32
Views
1
CrossRef citations to date
0
Altmetric
Review

Nonviral gene therapy for age-related macular degeneration

Pages 81-93 | Published online: 09 Jan 2014

References

  • Abdelsalam A, Del Priore L, Zarbin MA. Drusen in age-related macular degeneration: pathogenesis, natural course, and laser photocoagulation-induced regression. Surv. Ophthalmol.44, 1–29 (1999).
  • Klein R, Cruickshanks KJ, Nash SD et al. The prevalence of age-related macular degeneration and associated risk factors. Arch. Ophthalmol.128, 750–758 (2010).
  • Fine SL, Berger JW, Maguire MG, Ho AC. Age-related macular degeneration. N. Engl. J. Med.342, 483–492 (2000).
  • Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP. Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv. Ophthalmol.48, 257–293 (2003).
  • Clemons TE, Milton RC, Klein R, Seddon JM, Ferris FL. Risk factors for the incidence of Advanced Age-Related Macular Degeneration in the Age-Related Eye Disease Study (AREDS). AREDS report no. 19. Ophthalmology112, 533–539 (2005).
  • Friedman DS, O’Colmain BJ, Muñoz B et al.; Eye Diseases Prevalence Research Group. Prevalence of age-related macular degeneration in the United States. Arch. Ophthalmol.122, 564–572 (2004).
  • Augood CA, Vingerling JR, de Jong PT et al. Prevalence of age-related maculopathy in older Europeans. The European Eye Study (EurEye). Arch. Ophthalmol.124, 529–535 (2006).
  • Thornton J, Edwards R, Mitchell P, Harrison RA, Buchan I, Kelly SP. Smoking and age-related macular degeneration: a review of association. Eye19, 935–944 (2005).
  • Hyman L, Neborsky R. Risk factors for age-related macular degeneration: an update. Curr. Opin. Ophthalmol.13, 171–175 (2002).
  • San Giovanni JP, Chew EY, Agron E et al. The relationship of dietary ω-3 long-chain polyunsaturated fatty acid intake with incident age-related macular degeneration. AREDS report no. 23. Arch. Ophthalmol.126, 1274–1279 (2008).
  • Mitchel P, Smith W, Attebo K, Wang JJ. Prevalence of age-related maculopathy I Australia, the Blue Mountain Eye Study. Ophthalmology102, 1450–1460 (1995).
  • Feskanich D, Cho E, Schaumberg DA, Colditz GA, Hankinson SE. Menopausal and reproductive factors and risk of age-related macular degeneration. Arch. Ophthalmol.126, 519–524 (2008).
  • Kawasaki R, Wang JJ, Ji GJ et al. Prevalence and risk factors for age-related macular degeneration in an adult Japanese population: the Funagata study. Ophthalmology115, 1376–1381 (2008).
  • West SK. Racial differences in the prevalence of age-related macular degeneration: the Salisbury Eye Evaluation (SEE) project. Arch. Ophthalmol.126, 241–245 (2008).
  • Klein R, Klein BE, Knudtson MD et al. Prevalence of age-related macular degeneration in 4 racial/ethnic groups in the Multi-ethnic Study of Atherosclerosis. Ophthalmology113, 373–380 (2006).
  • Hammond CJ, Webster AR, Snieder H, Bird AC, Gilbert CE, Spector TD. Genetic influence on early age-related maculopathy: a twin study. Ophthalmology109, 730–736 (2002).
  • Klein ML, Mauldin WM, Stoumbos VD. Heredity and age-related macular degeneration. Observations in monozygotic twins. Arch. Ophthalmol.112, 932–937 (1994).
  • Klein ML, Schultz DW, Edwards A et al. Age-related macular degeneration: clinical features in a large family and linkage to chromosome 1q. Arch. Ophthalmol.116, 1082–1088 (1998).
  • Katta S, Kaur I, Chakrabarti S. The molecular genetic basis of age-related macular degeneration: an overview. J. Genet.88, 425–449 (2009).
  • Zarbin MA. Current concepts in the pathogenesis of age related macular degeneration. Arch. Ophthalmol.122, 598–614 (2004).
  • Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and β carotene for age-related cataract and vision loss: AREDS report no. 9. Arch. Ophthalmol.119, 1439–1452 (2001).
  • Kaiser PK. Treatment of Age-Related Macular Degeneration with Photodynamic Therapy (TAP) study group. Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: 5-year results of two randomized clinical trials with an open-label extension: TAP report no. 8. Graefes Arch. Clin. Exp. Ophthalmol.244, 1132–1142 (2006).
  • Hawkins BS, Bressler NM, Miskala PH et al. Surgery for subfoveal choroidal neovascularization in age-related macular degeneration: ophthalmic findings: SST report no. 11. Ophthalmology111, 1967–1980 (2004).
  • Wilson CA, Berkowitz BA, Sato Y, Ando N, Handa JT, de Juan E Jr. Treatment with intravitreal steroid reduces blood–retinal barrier breakdown due to retinal photocoagulation. Arch. Ophthalmol.110, 1155–1159 (1992).
  • Mruthyunjaya P, Stinnett SS, Toth CA. Change in visual function after macular translocation with 360 degrees retinectomy for neovascular age-related macular degeneration. Ophthalmology111, 1715–1724 (2004).
  • Machemer R, Steinhorst UH. Retinal separation, retinotomy, and macular relocation: II. A surgical approach for age-related macular degeneration?. Graefes Arch. Clin. Exp. Ophthalmol.231, 635–641 (1993).
  • Fujii GY, de Juan E Jr, Pieramici DJ et al. Inferior limited macular translocation for subfoveal choroidal neovascularization secondary to age-related macular degeneration: 1-year visual outcome and recurrence report. Am. J. Ophthalmol.134, 69–74 (2002).
  • Aisenbrey S, Bartz-Schmidt KU, Walter P et al. Long-term follow-up of macular translocation with 360° retinotomy for exudative age-related macular degeneration. Arch. Ophthalmol.125, 1367–1372 (2007).
  • Bereczki A, Bíró Z. Can macular translocation be a satisfactory management of subfoveal choroidal neovascular membrane?. Clin. Ophthalmol.2, 447–450 (2008).
  • Gelisken F, Voelker M, Schwabe R et al. Full macular translocation versus photodynamic therapy with verteporfin in the treatment of neovascular age-related macular degeneration: 1-year results of a prospective, controlled, randomised pilot trial (FMT-PDT). Graefes Arch. Clin. Exp. Ophthalmol.245, 1085–1095 (2007).
  • Ghazi NG, Jabbour NM, De La Cruz ZC et al. Clinicopathologic studies of age-related macular degeneration with classic subfoveal choroidal neovascularization treated with photodynamic therapy. Retina21, 478–486 (2001).
  • Verteporfin in Photodynamic Therapy Study Group. Verteporfin therapy of subfoveal choroidal neovascularization in age-related macular degeneration: two-year results of a randomized clinical trial including lesions with occult with no classic choroidal neovascularisation – verteporfin in photodynamic therapy report 2. Am. J. Ophthalmol.131, 541–560 (2001).
  • Chen E, Brown DM, Wong TP. Lucentis Using Visudyne study: determining the threshold-dose fluence of verteporfin photodynamic therapy combined with intravitreal ranibizumab for exudative macular degeneration. Clin. Ophthalmol.4, 1073–1079 (2010).
  • Bashshur ZF, Schakal AR, El-Mollayess GM et al. Ranibizumab monotherapy versus single-session verteporfin photodynamic therapy combined with as-needed ranibizumab treatment for the management of neovascular age-related macular degeneration. Retina DOI: 10.1097/IAE.0b013e3181d5e964 (2010) (Epub ahead of print).
  • Ohno-Matsui K, Hirose A, Yamamoto S et al. Inducible expression of vascular endothelial growth factor in adult mice causes severe proliferative retinopathy and retinal detachment. Am. J. Pathol.160, 711–719 (2002).
  • Ohno-Matsui K. Molecular mechanism for choroidal neovascularization in age-related macular degeneration. Nippon Ganka Gakkai Zasshi107, 657–673 (2003).
