38
Views
5
CrossRef citations to date
0
Altmetric
Review

Potential for serotonergic agents to treat elevated intraocular pressure and glaucoma: focus on 5-HT2 receptor agonists

&
Pages 105-120 | Published online: 09 Jan 2014

References

  • Conroy DM, Acton ML. New therapies to treat sight loss in an aging population. Drug Discov. Today15, 256–259 (2010).
  • Wostyn P, Audenaert K, De Deyn PP. Alzheimer’s disease and glaucoma: is there a causal relationship? Br. J. Ophthalmol.93, 1557–1559 (2009).
  • Weinreb RN, Khaw PT. Primary open angle glaucoma. Lancet363, 1711–1720 (2004).
  • Congdon N, O’Colmain B, Klaver CC et al. Causes and prevalence of visual impairment among adults in the United States. Arch. Ophthalmol.122, 477–485 (2004).
  • Resnikoff S, Pascolini D, Etya’ale D et al. Global data on visual impairment in the year 2002. Bull. World Health Organ.82, 844–851 (2004).
  • Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol.90, 262–267 (2006).
  • Coleman AL, Miglior S. Risk factors for glaucoma onset and progression. Surv. Ophthalmol.53, S3–S10 (2008).
  • Tamm ER, Fuchshofer R. What increases outflow resistance in primary open-angle glaucoma? Surv. Ophthalmol.52(Suppl. 2), S101–S104 (2007).
  • Tamm ER. The trabecular meshwork outflow pathways: structural and functional aspects. Exp. Eye Res.88, 648–655 (2009).
  • Alm A, Nilsson SF. Uveoscleral outflow – a review. Exp. Eye Res.88, 760–768 (2009).
  • Acott TS, Kelley MJ. Extracellular matrix turnover and outflow resistance. Exp. Eye Res.86, 543–561 (2008).
  • Keller KE, Aga M, Bradley JM, Kelley MJ, Acott TS. Extracellular matrix turnover and outflow resistance. Exp. Eye Res.88, 676–682 (2009).
  • Tan JCH, Peters DM, Kaufman PL. Recent developments in understanding the pathophysiology of elevated intraocular pressure. Curr. Opin. Ophthalmol.17, 168–174 (2006).
  • Rhee DJ, Haddadin RI, Kang MH, Oh DJ. Matricellular proteins in the trabecular meshwork. Exp. Eye Res.88, 694–703 (2009).
  • Okuno T, Oku H, Sugiyama T, Ikeda T. Glutamate level in optic nerve head is increased by artificial elevation of intraocular pressure in rabbits. Exp. Eye Res.82, 465–470 (2006).
  • Yorio T, Krishnamoorthy R, Prasanna G. Endothelin: is it a contributor to glaucoma pathophysiology? J. Glaucoma11, 259–270 (2002).
  • Sossi N, Anderson DR. Blockage of axonal transport in optic nerve induced by elevation of intraocular pressure. Effect of arterial hypertension induced by angiotensin I. Arch. Ophthalmol.101, 94–97 (1983).
  • Kong GY, Van Bergen NJ, Trounce IA, Crowston JG. Mitochondrial dysfunction and glaucoma. J. Glaucoma18, 93–100 (2009).
  • Shifera AS, Trivedi S, Chau P, Bonnemaison LH, Iguchi R, Alvarado J. Constitutive secretion of chemokines by cultured human trabecular meshwork cells. Exp. Eye Res.91, 42–47 (2010).
  • Hazin R, Hendrick AM, Kahook MY. Primary open-angle glaucoma: diagnostic approaches and management. J. Natl Med. Assoc.101, 46–50 (2009).
  • Clark AF, Yorio T. Ophthalmic drug discovery. Nat. Rev. Drug Discov.2, 448–459 (2003).
  • Sharif NA, Klimko P. CNS: ophthalmic Agents. In: Comprehensive Medicinal Chemistry II (Volume 6, Chapter 12). Taylor JB, Triggle DJ (Eds). Elsevier, Oxford, UK, 297–320 (2007).
  • McKinnon SJ, Goldberg LD, Peeples P, Walt JG, Bramley TJ. Current management of glaucoma and the need for complete therapy. Am. J. Manag. Care14, S20–S27 (2008).
