87
Views
5
CrossRef citations to date
0
Altmetric
Review

Advantages and disadvantages of molecular testing in ophthalmology

&
Pages 221-245 | Published online: 09 Jan 2014

References

  • Giovanni MA, Fickie MR, Lehmann LS et al. Health-care referrals from direct-to-consumer genetic testing. Genet. Test Mol. Biomarkers14(6), 817–819 (2010).
  • Zarbin MA, Montemagno C, Leary JF, Ritch R. Nanotechnology in ophthalmology. Can. J. Ophthalmol.45(5), 457–476 (2010).
  • Sutherland JE, Day MA. Genetic counseling and genetic testing in ophthalmology. Curr. Opin. Ophthalmol.20(5), 343–350 (2009).
  • Nussbaum RL, McInnes RR, Willard HF, Thompson MW, Hamosh A. Thompson and Thompson Genetics in Medicine. Saunders/Elsevier, PA, USA (2007).
  • Chiang PW, Spector E, Tsai AC. Oculocutaneous albinism spectrum. Am. J. Med. Genet.149A(7), 1590–1591 (2009).
  • Sutherland JE. Genetic Counseling. In: Genetic Diseases of the Eye (2nd Edition). Traboulsi EI (Ed.). Oxford University Press, NY, USA (2011) (In press).
  • Modra LJ, Massie RJ, Delatycki MB. Ethical considerations in choosing a model for population-based cystic fibrosis carrier screening. Med. J. Aust.193, 157–160 (2010).
  • Maugeri A, van Driel MA, van de Pol DJ et al. The 2588G–C mutation in the ABCR gene is a mild frequent founder mutation in the Western European population and allows the classification of ABCR mutations in patients with Stargardt disease. Am. J. Hum. Genet.64(4), 1024–1035 (1999).
  • den Hollander AI, Black A, Bennett J, Cremers FP. Lighting a candle in the dark: advances in genetics and gene therapy of recessive retinal dystrophies. J. Clin. Invest.120(9), 3042–3053 (2010).
  • Uthra S, Kumaramanickavel G. Gene therapy in ophthalmology. Oman. J. Ophthalmol.2(3), 108–110 (2009).
  • Liu MM, Tuo J, Chan CC. Gene therapy for ocular diseases. Br. J. Ophthalmol. DOI: bjo.2009.174912 (2010) (Epub ahead of print).
  • Yang Y, Mohand-Said S, Leveillard T, Fontaine V, Simonutti M, Sahel JA. Transplantation of photoreceptor and total neural retina preserves cone function in P23H rhodopsin transgenic rat. PLoS One5(10), e13469 (2010).
  • Lakowski J, Baron M, Bainbridge J et al. Cone and rod photoreceptor transplantation in models of the childhood retinopathy Leber congenital amaurosis using flow-sorted Crx-positive donor cells. Hum. Mol. Genet.19(23), 4545–4559 (2010).
  • Bhatia B, Singhal S, Jayaram H, Khaw PT, Limb GA. Adult retinal stem cells revisited. Open Ophthalmol. J.4, 30–38 (2010).
  • West EL, Pearson RA, Barker SE et al. Long term survival of photoreceptors transplanted into the adult murine neural retina requires immune modulation. Stem Cells28(11), 1997–2007 (2010).
  • Enzmann V, Yolcu E, Kaplan HJ, Ildstad ST. Stem cells as tools in regenerative therapy for retinal degeneration. Arch. Ophthalmol.127(4), 563–571 (2009).
  • Gualdoni S, Baron M, Lakowski J et al. Adult ciliary epithelial cells, previously identified as retinal stem cells with potential for retinal repair, fail to differentiate into new rod photoreceptors. Stem Cells28(6), 1048–1059 (2010).
  • Huang Y, Enzmann V, Ildstad ST. Stem cell-based therapeutic applications in retinal degenerative diseases. Stem Cell Rev. DOI: 10.1007/s12015-010-9192-8 (2010) (Epub ahead of print).
  • Diebold Y, Calonge M. Applications of nanoparticles in ophthalmology. Prog. Retin. Eye Res.29(6), 596–609 (2010).
  • Rastmanesh R. Potential of melatonin to treat or prevent age-related macular degeneration through stimulation of telomerase activity. Med. Hypotheses76(1), 79–85 (2011).
  • Schweigert FJ, Reimann J. Micronutrients and their relevance for the eye function of lutein, zeaxanthin and omega-3 fatty acids. Klin. Monbl. Augenheilkd. DOI: 10.1055/s-0029-1245527 (2010) (Epub ahead of print).
  • Fletcher AE. Free radicals, antioxidants and eye diseases: evidence from epidemiological studies on cataract and age-related macular degeneration. Ophthalmic Res.44(3), 191–198 (2010).
  • Tao W. Application of encapsulated cell technology for retinal degenerative diseases. Expert Opin. Biol. Ther.6(7), 717–726 (2006).