  • Kwak N, Okamoto N, Wood J, Campochiaro P. VEGF is major stimulator in model of choroidal neovascularization. Invest. Ophthalmol. Vis. Sci.4, 3158–3164 (2004).
  • Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M, Guyer DR. VEGF Inhibition Study in Ocular Neovascularization clinical trial group. Pegaptanib for neovascular age-related macular degeneration. N. Engl. J. Med.351, 2805–2816 (2004).
  • Brown DM, Kaiser PK, Michels M et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N. Engl. J. Med.355, 1432–1444 (2006).
  • Brown DM, Michels M, Kaiser PK, Heier JS, Sy JP, Ianchulev T; ANCHOR Study Group. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: two-year results of the ANCHOR study. Ophthalmology116, 57–65 (2009).
  • Rosenfeld PJ, Brown DM, Heier JS et al. MARINA Study Group. Ranibizumab for neovascular age-related macular degeneration. N. Engl. J. Med.355, 1419–1431 (2006).
  • Adelman RA, Zheng Q, Mayer HR. Persistent ocular hypertension following intravitreal bevacizumab and ranibizumab injections. J. Ocul. Pharmacol. Ther.26, 105–110 (2010).
  • Krishnan R, Goverdhan S, Lochhead J. Submacular haemorrhage after intravitreal bevacizumab compared with intravitreal ranibizumab in large occult choroidal neovascularization. Clin. Experiment Ophthalmol.37, 384–388 (2009).
  • Baeteman C, Hoffart L, Galland F, Ridings B, Conrath J. Subretinal hemorrhage after intravitreal injection of anti-VEGF for age-related macular degeneration: a retrospective study. J. Fr. Ophtalmol.32, 309–313 (2009).
  • Emerich DF, Thanos CG. NT-501: an ophthalmic implant of polymer-encapsulated ciliary neurotrophic factor-producing cells. Curr. Opin. Mol. Ther.10, 506–515 (2008).
  • Garber K. Biotec in a blink. Nat. Biotechnol.28, 311–315 (2010).
  • Oliver-Fernandez A, Bakal J, Segal S, Shah GK, Dugar A, Sharma S. Progression of visual loss and time between initial assessment and treatment of wet age-related macular degeneration. Can. J. Ophthalmol.40, 313–319 (2009).
  • Bearelly S, Chau FY, Koreishi A, Stinnett SS, Izatt JA, Toth CA. Spectral domain optical coherence tomography imaging of geographic atrophy margins. Ophthalmology116, 1762–1769 (2009).
  • Anderson WF, Blaese RM, Culver K. The ADA human gene therapy clinical protocol: points to consider response with clinical protocol, July 6, 1990. Hum. Gene Ther.1, 331–362 (1990).
  • Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science288, 669–672 (2000).
  • Hacein-Bey-Abina S, Le Deist F, Carlier F et al. Sustained correction of X-linked severe combined immunodeficiency by ex vivo gene therapy. N. Engl. J. Med.346, 1185–1193 (2002).
  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science302, 415–419 (2003).
  • Raper SE, Chirmule N, Lee FS et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol. Genet. Metab.80, 148–158 (2003).
  • Kohn DB, Sadelain M, Glorioso JC. Occurrence of leukaemia following gene therapy of X-linked SCID. Nat. Rev. Cancer3, 477–488 (2003).
  • Stone EM, Fingert JH, Alward WL et al. Identification of a gene that causes primary open angle glaucoma. Science275, 668–670 (1997).
  • Farrar GJ, Kenna PF, Humphries P. On the genetics of retinitis pigmentosa and on mutation-independent approaches to therapeutic intervention. EMBO J.21, 857–864 (2002).
  • Ferreira PA. Insights into X-linked retinitis pigmentosa type 3, allied diseases and underlying pathomechanisms. Hum. Mol. Genet.14(Suppl. 2), R259–R267 (2005).
  • Dinga X, Patela M, Chana CC. Molecular pathology of age-related macular degeneration. Prog. Retin. Eye Res.28, 1–18 (2009).