  • Webers CA, Beckers HJ, Nuijts RM, Schouten JS. Pharmacological management of primary open-angle glaucoma: second-line options and beyond. Drugs Aging25, 729–759 (2008).
  • Costagliola C, dell’Omo R, Romano MR, Rinaldi M, Zeppa L, Parmeggiani F. Pharmacotherapy of intraocular pressure: part I. parasympathomimetic, sympathomimetic and sympatholytics. Expert Opin. Pharmacother.10, 2663–2677 (2009).
  • Costagliola C, dell’Omo R, Romano MR, Rinaldi M, Zeppa L, Parmeggiani F. Pharmacotherapy of intraocular pressure: part II. Carbonic anhydrase inhibitors, prostaglandin analogues and prostamides. Expert Opin. Pharmacother.10, 2859–2870 (2009).
  • Whitson JT. Glaucoma: a review of adjunctive therapy and new management strategies. Expert Opin. Pharmacother.8, 3237–3249 (2007).
  • Bournias TE, Lai J. Brimonidine tartrate 0.15%, dorzolamide hydrochloride 2%, and brinzolamide 1% compared as adjunctive therapy to prostaglandin analogs. Ophthalmology116, 1719–1724 (2009).
  • Galanopoulos A, Goldberg I. Clinical efficacy and neuroprotective effects of brimonidine in the management of glaucoma and ocular hypertension. Clin. Ophthalmol.3, 117–122 (2009).
  • Levins LA, Peeples P. History of neuroprotection and rationale as a therapy for glaucoma. Am. J. Manag. Care14, S11–S14 (2008).
  • Osborne NN. Recent clinical findings with memantine should not mean that the idea of neuroprotection in glaucoma is abandoned. Acta Ophthalmol.87, 450–454 (2009).
  • Ehinger B, Floren I. Retinal indolamine accumulating neurons. Neurochem. Int.1, 209–229 (1980).
  • Moro F, Scapagnin U, Scaletta S, Drago F. Serotonin nerve endings in the regulation of papillary diameter. Ann. Ophthalmol.13, 487–490 (1981).
  • Tobin AB, Unger W, Osborne NN. Evidence for presence of serotonergic nerves and receptors in the iris–ciliary body complex of the rabbit. J. Neurosci.8, 3713–3721 (1988).
  • Matsumoto Y, Ueda S, Kawata M. Morphological characterization and distribution of indolamine-accumulating cells in the rat retina. Acta Histochem. Cytochem.25, 45–51 (1992).
  • Redburn DA, Churchill L. An indoleamine system in photoreceptor cell terminals of the Long–Evans rat retina. J. Neurosci.7, 319–329 (1987).
  • Cooper RL, Constable IJ, Davidson L. Cathecholamines in aqueous humor of glaucoma patients. Aust. J. Ophthalmol.12, 345–349 (1984).
  • Martin XD, Brennan MC, Lichter PR. Serotonin in human aqueous humor. Ophthalmology95, 1221–1226 (1988).
  • Martin XD, Malina HZ, Brennan MC, Hendrickson PH, Lichter PR. The ciliary body – the third organ found to synthesize indoleamines in humans. Eur. J. Ophthalmol.2, 67–72 (1992).
  • Trope GE, Sole M, Aedy L, Madapallimattam A. Levels of norepinephrine, epinephrine, dopamine, serotonin and N-acetylserotonin in aqueous humor. Can. J. Ophthalmol.22, 152–154 (1987).
  • Veglio F, De Sanctis U, Schiavone D et al. Evaluation of serotonin levels in human aqueous humor. Ophthalmologica212, 160–163 (1998).
  • Boerrigter RM, Sietsema JV, Kema IP. Serotonin (5-HT) and the rat’s eye. Some pilot studies. Doc. Ophthalmol.82, 141–150 (1992).
  • Pootanakit K, Brunken WJ. 5-HT1A and 5-HT7 receptor expression in the mammalian retina. Brain Res.875, 152–156 (2002).