  • Yang Y, Mohand-Said S, Danan A et al. Functional cone rescue by RdCVF protein in a dominant model of retinitis pigmentosa. Mol. Ther.17(5), 787–795 (2009).
  • Leveillard T, Sahel JA. Rod-derived cone viability factor for treating blinding diseases: from clinic to redox signaling. Sci. Transl. Med.2(26), 26ps16 (2010).
  • Cronin T, Raffelsberger W, Lee-Rivera I et al. The disruption of the rod-derived cone viability gene leads to photoreceptor dysfunction and susceptibility to oxidative stress. Cell Death Differ.17(7), 1199–1210 (2010).
  • Tam LC, Kiang AS, Kennan A et al. Therapeutic benefit derived from RNAi-mediated ablation of IMPDH1 transcripts in a murine model of autosomal dominant retinitis pigmentosa (RP10). Hum. Mol. Genet.17(14), 2084–2100 (2008).
  • Georgiadis A, Tschernutter M, Bainbridge JW et al. AAV-mediated knockdown of peripherin-2 in vivo using miRNA-based hairpins. Gene Ther.17(4), 486–493 (2010).
  • Chadderton N, Millington-Ward S, Palfi A et al. Improved retinal function in a mouse model of dominant retinitis pigmentosa following AAV-delivered gene therapy. Mol. Ther.17(4), 593–599 (2009).
  • Tam LC, Kiang AS, Campbell M et al. Prevention of autosomal dominant retinitis pigmentosa by systemic drug therapy targeting heat shock protein 90 (Hsp90). Hum. Mol. Genet.19(22), 4421–4436 (2010).
  • Klauke S, Goertz M, Rein S et al. Stimulation with a wireless intraocular epiretinal implant elicits visual percepts in blind humans: results from stimulation tests during the EPIRET3 prospective clinical trial. Invest. Ophthalmol. Vis. Sci.52(1), 449–455 (2011).
  • Javaheri M, Hahn DS, Lakhanpal RR, Weiland JD, Humayun MS. Retinal prostheses for the blind. Ann. Acad. Med. Singapore35(3), 137–144 (2006).
  • Perez Fornos A, Sommerhalder J, Pittard A, Safran AB, Pelizzone M. Simulation of artificial vision: IV. Visual information required to achieve simple pointing and manipulation tasks. Vision Res.48(16), 1705–1718 (2008).
  • Simonelli F, Maguire AM, Testa F et al. Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol. Ther.18(3), 643–650 (2010).
  • Farrar GJ, Palfi A, O’Reilly M. Gene therapeutic approaches for dominant retinopathies. Curr. Gene Ther.10(5), 381–388 (2010).
  • Luo J, Zhou X, Diao L, Wang Z. Experimental research on wild-type p53 plasmid transfected into retinoblastoma cells and tissues using an ultrasound microbubble intensifier. J. Int. Med. Res.38(3), 1005–1015 (2010).
  • Golczak M, Bereta G, Maeda A, Palczewski K. Molecular biology and analytical chemistry methods used to probe the retinoid cycle. Methods Mol. Biol.652, 229–245 (2010).
  • Muniz A, Villazana-Espinoza ET, Hatch AL, Trevino SG, Allen DM, Tsin AT. A novel cone visual cycle in the cone-dominated retina. Exp. Eye Res.85(2), 175–184 (2007).
  • Drack A, Lambert S, Stone E. From the laboratory to the clinic: molecular genetic testing in pediatric ophthalmology. Am. J. Ophthalmol.149(1), 10–17 (2010).
  • Pradhan M, Hayes I, Vincent A. An audit of genetic testing in diagnosis of inherited retinal disorders: a prerequisite for gene-specific intervention. Clin. Experiment Ophthalmol.37(7), 703–711 (2009).
  • Sundaresan P, Vijayalakshmi P, Thompson S, Ko AC, Fingert JH, Stone EM. Mutations that are a common cause of Leber congenital amaurosis in Northern America are rare in southern India. Mol. Vis.15, 1781–1787 (2009).
  • Dryja T, Hahn L, Kajiwara K, Berson E. Dominant and digenic mutations in the peripherin/RDS and ROM1 genes in retinitis pigmentosa. Investig. Ophthalmol. Vis. Sci.38(10), 1972 (1997).
  • Witkop CJ Jr, Jay B, Creel D, Guillery RW. Optic and otic neurologic abnormalities in oculocutaneous and ocular albinism. Birth Defects Orig. Artic. Ser.18(6), 299–318 (1982).
  • Gargiulo A, Bonetti C, Montefusco S et al. AAV-mediated tyrosinase gene transfer restores melanogenesis and retinal function in a model of oculo-cutaneous albinism type I (OCA1). Mol. Ther.17(8), 1347–1354 (2009).
  • Rosenmann A, Bejarano-Achache I, Eli D, Maftsir G, Mizrahi-Meissonnier L, Blumenfeld A. Prenatal molecular diagnosis of oculocutaneous albinism (OCA) in a large cohort of Israeli families. Prenat. Diagn.29(10), 939–946 (2009).