  • Molday RS. Photoreceptor membrane proteins, phototransduction, and retinal degenerative diseases. The Friedenwald Lecture. Invest. Ophthalmol. Vis. Sci.39, 2491–2513 (1998).
  • Acland GM, Aguirre GD, Ray J et al. Gene therapy restores vision in a canine model of childhood blindness. Nat. Genet.28, 92–95 (2001).
  • Maguire AM, Simonelli F, Pierce EA et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N. Engl. J. Med.358, 2240–2248 (2008).
  • Bainbridge JW, Smith J, Barker SS et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N. Engl. J. Med.358, 2231–2239 (2008).
  • Hauswirth WW, Aleman TS, Kaushal S et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a Phase I trial. Hum. Gene Ther.19, 979–990 (2008).
  • Cideciyan AV, Aleman TS, Boye SL et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc. Natl Acad. Sci. USA105, 15112–15117 (2008).
  • Simonelli F, Maguire AM, Testa F et al. Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol. Ther.18, 643–650 (2010).
  • Campochiaro PA, Nguyen QD, Shah SM et al. Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a Phase I clinical trial. Hum. Gene Ther.17, 167–176 (2006).
  • Liu MM, Tuo J, Chan CC. Gene therapy for ocular diseases. Br. J. Ophthalmol. DOI:10.1136/bjo.2009.174912 (2010) (Epub ahead of print).
  • Hartman ZC, Appledorn DM, Amalfitano A. Adenovirus vector induced innate immune responses: impact upon efficacy and toxicity in gene therapy and vaccine applications. Virus Res.132, 1–14 (2008).
  • Hartman ZC, Black EP, Amalfitano A. Adenoviral infection induces a multi-faceted innate cellular immune response that is mediated by the toll-like receptor pathway in A549 cells. Virology358, 357–372 (2007).
  • Worgall S, Sondhi D, Hackett NR et al. Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adenoassociated virus expressing CLN2 cDNA. Hum. Gene Ther.19, 463–474 (2008).
  • Yoshioka Y, Abe T, Wakusawa R et al. Recombinant AAV-transduced iris pigment epithelial cell transplantation may transfer vector to native RPE but suppress systemic dissemination. Invest. Ophthalmol. Vis. Sci.47, 745–752 (2006).
  • Nair V. Retrovirus-induced oncogenesis and safety of retroviral vectors. Curr. Opin. Mol. Ther.10, 431–438 (2008).
  • Ginn SL, Liao SH, Dane AP et al. Lymphomagenesis in SCID-X1 mice following lentivirus-mediated phenotype correction independent of insertional mutagenesis and γ overexpression. Mol. Ther.18, 965–976 (2010).
  • Liu G, Li D, Pasumarthy MK et al. Nanoparticles of compacted DNA transfect postmitotic cells. J. Biol. Chem.278, 32578–32586 (2003).
  • Fink TL, Klepcyk PJ, Oette SM et al. Plasmid size up to 20 kbp does not limit effective in vivo lung gene transfer using compacted DNA nanoparticles. Gene Ther.13, 1048–1051 (2006).
  • Farjo R, Skaggs J, Quiambao AB, Cooper MJ, Naash MI. Efficient non-viral ocular gene transfer with compacted DNA nanoparticles. PLoS ONE1, e38 (2006).
  • Cai X, Nash Z, Conley SM, Fliesler SJ, Cooper MJ, Naash MI. A partial structural and functional rescue of a retinitis pigmentosa model with compacted DNA nanoparticles. PLoS ONE4, e5290 (2009).
  • Ding XQ, Quiambao AB, Fitzgerald JB, Cooper MJ, Conley SM, Naash MI. Ocular delivery of compacted DNA-nanoparticles does not elicit toxicity in the mouse retina. PLoS ONE,4, e7410 (2009).
  • Cai X, Conley SM, Nash Z, Fliesler SJ, Cooper MJ, Naash MI. Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa. FASEB J.24, 1178–1191 (2010).