  • Pootanakit K, Prior KJ, Hunter DJ, Brunken WJ. 5-HT2A receptors in the rabbit retina: potential presynaptic modulators. Vis. Neurosci.16, 221–230 (1999).
  • Nash M, Flanigan T, Leslie R, Osborne NN. Serotonin-2A receptor mRNA expression in rat retinal pigment epithelial cells. Ophthalmic Res.31, 1–4 (1993).
  • Turner HC, Alvarez LJ, Candia OA, Bernstein AM. Characterization of serotonergic receptors in rabbit, porcine and human conjunctivae. Curr. Eye Res.27, 205–215 (2003).
  • Chidlow G, Le Corre, Osborne NN. Localization of 5-hydroxytryptamine-1A and 5-hydroxytryptamine-7 receptors in rabbit ocular and brain tissues. Neuroscience87, 675–689 (1998).
  • Chidlow G, Hiscott PS, Osborne NN. Expression of serotonin receptor mRNAs in human ciliary body: a polymerase chain reaction study. Graefe’s Arch. Clin. Exp. Ophthalmol.242, 259–264 (2004).
  • Sharif NA, Senchyna M. Serotonin receptor subtype mRNA expression in human ocular tissues determined by RT-PCR. Mol. Vis.12, 1040–1047 (2006).
  • Mallorga P, Sugrue MF. Characterization of serotonin receptors in the iris–ciliary body of the albino rabbit. Curr. Eye Res.6, 527–532 (1987).
  • Sharif NA, Kelly CR, Crider JY, Senchyna M. RT-PCR mapping of serotonin receptor subtype mRNAs in human ciliary body and trabecular meshwork. Assoc. Res. Vis. Ophthalmol. Abst.3688 (2005).
  • Chidlow G, DeSantis LM, Sharif NA, Osborne NN. Characteristics of [3H]-5-hydroxytryptamine binding to iris–ciliary body tissue of the rabbit. Invest. Ophthalmol. Vis. Sci.36, 2238–2245 (1995).
  • Sharif NA, Kelly CR, Crider JY, Davis TL. Serotonin-2 (5-HT2) receptor-mediated signal transduction in human ciliary muscle cells: role in ocular hypotension. J. Ocul. Pharmacol. Ther.22, 389–401 (2006).
  • Neufeld AH, Ledgard SE, Jumblatt MM, Klyce SD. Serotonin-stimulated cyclic AMP synthesis in the rabbit corneal epithelium. Invest. Ophthalmol. Vis. Sci.23, 193–198 (1982).
  • Blazynski C, Ferrendelli JA, Cohen AI. Indolamine-sensitive adenylate cyclase in rabbit retina: characterization and distribution. J. Neurochem.45, 440–447 (1985).
  • Akhtar RA. Effects of norepinephrine and 5-hydroxytryptamine on phosphoinositide-PO4 turnover in rabbit cornea. Exp. Eye Res.44, 849–862 (1987).
  • Cutcliffe N, Osborne NN. Serotonergic and cholinergic stimulation of inositol phosphate formation in the rabbit retina. Evidence for the presence of serotonin and muscarinic receptors. Brain Res.421, 95–104 (1987).
  • Barnett NL, Osborne NN. The presence of serotonin (5-HT1) receptor negatively coupled to adenylate cyclase in rabbit and human iris–ciliary process. Exp. Eye Res.57, 209–216 (1993).
  • Tobin AB, Osborne NN. Evidence for the presence of serotonin receptors negatively coupled to adenylate cyclase in the rabbit iris–ciliary body. J. Neurochem.53, 686–691 (1989).
  • Osborne NN, Ghazi H. 5-HT1A receptors positively coupled to cAMP formation in the rabbit retina. Neurochem. Int.19, 407–511 (1991).
  • Osborne NN, Fitzgibbon F, Nash M, Liu NP, Leslie R, Cholewinski A. Serotonergic, 5-HT2, receptor-mediated phosphoinositide turnover and mobilization of calcium in cultured rat retinal pigment epithelium cells. Vis. Res.33, 2171–2179 (1993).