  • Berson JF, Frank DW, Calvo PA, Bieler BM, Marks MS. A common temperature-sensitive allelic form of human tyrosinase is retained in the endoplasmic reticulum at the nonpermissive temperature. J. Biol. Chem.275(16), 12281–12289 (2000).
  • Halaban R, Svedine S, Cheng E, Smicun Y, Aron R, Hebert DN. Endoplasmic reticulum retention is a common defect associated with tyrosinase-negative albinism. Proc. Natl Acad. Sci. USA97(11), 5889–5894 (2000).
  • Oetting WS, Pietsch J, Brott MJ et al. The R402Q tyrosinase variant does not cause autosomal recessive ocular albinism. Am. J. Med. Genet. A149A(3), 466–469 (2009).
  • Hutton SM, Spritz RA. A comprehensive genetic study of autosomal recessive ocular albinism in Caucasian patients. Invest. Ophthalmol. Vis. Sci.49(3), 868–872 (2008).
  • Carmona Rivera C, Hess R, O’Brien K et al. Novel mutations in the HPS1 gene among Puerto Rican patients. Clin. Gen. DOI: 10.1111/j.1399-0004.2010.01491.x. (2010) (Epub ahead of print).
  • Torres-Serrant M, Ramirez SI, Cadilla CL, Ramos-Valencia G, Santiago-Borrero PJ. Newborn screening for Hermansky–Pudlak syndrome type 3 in Puerto Rico. J. Pediatr. Hematol. Oncol.32(6), 448–453 (2010).
  • Muto R, Yamamori S, Ohashi H, Osawa M. Prediction by FISH analysis of the occurrence of Wilms tumor in aniridia patients. Am. J. Med. Genet.108(4), 285–289 (2002).
  • Gronskov K, Olsen JH, Sand A et al. Population-based risk estimates of Wilms tumor in sporadic aniridia. A comprehensive mutation screening procedure of PAX6 identifies 80% of mutations in aniridia. Hum. Genet.109(1), 11–18 (2001).
  • Shen Y, Wu BL. Microarray-based genomic DNA profiling technologies in clinical molecular diagnostics. Clin. Chem.55(4), 659–669 (2009).
  • Alkemade PPH. Dysgenesis mesodermalis of the iris and the cornea. A study of Rieger’s syndrome and Peter’s anomaly. Hum. Gen.51(2), 237–240 (1969).
  • Beysen D, De Paepe A, De Baere E. FOXL2 mutations and genomic rearrangements in BPES. Hum. Mutat.30(2), 158–169 (2009).
  • Munier FL, Frueh BE, Othenin-Girard P et al. BIGH3 mutation spectrum in corneal dystrophies. Invest. Ophthalmol. Vis. Sci.43(4), 949–954 (2002).
  • Das S, Langenbucher A, Seitz B. Excimer laser phototherapeutic keratectomy for granular and lattice corneal dystrophy: a comparative study. J. Refract. Surg.21(6), 727–731 (2005).
  • Hafner A, Langenbucher A, Seitz B. Long-term results of phototherapeutic keratectomy with 193-nm excimer laser for macular corneal dystrophy. Am. J. Ophthalmol.140(3), 392–396 (2005).
  • Dinh R, Rapuano CJ, Cohen EJ, Laibson PR. Recurrence of corneal dystrophy after excimer laser phototherapeutic keratectomy. Ophthalmology106(8), 1490–1497 (1999).
  • Jhanji V, Sharma N, Vajpayee RB. Management of keratoconus: current scenario. Br. J. Ophthalmol. DOI: bjo.2010.185868 (2010) (Epub ahead of print).
  • Stabuc-Silih M, Strazisar M, Hawlina M, Glavac D. Absence of pathogenic mutations in VSX1 and SOD1 genes in patients with keratoconus. Cornea29(2), 172–176 (2010).
  • Forshew T, Johnson CA, Khaliq S et al. Locus heterogeneity in autosomal recessive congenital cataracts: linkage to 9q and germline HSF4 mutations. Hum. Genet.117(5), 452–459 (2005).
  • Li FF, Yang M, Ma X et al. Autosomal dominant congenital nuclear cataracts caused by a CRYAA gene mutation. Curr. Eye Res.35(6), 492–498 (2010).
  • Reddy MA, Francis PJ, Berry V, Bhattacharya SS, Moore AT. Molecular genetic basis of inherited cataract and associated phenotypes. Surv. Ophthalmol.49(3), 300–315 (2004).
  • Chavarria-Soley G, Sticht H, Aklillu E et al. Mutations in CYP1B1 cause primary congenital glaucoma by reduction of eithe activity or abundance of the enzyme. Hum. Mutat.29(9), 1147–1153 (2008).
  • Sivadorai P, Cherninkova S, Bouwer S et al. Genetic heterogeneity and minor CYP1B1 involvement in the molecular basis of primary congenital glaucoma in Gypsies. Clin. Genet.74(1), 82–87 (2008).
  • Baird PN, Craig JE, Richardson AJ et al. Analysis of 15 primary open-angle glaucoma families from Australia identifies a founder effect for the Q368STOP mutation of myocilin. Hum. Genet.112(2), 110–116 (2003).