  • Rebersek M, Faurie C, Kanduser M et al. Electroporator with automatic change of electric field direction improves gene electrotransfer in-vitro.Biomed. Eng. Online6, 25 (2007).
  • Mutlu GM, Machado-Aranda D, Norton JE et al. Electroporation-mediated gene transfer of the Na+, K+-ATPase rescues endotoxin-induced lung injury. Am. J. Respir. Crit. Care Med.176, 582–590 (2007).
  • Zeitelhofer M, Vessey JP, Xie Y et al. High-efficiency transfection of mammalian neurons via nucleofection. Nat. Protoc.2, 1692–1704 (2007).
  • Oshima Y, Sakamoto T, Yamanaka I, Nishi T, Ishibashi T, Inomata H. Targeted gene transfer to corneal endothelium in vivo by electric pulse. Gene Ther.5, 1347–1354 (1998).
  • Ellouze S, Augustin S, Bouaita A et al. Optimized allotopic expression of the human mitochondrial ND4 prevents blindness in a rat model of mitochondrial dysfunction. Am. J. Hum. Genet.83, 373–387 (2008).
  • Man PY, Griffiths PG, Brown DT, Howell N, Turnbull DM, Chinnery PF. The epidemiology of Leber hereditary optic neuropathy in the North East of England. Am. J. Hum. Genet.72, 333–339 (2003).
  • Howell N, Bindoff LA, McCullough DA et al. Leber hereditary optic neuropathy: identification of the same mitochondrial ND1 mutation in six pedigrees. Am. J. Hum. Genet.49, 939–950 (1991).
  • Wallace DC, Singh G, Lott MT et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science9(242), 1427–1430 (1998).
  • Johns DR, Neufeld MJ, Park RD. An ND-6 mitochondrial DNA mutation associated with Leber hereditary optic neuropathy. Biochem. Biophys. Res. Commun.187, 1551–1557 (1992).
  • Spruijt L, Kolbach DN, de Coo RF et al. Influence of mutation type on clinical expression of Leber hereditary optic neuropathy. Am. J. Ophthalmol.141, 676–682 (2006).
  • Yu-Wai-Man P, Griffiths PG, Hudson G, Chinnery PF. Inherited mitochondrial optic neuropathies. J. Med. Genet.46, 145–158 (2009).
  • Butterwick A, Vankov A, Huie P, Freyvert Y, Palanker D. Tissue damage by pulsed electrical stimulation. IEEE Trans. Biomed. Eng.54, 2261–2267 (2007).
  • Chalberg TW, Vankov A, Molnar FE et al. Gene transfer to rabbit retina with electron avalanche transfection. Invest. Ophthalmol. Vis. Sci.47, 4083–4090 (2006).
  • Chaum E, Yang H. Transgenic expression of IGF-1 modifies the proliferative potential of human retinal pigment epithelial cells. Invest. Ophthalmol. Vis. Sci.43, 3758–3764 (2002).
  • Matsuda T, Cepko CL. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc. Natl Acad. Sci. USA101, 16–22 (2004).
  • Johnson CJ, Berglin L, Chrenek MA, Redmond TM, Boatright JH, Nickerson JM. Technical brief: subretinal injection and electroporation into adult mouse eyes. Mol. Vis.14, 2211–2226 (2008).
  • Lagali PS, Balya D, Awatramani GB et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat. Neurosci.11, 667–675 (2008).
  • Matsuda T, Cepko CL. Controlled expression of transgenes introduced by in vivo electroporation. Proc. Natl Acad. Sci. USA104, 1027–1032 (2007).
  • Gouras P, Flood MT, Kjeldbye H. Transplantation of cultured human retinal cells to monkey retina. An. Acad. Bras. Cienc.56, 431–443 (1984).
  • Gouras P, Flood MT, Kjedbye H, Bilek MK, Eggers H. Transplantation of cultured human retinal epithelium to Bruch’s membrane of the owl monkey’s eye. Curr. Eye Res.4, 253–265 (1985).
  • Gouras P, Lopez R, Brittis M, Kjeldbye H. The ultrastructure of transplanted rabbit retinal epithelium. Graefes Arch. Clin. Exp. Ophthalmol.230, 468–475 (1992).