  • Crider JY, Williams GW, Drace CD, Katoli P, Senchyna M, Sharif NA. Pharmacological characterization of a serotonin receptor (5-HT7) stimulating cAMP production in human corneal epithelial cells. Invest. Ophthalmol. Vis. Sci.44, 4837–4844 (2003).
  • Inoue-Matsuhisa E, Moroi SE, Takenaka H, Sogo S, Mano T. 5-HT2 receptor-mediated phosphoinositide hydrolysis in bovine ciliary epithelium. J. Ocular Pharmacol. Ther.19, 55–62 (2003).
  • Sharif NA, Kelly C, McLaughlin MA. Human trabecular meshwork cells express functional serotonin-2A (5-HT2A) receptors: role in IOP reduction. Invest. Ophthalmol. Vis. Sci.47, 4001–4010 (2006).
  • Harris LC, Awe SO, Opere CA, Leday AM, Ohia SE, Sharif NA. [3H]Serotonin release from bovine iris–ciliary body: pharmacology of pre-junctional serotonin (5-HT7) autoreceptors. Exp. Eye Res.73, 59–67 (2001).
  • Harris LC, Awe SO, Opere CA, LeDay AM, Ohia SE, Sharif NA. Pharmacology of serotonin receptors modulating electrically-induced [3H]norepinephrine release from isolated mammalian iris–ciliary bodies. J. Ocul. Pharmacol. Ther.18, 339–348 (2002).
  • Lograno MS, Romano MR. Pharmacological characterization of the 5-HT1A, 5-HT2 and 5-HT3 receptors in the bovine ciliary muscle. Eur. J. Pharmacol.464, 69–74 (2003).
  • Mangel SS, Brunken WJ. The effects of serotonin drugs on horizontal and ganglion cells in the rabbit retina. Vis. Neurosci.8, 213–218 (1992).
  • Brunken WJ, Jin XT, Pis-Lopez AM. The properties of the serotonergic system in the retina. Prog. Ret. Res.16, 75–99 (1993).
  • Brunken WJ, Jin XT. A role for 5-HT3 receptors in visual processing in the mammalian retina. Vis. Neurosci.10, 511–522 (1993).
  • Brunken WJ, Daw NW. The effects of serotonin agonists and antagonists on the response properties of complex ganglion cells of the rabbit retina. Vis. Neurosci.1, 181–188 (1988).
  • Klyce SD, Palkama KA, Harkone M et al. Neural serotonin stimulates chloride transport in the rabbit corneal epithelium. Invest. Ophthalmol. Vis. Sci.23, 181–192 (1982).
  • Chiang TS. Effects of intravenous infusions of histamine, 5-hydroxytryptamine, bradykinin and prostaglandins on intraocular pressure. Arch. Int. Pharmacodyn. Ther.207, 131–138 (1974).
  • Costagliola C, Parmeggiani F, Sebastiani A. SSRIs and intraocular pressure modifications: evidence, therapeutic implications and possible mechanisms. CNS Drugs18, 475–484 (2004).
  • Krootila K, Palkama A, Uusitalo H. Effects of serotonin and its antagonist (ketanserin) on intraocular pressure in the rabbit. J. Ocul. Pharmacol.3, 279–290 (1987).
  • Meyer-Bothling U, Bron AJ, Osborne NN. Topical application of serotonin or the 5-HT1-agonist 5-CT on intraocular pressure in rabbits. Invest. Ophthalmol. Vis. Sci.34, 3035–3042 (1993).
  • Chu TC, Ogidigben MJ, Potter DE. 8-OH-DPAT-induced ocular hypotension: sites and mechanisms of action. Exp. Eye Res.69, 227–238 (1999).
  • Chidlow G, Nash MS, DeSantis L, Osborne NN. The 5-HT1A receptor agonist 8-OH-DPAT lowers intraocular pressure in normotensive NZW rabbits. Exp. Eye Res.69, 587–593 (1999).
  • Chidlow G, Cupido A, Melena J, Osborne NN. Flesinoxan, a 5-HT1A receptor agonist/5-HT1-adrenoceptor antagonist, lowers intraocular pressure in NZW rabbits. Curr. Eye Res.23, 144–153 (2001).