  • Hewitt AW, Bennett SL, Richards JE et al. Myocilin Gly252Arg mutation and glaucoma of intermediate severity in Caucasian individuals. Arch. Ophthalmol.125(1), 98–104 (2007).
  • Berger W, Kloeckener-Gruissem B, Neidhardt J. The molecular basis of human retinal and vitreoretinal diseases. Prog. Retin. Eye Res.29(5), 335–375 (2010).
  • Figurska M, Robaszkiewicz J, Wierzbowska J. Optical coherence tomography in imaging of macular diseases. Klin. Oczna.112(4–6), 138–146 (2010).
  • Deeb SS, Motulsky AG. Disorders of Colour Vision. In: Genetic Diseases of the Eye. Traboulsi EI (Ed.). Oxford University Press, NY, USA, 305–306 (1999).
  • Chang B, Grau T, Dangel S et al. A homologous genetic basis of the murine cpfl1 mutant and human achromatopsia linked to mutations in the PDE6C gene. Proc. Natl Acad. Sci. USA106(46), 19581–19586 (2009).
  • Thiadens AA, den Hollander AI, Roosing S et al. Homozygosity mapping reveals PDE6C mutations in patients with early-onset cone photoreceptor disorders. Am. J. Hum. Genet.85(2), 240–247 (2009).
  • Komaromy AM, Alexander JJ, Rowlan JS et al. Gene therapy rescues cone function in congenital achromatopsia. Hum. Mol. Genet.19(13), 2581–2593 (2010).
  • Pang JJ, Alexander J, Lei B et al. Achromatopsia as a potential candidate for gene therapy. Adv. Exp. Med. Biol.664, 639–646 (2010).
  • Klein R, Klein BE, Linton KL. Prevalence of age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology99(6), 933–943 (1992).
  • Zanke B, Hawken S, Carter R, Chow D. A genetic approach to stratification of risk for age-related macular degeneration. Can. J. Ophthalmol.45(1), 22–27 (2010).
  • Seddon JM, Reynolds R, Maller J, Fagerness JA, Daly MJ, Rosner B. Prediction model for prevalence and incidence of advanced age-related macular degeneration based on genetic, demographic, and environmental variables. Invest. Ophthalmol. Vis. Sci.50(5), 2044–2053 (2009).
  • Boon CJ, Klevering BJ, Leroy BP, Hoyng CB, Keunen JE, den Hollander AI. The spectrum of ocular phenotypes caused by mutations in the BEST1 gene. Prog. Retin. Eye Res.28(3), 187–205 (2009).
  • Marmorstein AD, Cross HE, Peachey NS. Functional roles of bestrophins in ocular epithelia. Prog. Retin. Eye Res.28(3), 206–226 (2009).
  • Xiao Q, Hartzell HC, Yu K. Bestrophins and retinopathies. Pflugers Arch.460(2), 559–569 (2010).
  • Ponjavic V, Eksandh L, Andreasson S et al. Clinical expression of Best’s vitelliform macular dystrophy in Swedish families with mutations in the bestrophin gene. Ophthalmic Genet.20(4), 251–257 (1999).
  • Deeb SS. Molecular genetics of colour vision deficiencies. Clin. Exp. Optom.87(4–5), 224–229 (2004).
  • Rubin LR, Lackey WL, Kennedy FA, Stephenson RB. Using color and grayscale images to teach histology to color-deficient medical students. Anat. Sci. Educ.2(2), 84–88 (2009).
  • Mancuso K, Mauck MC, Kuchenbecker JA, Neitz M, Neitz J. A multi-stage color model revisited: implications for a gene therapy cure for red–green colorblindness. Adv. Exp. Med. Biol.664, 631–638 (2010).
  • Mancuso K, Hauswirth WW, Li Q et al. Gene therapy for red–green colour blindness in adult primates. Nature461(7265), 784–787 (2009).
  • Mustafi D, Engel AH, Palczewski K. Structure of cone photoreceptors. Prog. Retin. Eye Res.28(4), 289–302 (2009).
  • Hamel CP. Cone rod dystrophies. Orphanet. J. Rare Dis.2, 7 (2007).
  • Small KW, Killian J, McLean WC. North Carolina’s dominant progressive foveal dystrophy: how progressive is it? Br. J. Ophthalmol.75(7), 401–406 (1991).
  • Small KW, Weber JL, Roses A, Lennon F, Vance JM, Pericak-Vance MA. North Carolina macular dystrophy is assigned to chromosome 6. Genomics13(3), 681–685 (1992).
  • Jacobson SG, Cideciyan AV, Regunath G et al. Night blindness in Sorsby’s fundus dystrophy reversed by vitamin A. Nat. Genet.11(1), 27–32 (1995).
  • Vasireddy V, Wong P, Ayyagari R. Genetics and molecular pathology of Stargardt-like macular degeneration. Prog. Retin. Eye Res.29(3), 191–207 (2010).