  • Pinilla I, Cuenca N, Sauve Y, Wang S, Lund RD. Preservation of outer retina and its synaptic connectivity following subretinal injections of human RPE cells in the Royal College of Surgeons rat. Exp. Eye Res.85, 381–392 (2007).
  • Gias C, Jones M, Keegan D et al. Preservation of visual cortical function following retinal pigment epithelium transplantation in the RCS rat using optical imaging techniques. Eur. J. Neurosci.25, 1940–1948 (2007).
  • Lund RD, Wang S, Klimanskaya I et al. Human embryonic stem cell-derived cells rescue visual function in dystrophic RCS rats. Cloning Stem Cells8, 189–199 (2006).
  • Lawrence JM, Keegan DJ, Muir EM et al. Transplantation of Schwann cell line clones secreting GDNF or BDNF into the retinas of dystrophic Royal College of Surgeons rats. Invest. Ophthalmol. Vis. Sci.45, 267–274 (2004).
  • Wang S, Lu B, Wood P, Lund RD. Grafting of ARPE-19 and Schwann cells to the subretinal space in RCS rats. Invest. Ophthalmol. Vis. Sci.46, 2552–2560 (2005).
  • Wang S, Girman S, Lu BR et al. Long-term vision rescue by human neural progenitors in a rat model of photoreceptor degeneration. Invest. Ophthalmol. Vis. Sci.49, 3201–3206 (2008).
  • Thumann G, Salz AK, Walter P, Johnen S. Preservation of photoreceptors in dystrophic RCS rats following allo- and xenotransplantation of IPE cells. Graefes Arch. Clin. Exp. Ophthalmol.247, 363–369 (2009).
  • Wang NK, Tosi J, Kasanuki JM et al. Transplantation of reprogrammed embryonic stem cells improves visual function in a mouse model for retinitis pigmentosa. Transplantation89, 911–919 (2010).
  • Peyman GA, Blinder KJ, Paris CL, Alturki W, Nelson NC Jr, Desai U. A technique for retinal pigment epithelium transplantation for age-related macular degeneration secondary to extensive subfoveal scarring. Ophthalmic Surg.22, 102–108 (1991).
  • Del Priore LV, Kaplan HJ, Tezel TH, Hayashi N, Berger AS, Green WR. Retinal pigment epithelial cell transplantation after subfoveal membranectomy in age related macular degeneration: clinicopathologic correlation. Am. J. Ophthalmol.131, 472–480 (2001).
  • Binder S, Stolba U, Krebs I et al. Transplantation of autologous retinal pigment epithelium in eyes with foveal neovascularization resulting from age-related macular degeneration: a pilot study. Am. J. Ophthalmol.133, 215–224 (2002).
  • Stanga PE, Kychenthal A, Fitzke FW et al. Retinal pigment epithelium transplantation after choroidal neovascular membrane removal in age-related macular degeneration. Ophthalmology109, 1492–1498 (2002).
  • Van Meurs JC, Van Den Biesen PR. Autologous retinal pigment epithelium and choroid translocation in patients with exudative age-related macular degeneration: short-term follow-up. Am. J. Ophthalmol.136, 688–695 (2003).
  • Treumer F, Bunse A, Klatt C, Roider J. Autologous retinal pigment epithelium–choroid sheet transplantation in age related macular degeneration: morphological and functional results. J. Ophthalmol.91, 349–353 (2007).
  • Falkner-Radler CI, Krebs I, Glittenberg C et al. Human retinal pigment epithelium (RPE) transplantation: outcome after autologous RPE–choroid sheet and RPE cell-suspension in a randomised clinical study. Br. J. Ophthalmol. DOI: 10.1136/bjo.2009.176305 (2010) (Epub ahead of print).
  • Thumann G, Bartz-Schmidt KU, Heimann K, Schraermeyer U. Phagocytosis of rod outer segments by human iris pigment epithelial cells in vitro. Graefes Arch. Clin. Exp. Ophthalmol.236, 753–757 (1998).