  • May JA, McLaughlin MA, Sharif NA, Hellberg MR, Dean TR. Evaluation of the ocular hypotensive response of serotonin 5-HT1A and 5-HT2 receptor ligands in conscious ocular hypertensive cynomolgus monkeys. J. Pharmacol. Exp. Ther.306, 301–309 (2003).
  • Chang FW, Burke JA, Potter DE. Mechanism of ocular hypotensive action of ketanserin. J. Ocular Pharmacol.1, 137–147 (1985).
  • Chiou GC, Li BH. Ocular hypotensive actions of serotonin antagonist-ketanserin and analogs. J. Ocular Pharmacol. Ther.8, 11–21 (1992).
  • Costagliola C, Iuliano G, Rinaldi M, Russo V, Scibelli G, Mastropasqua L. Effect of topical ketanserin administration on intraocular pressure. Br. J. Pharmacol.77, 344–348 (1993).
  • Mastropasqua L, Costagliola C, Ciancaglini M, Carpineto P, Gallenga PE. Ocular hypotensive effect of ketanserin in patients with primary open angle glaucoma. Acta. Ophthalmol. Scand. Suppl.224, 24–25 (1997).
  • Takat D, Guler C, Arici M, Topalkara A, Erdogan H. Effect of ketanserin administration on intraocular pressure. Ophthalmologica215, 419–423 (2001).
  • Takenaka H, Mano T, Maeno T, Okada M, Okano Y, Mitsuka M. The effect of anplag (sarpogrelate HCl), novel selective 5-HT2 antagonist on intraocular pressure in glaucoma patients. Invest. Ophthalmol. Vis. Sci.36, S734 (1995).
  • Cernerud M, Lundstrom H, Nilsson BM, Thor M. Amino-substituted 1H-pyrazin-2-ones and 1H-quinoxalin-2-ones. US Patent 7244722 (2007).
  • Berthold M, Crossley, R, Ward T. Imidazo[1,5-a]pyridine or imidazo[1,5-a]piperidine derivatives and their use for the preparation of medicaments against 5-HT2A receptor-related disorders. World Patent 2005/021545 A1 (2005).
  • Hoyer D, Clarke DE, Fozard JR et al. VII. International union of pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharm. Rev.46, 157–203 (1994).
  • Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol. Biochem. Behav.71, 533–554 (2002).
  • Oshika T, Araie A, Sugiyama T, Nakajima M, Azuma I. Effect of bunazosin hydrochloride on intraocular pressure and aqueous humor dynamics in normotensive human eyes. Arch. Ophthalmol.109, 1569–1574 (1991).
  • Wang RF, Lee PY, Mittag TW, Podos SM, Serle JB. Effect of 5-methyl-urapidil, an α-1a-adrenergic antagonist and 5-hydroxytrptamine-1A agonist, on aqueous humor dynamics in monkeys and rabbits. Curr. Eye Res.16, 769–775 (1997).
  • Yoshio R, Taniguchi T, Itoh H, Muramatsu I. Affinity of serotonin receptor antagonists and agonists to recombinant and native α1-adrenoceptor subtypes. Jpn J. Pharmacol.86, 189–195 (2001).
  • Sharif NA, McLaughlin MA, Kelly CR. AL-34662: a potent, selective and efficacious ocular hypotensive serotonin-2 receptor agonist. J. Ocular Pharmacol. Ther.23, 1–13 (2007).
  • May JA, Dantanarayana AP, Zinke PW, McLaughlin MA, Sharif NA. 1-((S)-2-aminopropyl)-1H-indazol-6-ol: a potent peripherally acting 5-HT2 receptor agonist with ocular hypotensive activity. J. Med. Chem.49, 318–328 (2006).
  • May JM, Chen H-H, Rusinko A, Lynch VM, Sharif NA, McLaughlin MA. A novel and selective 5-HT2 receptor agonist with ocular hypotensive activity: (S)-(+)-1-(2-aminopropyl)-8,9-dihydropyrano-[3,2-e]indole. J. Med. Chem.46, 4188–4195 (2003).
  • Sharif NA, McLaughlin, MA, Kelly CR et al. Cabergoline: pharmacology, ocular hypotensive studies in multiple species, and aqueous humor dynamic modulation in cynomolgus monkey eyes. Exp. Eye Res.88, 386–397 (2006).