  • Koenekoop RK. The gene for Stargardt disease, ABCA4, is a major retinal gene: a mini-review. Ophthalmic Genet.24(2), 75–80 (2003).
  • Radu RA, Yuan Q, Hu J et al. Accelerated accumulation of lipofuscin pigments in the RPE of a mouse model for ABCA4-mediated retinal dystrophies following vitamin A supplementation. Invest. Ophthalmol. Vis. Sci.49(9), 3821–3829 (2008).
  • Booij JC, Boon CJ, van Schooneveld MJ et al. Course of visual decline in relation to the Best1 genotype in vitelliform macular dystrophy. Ophthalmology117(7), 1415–1422 (2010).
  • Tarpey P, Thomas S, Sarvananthan N et al. Mutations in FRMD7, a newly identified member of the FERM family, cause X-linked idiopathic congenital nystagmus. Nat. Genet.38(11), 1242–1244 (2006).
  • Shiels A, Bennett TM, Prince JB, Tychsen L. X-linked idiopathic infantile nystagmus associated with a missense mutation in FRMD7. Mol. Vis.13, 2233–2241 (2007).
  • Fuhrmann N, Alavi MV, Bitoun P et al. Genomic rearrangements in OPA1 are frequent in patients with autosomal dominant optic atrophy. J. Med. Genet.46(2), 136–144 (2009).
  • Fuhrmann N, Schimpf S, Kamenisch Y et al. Solving a 50 year mystery of a missing OPA1 mutation: more insights from the first family diagnosed with autosomal dominant optic atrophy. Mol. Neurodegener.5, 25 (2010).
  • Amati-Bonneau P, Guichet A, Olichon A et al. OPA1 R445H mutation in optic atrophy associated with sensorineural deafness. Ann. Neurol.58(6), 958–963 (2005).
  • Li C, Kosmorsky G, Zhang K, Katz BJ, Ge J, Traboulsi EI. Optic atrophy and sensorineural hearing loss in a family caused by an R445H OPA1 mutation. Am. J. Med. Genet. A138A(3), 208–211 (2005).
  • Huang T, Santarelli R, Starr A. Mutation of OPA1 gene causes deafness by affecting function of auditory nerve terminals. Brain Res.1300, 97–104 (2009).
  • Yu-Wai-Man P, Sitarz KS, Samuels DC et al. OPA1 mutations cause cytochrome c oxidase deficiency due to loss of wild-type mtDNA molecules. Hum. Mol. Genet.19(15), 3043–3052 (2010).
  • Spruijt L, Kolbach DN, de Coo RF et al. Influence of mutation type on clinical expression of Leber hereditary optic neuropathy. Am. J. Ophthalmol.141(4), 676–682 (2006).
  • Fauser S, Luberichs J, Besch D, Leo-Kottler B. Sequence analysis of the complete mitochondrial genome in patients with Leber’s hereditary optic neuropathy lacking the three most common pathogenic DNA mutations. Biochem. Biophys. Res. Commun.295(2), 342–347 (2002).
  • Kerrison JB, Miller NR, Hsu F et al. A case–control study of tobacco and alcohol consumption in Leber hereditary optic neuropathy. Am. J. Ophthalmol.130(6), 803–812 (2000).
  • Kirkman MA, Yu-Wai-Man P, Korsten A et al. Gene–environment interactions in Leber hereditary optic neuropathy. Brain132(Pt 9), 2317–2326 (2009).
  • Kirkman MA, Korsten A, Leonhardt M et al. Quality of life in patients with leber hereditary optic neuropathy. Invest. Ophthalmol. Vis. Sci.50(7), 3112–3115 (2009).
  • Koilkonda RD, Chou TH, Porciatti V, Hauswirth WW, Guy J. Induction of rapid and highly efficient expression of the human ND4 complex I subunit in the mouse visual system by self-complementary adeno-associated virus. Arch. Ophthalmol.128(7), 876–883 (2010).
  • Lam BL, Feuer WJ, Abukhalil F, Porciatti V, Hauswirth WW, Guy J. Leber hereditary optic neuropathy gene therapy clinical trial recruitment: year 1. Arch. Ophthalmol.128(9), 1129–1135 (2010).
  • Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa. Lancet368(9549), 1795–1809 (2006).
  • Sahel J, Bonnel S, Mrejen S, Paques M. Retinitis pigmentosa and other dystrophies. Dev. Ophthalmol.47, 160–167 (2010).
  • Omoti AE, Waziri-Erameh JM, Okeigbemen VW. A review of the changes in the ophthalmic and visual system in pregnancy. Afr. J. Reprod. Health12(3), 185–196 (2008).
  • Zeitz C, Labs S, Lorenz B et al. Genotyping microarray for CSNB-associated genes. Invest. Ophthalmol. Vis. Sci.50(12), 5919–5926 (2009).
  • Robitaille JM, Wallace K, Zheng B et al. Phenotypic overlap of familial exudative vitreoretinopathy (FEVR) with persistent fetal vasculature (PFV) caused by FZD4 mutations in two distinct pedigrees. Ophthalmic. Genet.30(1), 23–30 (2009).