  • Thumann G, Kociok N, Bartz-Schmidt KU, Esser P, Schraermeyer U, Heimann K. Detection of mRNA for proteins involved in retinol metabolism in iris pigment epithelium. Graefes Arch. Clin. Exp. Ophthalmol.237, 1046–1051 (1999).
  • Freddo T. Intercellular junctions of the iris epithelia in Macaca mulatta. Invest. Ophthalmol. Vis. Sci.25, 1094–1104 (1984).
  • Hu DN, Ritch R, McCormick SA, Pelton-Henrion K. Isolation and cultivation of human iris pigment epithelium. Invest. Ophthalmol. Vis. Sci.33, 2443–2453 (1992).
  • Hu DN, McCormick SA, Ritch R. Isolation and culture of iris pigment epithelium from iridectomy specimens of eyes with and without exfoliation syndrome [published correction appears in Arch. Ophthalmol.115, 650 (1997)]. Arch. Ophthalmol.115, 89–94 (1997).
  • Thumann G, Bartz-Schmidt KU, El Bakri H et al. Transplantation of autologous iris pigment epithelium to the subretinal space in rabbits. Translocation68, 195–201 (1999).
  • Crafoord S, Geng L, Seregard S, Algvere PV. Experimental transplantation of autologous iris pigment epithelial cells to the subretinal space. Acta Ophthalmol. Scand.79, 509–514 (2001).
  • Thumann G, Aisenbrey S, Schraermeyer U et al. Transplantation of autologous iris pigment epithelium after removal of choroidal neovascular membranes. Arch. Ophthalmol.118, 1350–1355 (2000).
  • Aisenbrey S, Lafaut BA, Szurman P et al. Iris pigment epithelial translocation in the treatment of exudative macular degeneration: a 3-year follow-up. Arch. Ophthalmol.124, 183–188 (2006).
  • Booij JC, Baas DC, Beisekeeva J, Gorgels TG, Bergen AA. The dynamic nature of Bruch’s membrane. Prog. Retin. Eye Res.29, 1–18 (2010).
  • Tong JP, Yao YF. Contribution of VEGF and PEDF to choroidal angiogenesis: a need for balanced expressions. Clin. Biochem.39, 267–276 (2006).
  • Gamm DM, Wright LS, Capowski EE et al. Regulation of prenatal human retinal neurosphere growth and cell fate potential by retinal pigment epithelium and Mash1. Stem Cells26, 3182–3193 (2008).
  • Osborne NN, Chidlow G, Wood JP, Schmidt KG, Casson R, Melena J. Expectations in the treatment of retinal diseases: neuroprotection. Curr. Eye. Res.22, 321–332 (2001).
  • Gao G, Li Y, Zhang D, Gee S, Crosson C, Ma J. Unbalanced expression of VEGF and PEDF in ischemia-induced retinal neovascularization. FEBS Lett.489, 270–276 (2001).
  • Witmer AN, Vrensen GF, van Noorden CJ, Schlingemann RO. Vascular endothelial growth factors and angiogenesis in eye disease. Prog. Retin. Eye Res.22, 1–29 (2003).
  • Aiello LP, Avery RL, Arrigg PG et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Eng. J. Med.331, 1480–1487 (1994).
  • Miller JW, Adamis AP, Aiello LP. Vascular endothelial growth factor in ocular neovascularization and proliferative diabetic retinopathy. Diabetes Metab. Rev.13, 37–50 (1997).
  • Alge CS, Priglinger SG, Neubauer AS et al. Retinal pigment epithelium is protected against apoptosis by αB-crystallin. Invest. Ophthalmol. Vis. Sci.43, 3575–3582 (2002).
  • Abul-Hassan K, Walmsley R, Boulton M. Optimization of non-viral gene transfer to human primary retinal pigment epithelial cells. Curr. Eye Res.20, 361–366 (2000).
  • Chiba C, Nakamura K, Unno S, Saito T. Intraocular implantation of DNA-transfected retinal pigment epithelium cells: a new approach for analyzing molecular functions in the newt retinal regeneration. Neurosci. Lett.368, 171–175 (2004).
