentiation in rat retinal reaggregate cultures. Brain Res.437, 298–308 (1987).
  • Watanabe T, Raff MC. Rod photoreceptor development in vitro : intrinsic properties of proliferating neuroepithelial cells change as development proceeds in the rat retina. Neuron4, 461–467 (1990).
  • Watanabe T, Voyvodic JT, Chan-Ling T. Differentiation and morphogenesis in pellet cultures of developing rat retinal cells. J. Comp. Neurol.377, 341–350 (1997).
  • Belliveau MJ, Young TL, Cepko CL. Late retinal progenitor cells show intrinsic limitations in the production of cell types and the kinetics of opsin synthesis. J. Neurosci.20, 2247–2254 (2000).
  • Akagi T, Mandai M, Ooto S et al. Otx2 homeobox gene induces photoreceptor-specific phenotypes in cells derived from adult iris and ciliary tissue. Invest. Ophthalmol. Vis. Sci.45, 4570–4575 (2004).
  • Liljekvist-Larsson I, Johansson K. Retinal neurospheres prepared as tissue for transplantation. Brain Res. Dev. Brain Res.160, 194–202 (2005).
  • Inoue T, Terada K, Furukawa A et al. Cloning and characterization of mr-s, a novel SAM domain protein, predominantly expressed in retinal photoreceptor cells. BMC Dev. Biol.6, 15 (2006).
  • Kohno R, Ikeda Y, Yonemitsu Y et al. Sphere formation of ocular epithelial cells in the ciliary body is a reprogramming system for neural differentiation. Brain Res.1093, 54–70 (2006).
  • Kumar R, Dutt K. Enhanced neurotrophin synthesis and molecular differentiation in non-transformed human retinal progenitor cells cultured in a rotating bioreactor. Tissue Eng.12, 141–158 (2006).
  • Yang J, Klassen H, Pries M et al. Aqueous humor enhances the proliferation of rat retinal precursor cells in culture, and this effect is partially reproduced by ascorbic acid. Stem Cells24, 2766–2775 (2006).
  • Bytyqi AH, Bachmann G, Rieke M et al. Cell-by-cell reconstruction in reaggregates from neonatal gerbil retina begins from the inner retina and is promoted by retinal pigmented epithelium. Eur. J. Neurosci.26, 1560–1574 (2007).
  • Laib AM, Bartol A, Alajati A et al. Spheroid-based human endothelial cell microvessel formation in vivo.Nat. Protoc.4, 1202–1215 (2009).
  • Wartenberg M, Finkensieper A, Hescheler J, Sauer H. Confrontation cultures of embryonic stem cells with multicellular tumor spheroids to study tumor-induced angiogenesis. Methods Mol. Biol.331, 313–328 (2006).
  • Vollmer G, Layer PG, Gierer A. Reaggregation of embryonic chick retina cells: pigment epithelial cells induce a high order of stratification. Neurosci. Lett.48, 191–196 (1984).
  • Willbold E, Layer PG. A hidden retinal regenerative capacity from the chick ciliary margin is reactivated in vitro, that is accompanied by down-regulation of butyrylcholinesterase. Eur. J. Neurosci.4, 210–220 (1992).
  • Willbold E, Tomlinson S, Rothermel A, Layer PG. Müller glia cells reorganize rosettes to a laminar retina in reaggregation culture of the chick embryo. Glia29, 45–57 (2000).
  • Rothermel A, Willbold E, DeGrip WJ et al. Pigmented epithelium induces complete retinal reconstitution from fully dispersed embryonic chick retinae in reaggregation culture. Proc. Biol. Sci.264, 1293–1302 (1997).
  • Viktorov IV, Lyzhin AA, Aleksandrova OP et al. Roller organotypic cultures of postnatal rat retina. Bull. Exp. Biol. Med.137, 419–422 (2004).
  • Grigoryan EN, Novikova YP, Kilina OV, Philippov PP. New method of in vitro culturing of pigment retinal epithelium in the structure of the posterior eye sector of adult rat. Bull. Exp. Biol. Med.144, 618–625 (2007).
  • Gustmann S, Dünker N. In vivo -like organotypic murine retinal wholemount culture. J. Vis. Exp.35, 1634 (2010).
  • Johnson TV, Martin KR. Development and characterization of an adult retinal explant organotypic tissue culture system as an in vitro intraocular stem cell transplantation model. Invest. Ophthalmol. Vis. Sci.49, 3503–3512 (2008).