  • Nikopoulos K, Gilissen C, Hoischen A et al. Next-generation sequencing of a 40 Mb linkage interval reveals TSPAN12 mutations in patients with familial exudative vitreoretinopathy. Am. J. Hum. Genet.86(2), 240–247 (2010).
  • Poulter JA, Ali M, Gilmour DF et al. Mutations in TSPAN12 cause autosomal-dominant familial exudative vitreoretinopathy. Am. J. Hum. Genet.86(2), 248–253 (2010).
  • Jiao X, Ventruto V, Trese MT, Shastry BS, Hejtmancik JF. Autosomal recessive familial exudative vitreoretinopathy is associated with mutations in LRP5. Am. J. Hum. Genet.75(5), 878–884 (2004).
  • Qin M, Hayashi H, Oshima K, Tahira T, Hayashi K, Kondo H. Complexity of the genotype–phenotype correlation in familial exudative vitreoretinopathy with mutations in the LRP5 and/or FZD4 genes. Hum. Mutat.26(2), 104–112 (2005).
  • Chen ZY, Battinelli EM, Fielder A et al. A mutation in the Norrie disease gene (NDP) associated with X-linked familial exudative vitreoretinopathy. Nat. Genet.5(2), 180–183 (1993).
  • Boonstra FN, van Nouhuys CE, Schuil J et al. Clinical and molecular evaluation of probands and family members with familial exudative vitreoretinopathy. Invest. Ophthalmol. Vis. Sci.50(9), 4379–4385 (2009).
  • Burckhardt G, Wolff NA, Bahn A. Molecular characterization of the renal organic anion transporter 1. Cell. Biochem. Biophys.36(2–3), 169–174 (2002).
  • Kaiser-Kupfer MI, Caruso RC, Valle D. Gyrate atrophy of the choroid and retina: further experience with long-term reduction of ornithine levels in children. Arch. Ophthalmol.120(2), 146–153 (2002).
  • Simonelli F, Ziviello C, Testa F et al. Clinical and molecular genetics of Leber’s congenital amaurosis: a multicenter study of Italian patients. Invest. Ophthalmol. Vis. Sci.48(9), 4284–4290 (2007).
  • Vallespin E, Cantalapiedra D, Riveiro-Alvarez R et al. Mutation screening of 299 Spanish families with retinal dystrophies by Leber congenital amaurosis genotyping microarray. Invest. Ophthalmol. Vis. Sci.48(12), 5653–5661 (2007).
  • Yzer S, Leroy BP, De Baere E et al. Microarray-based mutation detection and phenotypic characterization of patients with Leber congenital amaurosis. Invest. Ophthalmol. Vis. Sci.47(3), 1167–1176 (2006).
  • Tam LC, Kiang AS, Campbell M et al. Prevention of autosomal dominant retinitis pigmentosa by systemic drug therapy targeting heat shock protein 90 (Hsp90). Hum. Mol. Genet.19(22), 4421–4436 (2010).
  • Coppieters F, Leroy BP, Beysen D et al. Recurrent mutation in the first zinc finger of the orphan nuclear receptor NR2E3 causes autosomal dominant retinitis pigmentosa. Am. J. Hum. Genet.81(1), 147–157 (2007).
  • Roduit R, Escher P, Schorderet DF. Mutations in the DNA-binding domain of NR2E3 affect in vivo dimerization and interaction with CRX. PLoS One4(10), e7379 (2009).
  • Schorderet DF, Escher P. NR2E3 mutations in enhanced S-cone sensitivity syndrome (ESCS), Goldmann–Favre syndrome (GFS), clumped pigmentary retinal degeneration (CPRD), and retinitis pigmentosa (RP). Hum. Mutat.30(11), 1475–1485 (2009).
  • Iannaccone A, Fung KH, Eyestone ME, Stone EM. Treatment of adult-onset acute macular retinoschisis in enhanced s-cone syndrome with oral acetazolamide. Am. J. Ophthalmol.147(2), 307–312.e302 (2009).
  • Nichols LL 2nd, Alur RP, Boobalan E et al. Two novel CRX mutant proteins causing autosomal dominant Leber congenital amaurosis interact differently with NRL. Hum. Mutat.31(6), E1472–E1483 (2010).
  • Bowne SJ, Liu Q, Sullivan LS et al. Why do mutations in the ubiquitously expressed housekeeping gene IMPDH1 cause retina-specific photoreceptor degeneration? Invest. Ophthalmol. Vis. Sci.47(9), 3754–3765 (2006).
  • Bainbridge JW, Ali RR. Success in sight: the eyes have it! Ocular gene therapy trials for LCA look promising. Gene Ther.15(17), 1191–1192 (2008).
  • Bainbridge JW, Smith AJ, Barker SS et al. Effect of gene therapy on visual function in Leber’s congenital amaurosis. N. Engl. J. Med.358(21), 2231–2239 (2008).