  • Bejjani RA, BenEzra D, Cohen H et al. Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol. Vis.11, 124–132 (2005).
  • Chen J, Xiang N, Xu L, Zeng S. Inhibition of PCNA antisense oligonucleotides mediated by liposome on mRNA expression and proliferation of h-RPE cells. J. Huazhong Univ. Sci. Technolog. Med. Sci.26, 392–395 (2006).
  • del Pozo-Rodríguez A, Delgado D, Solinís MA, Gascón AR, Pedraz JL. Solid lipid nanoparticles for retinal gene therapy: transfection and intracellular trafficking in RPE cells. Int. J. Pharm.360, 177–183 (2008).
  • Fujii Y, Kachi S, Ito A, Kawasumi T, Honda H, Terasaki H. Transfer of gene to human retinal pigment epithelial cells using magnetite cationic liposomes. Br. J. Ophthalmol.94, 1074–1077 (2010).
  • Abe T, Wakusawa R, Seto H, Asai N, Saito T, Nishida, K. Topical doxycycline can induce expression of BDNF in transduced retinal pigment epithelial cells transplanted into the subretinal space. Invest. Ophthalmol. Vis. Sci.49, 3631–3639 (2008).
  • Thumann G, Stöcker M, Maltusch C et al. High efficiency non-viral transfection of retinal and iris pigment epithelial cells with pigment epithelium-derived factor. Gene Ther.17, 181–189 (2010).
  • Bateman JR, Wu CT. A simple polymerase chain reaction-based method for the construction of recombinase-mediated cassette exchange donor vectors. Genetics180, 1763–1766 (2008).
  • Fu Q, Jia S, Sun Z et al. PhiC31 integrase and liver-specific regulatory elements confer high-level, long-term expression of firefly luciferase in mouse liver. Biotechnol. Lett.31, 1151–1157 (2009).
  • Chalberg TW, Genise HL, Vollrath D, Calos MP. phiC31 integrase confers genomic integration and long-term transgene expression in rat retina. Invest. Ophthalmol. Vis. Sci.46, 2140–2146 (2005).
  • Chalberg TW, Portlock JL, Olivares EC et al. Integration specificity of phage phiC31 integrase in the human genome. J. Mol. Biol.357, 28–48 (2006).
  • Ehrhardt A, Engler JA, Xu H, Cherry AM, Kay MA. Molecular analysis of chromosomal rearrangements in mammalian cells after phiC31-mediated integration. Hum. Gene Ther.17, 1077–1094 (2006).
  • Liu J, Skjørringe T, Gjetting T, Jensen TG. PhiC31 integrase induces a DNA damage response and chromosomal rearrangements in human adult fibroblasts. BMC Biotechnol.9, 31 (2009).
  • Vanden Driessche T, Ivics Z, Izsvak Z, Marinee KL, Chuah MKL. Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells. Blood114, 1461–1468 (2009).
  • Izsvák Z, Hackett PB, Cooper LJ, Ivics Z. Translating Sleeping Beauty transposition into cellular therapies: victories and challenges. Bioessays32, 756–767 (2010).
  • Liu G, Geurts AM, Yae K et al. Target-site preferences of Sleeping Beauty transposons. J. Mol. Biol.346, 161–173 (2005).
  • Geurts AM, Hackett CS, Bell JB et al. Structure-based prediction of insertion-site preferences of transposons into chromosomes. Nucleic Acids Res.34, 2803–2811 (2006).
  • Charbel Issa P, Troeger E, Finger R, Holz FG, Wilke R, Scholl HP. Structure-function correlation of the human central retina. PLoS ONE5(9) pii e12864 (2010).
  • Liu YY, Chen M, Ishikawa H, Wollstein G, Schuman JS, Rehg JM. Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid with local binary patterns. Med. Image Comput. Comput. Assist. Interv.13, 1–9 (2010).
  • Patel N, Ohbayashi M, Nugent AK et al. Circulating anti-retinal antibodies as immune markers in age-related macular degeneration. Immunology115, 422–430 (2005).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.