  • Sedohara A, Komazaki S, Asashima M. In vitro induction and transplantation of eye during early Xenopus development. Dev. Growth Differ.45, 463–471 (2003).
  • Viczian AS, Solessio EC, Lyou Y, Zuber ME. Generation of functional eyes from pluripotent cells. PLoS Biol.7, e1000174 (2009).
  • Tabata Y, Ouchi Y, Kamiya H et al. Specification of the retinal fate of mouse embryonic stem cells by ectopic expression of Rx/rax, a homeobox gene. Mol. Cell Biol.24, 4513–4521 (2004).
  • Ikeda H, Osakada F, Watanabe K et al. Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc. Natl Acad. Sci. USA102, 11331–11336 (2005).
  • Sugie Y, Yoshikawa M, Ouji Y et al. Photoreceptor cells from mouse ES cells by co-culture with chick embryonic retina. Biochem. Biophys. Res. Commun.332, 241–247 (2005).
  • Lamba DA, Karl MO, Ware CB, Reh TA. Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc. Natl Acad. Sci. USA103, 12769–12774 (2006).
  • Osakada F, Ikeda H, Mandai M et al. Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat. Biotechnol.26, 215–224 (2008).
  • Jagatha B, Divya MS, Sanalkumar R et al. In vitro differentiation of retinal ganglion-like cells from embryonic stem cell derived neural progenitors. Biochem. Biophys. Res. Commun.380, 230–235 (2009).
  • Chaudhry GR, Fecek C, Lai MM et al. Fate of embryonic stem cell derivatives implanted into the vitreous of a slow retinal degenerative mouse model. Stem Cells Dev.18, 247–258 (2009).
  • Lamba DA, Gust J, Reh TA. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell4, 73–79 (2009).
  • Aoki H, Hara A, Niwa M et al.In vitro and in vivo differentiation of human embryonic stem cells into retina-like organs and comparison with that from mouse pluripotent epiblast stem cells. Dev. Dyn.238, 2266–2279 (2009).
  • Young MJ, Ray J, Whiteley SJ et al. Neuronal differentiation and morphological integration of hippocampal progenitor cells transplanted to the retina of immature and mature dystrophic rats. Mol. Cell Neurosci.16, 197–205 (2000).
  • Hedge TA, Mason I. Expression of Shisa2, a modulator of both Wnt and Fgf signaling, in the chick embryo. Int. J. Dev. Biol.52, 81–85 (2008).
  • Gamm DM, Nelson AD, Svendsen CN. Human retinal progenitor cells grown as neurospheres demonstrate time-dependent changes in neuronal and glial cell fate potential. Ann. N.Y. Acad. Sci.1049, 107–117 (2005).
  • Gamm DM, Wang S, Lu B et al. Protection of visual functions by human neural progenitors in a rat model of retinal disease. PLoS One2, e338 (2007).
  • Gamm DM, Wright LS, Capowski EE et al. Regulation of prenatal human retinal neurosphere growth and cell fate potential by retinal pigment epithelium and Mash1. Stem Cells26, 3182–3193 (2008).
  • Meyer JS, Shearer RL, Capowski EE et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc. Natl Acad. Sci. USA106(39), 16698–16703 (2009).
  • Dutt K, Cao Y. Engineering retina from human retinal progenitors (cell lines). Tissue Eng. Part A15, 1401–1413 (2009).
  • Longbottom R, Fruttiger M, Douglas RH et al. Genetic ablation of retinal pigment epithelial cells reveals the adaptive response of the epithelium and impact on photoreceptors. Proc. Natl Acad. Sci. USA106, 18728–18733 (2009).
  • Radtke ND, Aramant RB, Petry HM et al. Vision improvement in retinal degeneration patients by implantation of retina together with retinal pigment epithelium. Am. J. Ophthalmol.146, 172–182 (2008).
  • Seiler MJ, Aramant RB, Thomas BB et al. Visual restoration and transplant connectivity in degenerate rats implanted with retinal progenitor sheets. Eur. J. Neurosci.31, 508–520 (2010).
  • da Cruz L, Chen FK, Ahmado A et al. RPE transplantation and its role in retinal disease. Prog. Retin. Eye Res.26, 598–635 (2007).
  • Klimanskaya I, Hipp J, Rezai KA et al. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells6, 217–245 (2004).