  • Maguire AM, Simonelli F, Pierce EA et al. Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N. Engl. J. Med.358(21), 2240–2248 (2008).
  • Hauswirth WW, Aleman TS, Kaushal S et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a Phase I trial. Hum. Gene Ther.19(10), 979–990 (2008).
  • Cideciyan AV. Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy. Prog. Retin. Eye Res.29(5), 398–427 (2010).
  • Henderson RH, Mackay DS, Li Z et al. Phenotypic variability in patients with retinal dystrophies due to mutations in CRB1. Br. J. Ophthalmol. DOI: bjo.2010.186882 (2010) (Epub ahed of print).
  • den Hollander AI, Heckenlively JR, van den Born LI et al. Leber congenital amaurosis and retinitis pigmentosa with Coats-like exudative vasculopathy are associated with mutations in the crumbs homologue 1 (CRB1) gene. Am. J. Hum. Genet.69(1), 198–203 (2001).
  • den Hollander AI, Koenekoop RK, Yzer S et al. Mutations in the CEP290 (NPHP6) gene are a frequent cause of Leber congenital amaurosis. Am. J. Hum. Genet.79(3), 556–561 (2006).
  • den Hollander AI, Roepman R, Koenekoop RK, Cremers FP. Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog. Retin. Eye Res.27(4), 391–419 (2008).
  • Vervoort R, Lennon A, Bird AC et al. Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat. Genet.25(4), 462–466 (2000).
  • Shu X, Black GC, Rice JM et al.RPGR mutation analysis and disease: an update. Hum. Mutat.28(4), 322–328 (2007).
  • Brumm MV, Branham K, Othman M et al. X-Linked recessive mutations in simplex males with retinitis pigmentosa. Invest. Ophthalmol. Vis. Sci.51(5), 1399 (2010).
  • van den Hurk JA, Schwartz M, van Bokhoven H et al. Molecular basis of choroideremia (CHM): mutations involving the Rab escort protein-1 (REP1) gene. Hum. Mutat.9(2), 110–117 (1997).
  • Fujiki K, Hotta Y, Hayakawa M et al. REP1 gene mutations in Japanese patients with choroideremia. Graefes Arch. Clin. Exp. Ophthalmol.237(9), 735–740 (1999).
  • McTaggart KE, Tran M, Mah DY, Lai SW, Nesslinger NJ, MacDonald IM. Mutational analysis of patients with the diagnosis of choroideremia. Hum. Mutat.20(3), 189–196 (2002).
  • van den Hurk JA, van de Pol DJ, Wissinger B et al. Novel types of mutation in the choroideremia (CHM) gene: a full-length L1 insertion and an intronic mutation activating a cryptic exon. Hum. Genet.113(3), 268–275 (2003).
  • Sergeev YV, Smaoui N, Sui R et al. The functional effect of pathogenic mutations in Rab escort protein 1. Mutat. Res.665(1–2), 44–50 (2009).
  • Sieving PA, Yashar BM, Ayyagari R. Juvenile retinoschisis: a model for molecular diagnostic testing of X-linked ophthalmic disease. Trans. Am. Ophthalmol. Soc.97, 451–464; discussion 464–459 (1999).
  • Billingsley G, Bin J, Fieggen KJ et al. Mutations in chaperonin-like BBS genes are a major contributor to disease development in a multiethnic Bardet–Biedl syndrome patient population. J. Med. Genet.47(7), 453–463 (2010).
  • Marshall JD, Beck S, Maffei P, Naggert JK. Alstrom syndrome. Eur. J. Hum. Genet.15(12), 1193–1202 (2007).
  • Tiwari A, Awasthi D, Tayal S, Ganguly S. Alstrom syndrome: a rare genetic disorder and its anaesthetic significance. Indian J. Anaesth.54(2), 154–156 (2010).
  • Tobin JL, Beales PL. The nonmotile ciliopathies. Genet. Med.11(6), 386–402 (2009).
  • Leitch CC, Zaghloul NA, Davis EE et al. Hypomorphic mutations in syndromic encephalocele genes are associated with Bardet–Biedl syndrome. Nat. Genet.40(4), 443–448 (2008).
  • Bozorg S, Ramirez-Montealegre D, Chung M, Pearce DA. Juvenile neuronal ceroid lipofuscinosis (JNCL) and the eye. Surv. Ophthalmol.54(4), 463–471 (2009).
  • Anderson GW, Smith VV, Brooke I, Malone M, Sebire NJ. Diagnosis of neuronal ceroid lipofuscinosis (Batten disease) by electron microscopy in peripheral blood specimens. Ultrastruct. Pathol.30(5), 373–378 (2006).
  • Consortium TIBD. Isolation of a novel gene underlying Batten disease, CLN3. The International Batten Disease Consortium. Cell82(6), 949–957 (1995).
  • Maria BL, Hoang KB, Tusa RJ et al. ‘Joubert syndrome’ revisited: key ocular motor signs with magnetic resonance imaging correlation. J. Child Neurol.12(7), 423–430 (1997).