  • May JA, Dean TR, Sharif NA, Hellberg MR. Serotonergic 5-HT2 agonists for treating glaucoma. US Patent 6664286 B1 (2003).
  • Gabelt BT, Okka M, Dean TR, Kaufman PL. Aqueous humor dynamics in monkeys after topical R-DOI. Invest. Ophthalmol. Vis. Sci.46, 4691–4696 (2005).
  • Kehne JH, Baron BM, Carr AA et al. Preclinical characterization of the potential of the putative atypical antipsychotic MDL 100,907 as a potent 5-HT2A antagonist with a favorable CNS safety profile. J. Pharmacol. Exp. Ther.277, 968–981 (1996).
  • Wainscott DB, Lucaites VL, Kursar JD, Baez M, Nelson DL. Pharmacologic characterization of the human 5-hydroxytryptamine2B receptor: evidence for species differences. J. Pharmacol. Exp. Ther.276, 720–726 (1996).
  • Kennett GA, Wood MD, Bright F et al. SB 242084, a selective and brain penetrant 5-HT2C receptor antagonist. Neuropharmacology36, 609–620 (1997).
  • Wood MD, Thomas DR, Gager TL et al. Pharmacological characterisation of the human 5-HT2B and 5-HT2C receptors in functional studies. Pharmacol. Rev. Commun.9, 259–268 (1997).
  • Porter RHP, Benwell KR, Lamb H et al. Functional characterization of agonists at recombinant human 5-HT2A, 5-HT2B and 5-HT2C receptors in CHO-K1 cells. Brit. J. Pharmacol.128, 13–20 (1999).
  • Jerman JC, Brough SJ, Gager T et al. Pharmacological characterization of human 5-HT2 receptor subtypes. Eur. J. Pharmacol.414, 23–30 (2001).
  • Weinreb RN, Kashiwagi K, Kashiwagi F et al. Prostaglandins increase matrix metalloproteinase release from human ciliary smooth muscle cells. Invest. Ophthalmol. Vis. Sci.38, 2772–2780 (1997).
  • Wiederholt M, Thieme H, Stumpff F. The regulation of trabecular meshwork and ciliary muscle contractility. Prog. Retinal Eye Res.19, 271–295 (2000).
  • WuDunn D. Mechanobiology of trabecular meshwork cells. Exp. Eye Res.88, 718–723 (2009).
  • Hellberg MR, McLaughlin MA, Sharif NA et al. Identification and characterization of the ocular hypotensive efficacy of travoprost, a potent and selective FP prostaglandin receptor agonist, and AL-6598, a DP prostaglandin receptor agonist. Surv. Ophthalmol.47(Suppl. 1), S13–S33 (2002).
  • Sharif NA, Xu SX, Crider JY, McLaughlin M, Davis TL. Levobetaxolol (Betaxon™) and other β-adrenergic antagonists: preclinical pharmacology, IOP-lowering activity and sites of action in human eyes. J. Ocular Pharmacol. Ther.17, 305–317 (2001).
  • Toris CB, Zhan GL, Camras CB, McLaughlin MA. Effects of travoprost on aqueous humor dynamics in monkeys. J. Glaucoma14, 70–73 (2005).
  • Regina MJ, Winter JC, Rabin RA. Characterization of a novel effect of serotonin 5-HT1A and 5-HT2A receptors: increasing cGMP levels in rat frontal cortex. Neuropharmacology45, 1041–1049 (2003).
  • Dismuke WM, Mbadugha CC, Ellis DZ. NO-induced regulation of human trabecular meshwork cell volume and aqueous humor outflow facility involve the BKCa ion channel. Am. J. Physiol. Cell Physiol.294, C1378–C1386 (2008).
  • Dismuke WM, Sharif NA, Ellis DZ. Human trabecular meshwork cell volume decrease by NO-independent soluble guanylate cyclase activators YC-1 and BAY-58–2667 involves the BKCa ion channel. Invest. Ophthalmol. Vis. Sci.50, 3353–3359 (2009).