  • Lund RD, Wang S, Klimanskaya I et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells8, 189–199 (2006).
  • Vugler A, Carr AJ, Lawrence J et al. Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp. Neurol.214, 347–361 (2008).
  • Carr AJ, Vugler A, Lawrence Jet al. Molecular characterization and functional analysis of phagocytosis by human embryonic stem cell-derived RPE cells using a novel human retinal assay. Mol. Vis.15, 283–295 (2009).
  • Wang NK, Tosi J, Kasanuki JM et al. Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa. Transplantation89(8), 911–919 (2010).
  • Osakada F, Ikeda H, Sasai Y, Takahashi M. Stepwise differentiation of pluripotent stem cells into retinal cells. Nat. Protoc.4, 811–824 (2009).
  • Jin ZB, Okamoto S, Mandai M, Takahashi M. Induced pluripotent stem cells for retinal degenerative diseases: a new perspective on the challenges. J. Genet.88, 417–424 (2009).
  • Osakada F, Jin ZB, Hirami Y et al. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J. Cell Sci.122(Pt 17), 3169–3179 (2009).
  • Idelson M, Alper R, Obolensky A et al. Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell5(4), 396–408 (2009).
  • Schraermeyer U, Thumann G, Luther T, Kociok N. Subretinally transplanted embryonic stem cells rescue photoreceptor cells from degeneration in the RCS rats. Cell Transplant.10, 673–680 (2001).
  • Lu B, Malcuit C, Wang S et al. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells27, 2126–2135 (2009).
  • Sengupta N, Caballero S, Sullivan SM et al. Regulation of adult hematopoietic stem cells fate for enhanced tissue-specific repair. Mol. Ther.17, 1594–1604 (2009).
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126, 663–676 (2006).
  • Nakagawa M, Koyanagi M, Tanabe K et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol.26, 101–106 (2008).
  • Okita K, Nakagawa M, Hyenjong H et al. Generation of mouse induced pluripotent stem cells without viral vectors. Science322(5903), 949–953 (2008).
  • Buchholz DE, Hikita ST, Rowland TJ et al. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells27, 2427–2434 (2009).
  • Hirami Y, Osakada F, Takahashi K et al. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci. Lett.458, 126–131 (2009).
  • Carr AJ, Vugler AA, Hikita STet al. Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat.PLoS One4, e8152 (2009).
  • Liljekvist-Larsson I, Johansson K. Studies of host–graft interactions in vitro.J. Neural. Eng.4, 255–263 (2007).
  • Tezcaner A, Hicks D. In vitro characterization of micropatterned PLGA–PHBV8 blend films as temporary scaffolds for photoreceptor cells. J. Biomed. Mater. Res. A.86, 170–181 (2008).
  • Hsiue GH, Lai JY, Lin PK. Absorbable sandwich-like membrane for retinal-sheet transplantation. J. Biomed. Mater. Res.61, 19–25 (2002).
  • Ito A, Hibino E, Kobayashi C et al. Construction and delivery of tissue-engineered human retinal pigment epithelial cell sheets, using magnetite nanoparticles and magnetic force. Tissue Eng.11(3–4), 489–496 (2005).
  • Wong DY, Krebsbach PH, Hollister SJ. Brain cortex regeneration affected by scaffold architectures. J. Neurosurg.109, 715–722 (2008).
  • Jakab K, Norotte C, Damon B et al. Tissue engineering by self-assembly of cells printed into topologically defined structures. Tissue Eng. Part A14, 413–421 (2008).
  • Yamazoe H, Tanabe T. Cell micropatterning on an albumin-based substrate using an inkjet printing technique. J. Biomed. Mater. Res. A91, 1202–1209 (2009).
  • Lee CJ, Huie P, Leng T et al. Microcontact printing on human tissue for retinal cell transplantation. Arch. Ophthalmol.120, 1714–1718 (2002).
  • Nishiyama Y, Nakamura M, Henmi C. Development of a three-dimensional bioprinter: construction of cell supporting structures using hydrogel and state-of-the-art inkjet technology. J. Biomech. Eng.131, 035001 (2009).
  • Kaplan J. Leber congenital amaurosis: from darkness to spotlight. Ophthalmic. Genet.29, 92–98 (2008).
  • Chung DC, Lee V, Maguire AM. Recent advances in ocular gene therapy. Curr. Opin. Ophthalmol.20, 377–381 (2009).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.