  • Chance PF, Cavalier L, Satran D, Pellegrino JE, Koenig M, Dobyns WB. Clinical nosologic and genetic aspects of Joubert and related syndromes. J. Child Neurol.14(10), 660–666; discussion 669–672 (1999).
  • Satran D, Pierpont ME, Dobyns WB. Cerebello–oculo–renal syndromes including Arima, Senior–Loken and COACH syndromes: more than just variants of Joubert syndrome. Am. J. Med. Genet.86(5), 459–469 (1999).
  • Frank V, den Hollander AI, Bruchle NO et al. Mutations of the CEP290 gene encoding a centrosomal protein cause Meckel–Gruber syndrome. Hum. Mutat.29(1), 45–52 (2008).
  • Traboulsi EI, Koenekoop R, Stone EM. Lumpers or splitters? The role of molecular diagnosis in Leber congenital amaurosis. Ophthalmic Genet.27(4), 113–115 (2006).
  • Genetics of mitochondrial diseases. Holt IJ (Eds). Oxford University Press, Oxford, NY, USA (2003).
  • Sgarbi G, Casalena GA, Baracca A, Lenaz G, DiMauro S, Solaini G. Human NARP mitochondrial mutation metabolism corrected with α-ketoglutarate/aspartate: a potential new therapy. Arch. Neurol.66(8), 951–957 (2009).
  • Seyedahmadi BJ, Rivolta C, Keene JA, Berson EL, Dryja TP. Comprehensive screening of the USH2A gene in Usher syndrome type II and non-syndromic recessive retinitis pigmentosa. Exp. Eye Res.79(2), 167–173 (2004).
  • Aller E, Najera C, Millan JM et al. Genetic analysis of 2299delG and C759F mutations (USH2A) in patients with visual and/or auditory impairments. Eur. J. Hum. Genet.12(5), 407–410 (2004).
  • Lohmann D. Retinoblastoma. Adv. Exp. Med. Biol.685, 220–227 (2010).
  • Knudson AG Jr. Mutation and cancer: statistical study of retinoblastoma. Proc. Natl Acad. Sci. USA68(4), 820–823 (1971).
  • Ko E, Kim Y, Lee BB et al. Relationship of phospho-pRb (Ser-807/811) level to exposure to tobacco smoke in primary non-small cell lung cancer. Cancer Lett.274(2), 225–232 (2009).
  • Trappey A, Fernando A, Gaur R, Raj M, Ouhtit A. The shady side of sunlight: current understanding of the mechanisms underlying UV-induction of skin cancers. Front. Biosci. (Schol. Ed.)2, 11–17 (2010).
  • Bunin GR, Felice MA, Davidson W et al. Medical radiation exposure and risk of retinoblastoma resulting from new germline RB1 mutation. Int. J. Cancer DOI: 10.1002/ijc.25565 (2010) (Epub ahead of print).
  • Woo KI, Harbour JW. Review of 676 second primary tumors in patients with retinoblastoma: association between age at onset and tumor type. Arch. Ophthalmol.128(7), 865–870 (2010).
  • Rushlow D, Piovesan B, Zhang K et al. Detection of mosaic RB1 mutations in families with retinoblastoma. Hum. Mutat.30(5), 842–851 (2009).
  • Mitter D, Rushlow D, Nowak I, Ansperger-Rescher B, Gallie BL, Lohmann DR. Identification of a mutation in exon 27 of the RB1 gene associated with incomplete penetrance retinoblastoma. Fam. Cancer8(1), 55–58 (2009).
  • Mallipatna AC, Sutherland JE, Gallie BL, Chan H, Heon E. Management and outcome of unilateral retinoblastoma. J. AAPOS13(6), 546–550 (2009).
  • Dimaras H, Rushlow D, Halliday W et al. Using RB1 mutations to assess minimal residual disease in metastatic retinoblastoma. Transl. Res.156(2), 91–97 (2010).
  • Boon CJ, den Hollander AI, Hoyng CB, Cremers FP, Klevering BJ, Keunen JE. The spectrum of retinal dystrophies caused by mutations in the peripherin/RDS gene. Prog. Retin. Eye Res.27(2), 213–235 (2008).
  • Littink KW, van den Born LI, Koenekoop RK et al. Mutations in the EYS gene account for approximately 5% of autosomal recessive retinitis pigmentosa and cause a fairly homogeneous phenotype. Ophthalmology117(10), 2026–2033, 2033.e2021–e2027 (2010).
  • Hunter AGW, Sharpe N, Mullen M, Meschino WS. Research review ethical, legal, and practical concerns about recontacting patients to inform them of new information: the case in medical genetics Am. J. Med. Gene.103, 265–276 (2001).
  • Kawamura T, Ohtsubo M, Mitsuyama S, Ohno-Nakamura S, Shimizu N, Minoshima S. KMeyeDB: a graphical database of mutations in genes that cause eye diseases. Hum. Mutat.31(6), 667–674 (2010).
  • Gallie B. Canadian guidelines for retinoblastoma care. Can. J. Ophthalmol.44(6), 639–642 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.