  • Toris CB, Zhan GL, McLaughlin MA. Effects of brinzolamide on aqueous humor dynamics in monkeys and rabbits. J. Ocular Pharmacol. Ther.19, 397–404 (2003).
  • Sharif NA, Williams GW, Crider JY, Xu SX, Davis TL. Molecular pharmacology of the ocular hypotensive DP/EP2 class prostaglandin AL-6598 and localization of DP and EP2 receptor sites in human eyes. J. Ocular Pharmacol. Ther.20, 489–508 (2004).
  • Toris CB, Zhan GL, Feilmeier MR, Camras CB, McLaughlin MA. Effects of a prostaglandin DP receptor agonist, AL-6598, on aqueous humor dynamics in a nonhuman primate model of glaucoma. J. Ocul. Pharmacol. Ther.22, 86–92 (2006).
  • Selliah RD, Hellberg MR, Sharif NA et al. AL-12182, a novel 11-oxa prostaglandin analog with topical ocular hypotensive activity in the monkey. Bioorgan. Med. Chem. Lett.14, 4525–4528 (2004).
  • Sharif NA, McLaughlin MA, Kelly CR, Xu SX, Crider JY, Parker J. Preclinical pharmacology of AL-12182, a new ocular hypotensive 11-oxa-prostaglandin analog. J. Ocular Pharmacol. Ther.22, 291–309 (2006).
  • May JA, Dean TR, Sharif NA, Chen H-W. Serotonergic 5-HT7 receptor compounds for treating ocular and CNS disorders. US Patent 7060704 (2006).
  • Evans DW, Hosking SL, Gherghel D, Bartlett JD. Contrast sensitivity improves after brimonidine therapy in primary open-angle glaucoma: a case for neuroprotection. Br. J. Ophthalmol.87, 1463–1465 (2003).
  • Croxtall JD, Scott LJ. Brinzolamide/timolol: in open-angle glaucoma and ocular hypertension. Drugs Aging26, 437–446 (2009).
  • Ferrer E. Trabecular meshwork as a new target for the treatment of glaucoma. Drug News Perspect.19, 151–158 (2006).
  • Dalhmann-Noor AH, Vijay S, Strid Limb G, Khaw PT. Strategies for optic nerve rescue and regeneration in glaucoma and optic neuropathies. Drug Discov. Today15, 287–299 (2010).
  • Cho KS, Chen DF. Promoting optic nerve regeneration in adult mice with a pharmaceutical approach. Neurochem. Res.33, 2126–2133 (2008).
  • Charalambous P, Hurst LA, Thanos S. Engrafted chicken neural tube-derived stem cells support the innate propensity for axonal regeneration within the rat optic nerve. Invest. Ophthalmol. Vis. Sci.49, 3513–3524 (2008).
  • Osborne NN, Cazevielle C, Carvalho AL et al.In vivo and in vitro experiments show that betaxolol is a retinal neuroprotective agent. Brain Res.751, 113–123 (1997).
  • Agarwal N, Krishnamoorthy RR, Landers R et al. Levobetaxolol-induced up-regulation of retinal bFGF and CNTF mRNAs and preservation of retinal function against a photic-induced retinopathy. Exp. Eye Res.74, 445–453 (2002).
  • Nagata T, Ueno S, Morita H et al. Direct inhibition of N-methyl-D-aspartate (NMDA)-receptor function by antiglaucomatous β-antagonists. J. Pharmacol. Sci.106, 423–434 (2008).
  • Mackenzie P, Cioffi G. How does lowering of intraocular pressure protect the optic nerve? Surv. Ophthalmol.53(Suppl. 1), S39–S43 (2008).
  • Smith PD, Sun F, Park KK et al. SOCS3 deletion promotes optic nerve regeneration. Neuron64, 617–623 (2009).
  • Takayama Y, Yukuo Y, Masayoshi U. Visual function disorder improving agents. US Patent 7109208 (2006).
  • Azuma M, Yoshida Y, Waki M, Uehata M. Agents for prophylaxis and treatment of glaucoma. US Patent 6649625 (2003).
  • Osborne NN. Mitochondria: their role in ganglion cell death and survival in primary open angle glaucoma. Exp. Eye Res.90, 750–757 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.