44
Views
4
CrossRef citations to date
0
Altmetric
Review

Advances in the diagnosis, management and pathophysiology of capillary nonperfusion

&
Pages 281-292 | Published online: 09 Jan 2014

References

  • Chew EY, Ferris FL 3rd. Nonproliferative diabetic retinopathy. In: Retina (Volume 2). Ryan S (Ed.). Elsevier Mosby Publishers, PA, USA (2006).
  • Kimble JA, Brandt BM, McGwin G Jr. Clinical examination accurately locates capillary nonperfusion in diabetic retinopathy. Am. J. Ophthalmol.139, 555–557 (2005).
  • De Venecia G, Davis M, Engerman R. Clinicopathologic correlations in diabetic retinopathy. I. Histology and fluorescein angiography of microaneurysms. Arch. Ophthalmol.94, 1766–1773 (1976).
  • Kohner EM, Henkind P. Correlation of fluorescein angiogram and retinal digest in diabetic retinopathy. Am. J. Ophthalmol.69, 403–414 (1970).
  • Johnson MA, Lutty GA, McLeod DS et al. Ocular structure and function in an aged monkey with spontaneous diabetes mellitus. Exp. Eye Res.80, 37–42 (2005).
  • Kim SY, Johnson MA, McLeod DA et al. Neutrophils are associated with capillary closure in spontaneously diabetic monkey retinas. Diabetes54, 1534–1542 (2005).
  • Wessel MM, Aaker GD, Parlitsis G et al. Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy. Retina32(4), 785–791 (2012).
  • Chanwimaluang T, Fan G, Fransen SR. Hybrid retinal image registration. IEEE Trans. Inf. Technol. Biomed.10, 129–142 (2006).
  • Bolz M, Ritter M, Schneider M et al. A systematic correlation of angiography and high-resolution optical coherence tomography in diabetic macular edema. Ophthalmology116, 66–72 (2009).
  • Yeung L, Lima VC, Garcia P, Landa G, Rosen RB. Correlation between spectral domain optical coherence tomography findings and fluorescein angiography patterns in diabetic macular edema. Ophthalmology116, 1158–1167 (2009).
  • Unoki N, Nishijima K, Sakamoto A et al. Retinal sensitivity loss and structural disturbance in areas of capillary nonperfusion of eyes with diabetic retinopathy. Am. J. Ophthalmol.144, 755–760 (2007).
  • Kashani AH, Zimmer-Galler IE, Shah SM et al. Retinal thickness analysis by race, gender, and age using Stratus OCT. Am. J. Ophthalmol.149, 496–502.e1 (2010).
  • Bressler NM, Edwards AR, Antoszyk AN et al. Retinal thickness on Stratus optical coherence tomography in people with diabetes and minimal or no diabetic retinopathy. Am. J. Ophthalmol.145, 894–901 (2008).
  • Kashani AH, Keane PA, Dustin L, Walsh AC, Sadda SR. Quantitative subanalysis of cystoid spaces and outer nuclear layer using optical coherence tomography in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci.50, 3366–3373 (2009).
  • Keane PA, Liakopoulos S, Chang KT et al. Relationship between optical coherence tomography retinal parameters and visual acuity in neovascular age-related macular degeneration. Ophthalmology115, 2206–2214 (2008).
  • Wang Y, Fawzi A, Tan O, Gil-Flamer J, Huang D. Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography. Opt. Express17, 4061–4073 (2009).
  • Wang Y, Lu A, Gil-Flamer J et al. Measurement of total blood flow in the normal human retina using Doppler Fourier-domain optical coherence tomography. Br. J. Ophthalmol.93, 634–637 (2009).
  • Feke GT, Buzney SM, Ogasawara H et al. Retinal circulatory abnormalities in Type 1 diabetes. Invest. Ophthalmol. Vis. Sci.35, 2968–2975 (1994).
  • Grunwald JE, Riva CE, Baine J, Brucker AJ. Total retinal volumetric blood flow rate in diabetic patients with poor glycemic control. Invest. Ophthalmol. Vis. Sci.33, 356–363 (1992).
  • Grunwald JE, DuPont J, Riva CE. Retinal haemodynamics in patients with early diabetes mellitus. Br. J. Ophthalmol.80, 327–331 (1996).
  • Yoshida A, Feke GT, Morales-Stoppello J et al. Retinal blood flow alterations during progression of diabetic retinopathy. Arch. Ophthalmol.101, 225–227 (1983).
  • Bursell SE, Clermont AC, Kinsley BT et al. Retinal blood flow changes in patients with insulin-dependent diabetes mellitus and no diabetic retinopathy. Invest. Ophthalmol. Vis. Sci.37, 886–897 (1996).
  • Reddy S, Hu A, Schwartz SD. Ultra wide field fluorescein angiography guided targeted retinal photocoagulation (TRP). Semin. Ophthalmol.24, 9–14 (2009).
  • Oliver SC, Schwartz SD. Peripheral vessel leakage (PVL): a new angiographic finding in diabetic retinopathy identified with ultra wide-field fluorescein angiography. Semin. Ophthalmol.25, 27–33 (2010).
  • Friberg TR, Gupta A, Yu J et al. Ultrawide angle fluorescein angiographic imaging: a comparison to conventional digital acquisition systems. Ophthalmic Surg. Lasers Imaging39, 304–311 (2008).
  • Prasad PS, Oliver SC, Coffee RE, Hubschman JP, Schwartz SD. Ultra wide-field angiographic characteristics of branch retinal and hemicentral retinal vein occlusion. Ophthalmology117, 780–784 (2010).
  • Niki T, Muraoka K, Shimizu K. Distribution of capillary nonperfusion in early-stage diabetic retinopathy. Ophthalmology91, 1431–1439 (1984).
  • Laing RA, Cohen AJ, Friedman E. Photographic measurements of retinal blood oxygen saturation: falling saturation rabbit experiments. Invest. Ophthalmol.14, 606–610 (1975).
  • Laing RA, Danisch LA, Young LR. The choroidal eye oximeter: an instrument for measuring oxygen saturation of choroidal blood in vivo. IEEE Trans. Biomed. Eng.22, 183–195 (1975).
  • Delori FC. Noninvasive technique for oximetry of blood in retinal vessels. Appl. Opt.27, 1113–1125 (1988).
  • Khoobehi B, Beach JM, Kawano H. Hyperspectral imaging for measurement of oxygen saturation in the optic nerve head. Invest. Ophthalmol. Vis. Sci.45, 1464–1472 (2004).
  • Hardarson SH, Harris A, Karisson RA et al. Automatic retinal oximetry. Invest. Ophthalmol. Vis. Sci.47, 5011–5016 (2006).
  • Johnson WR, Wilson DW, Fink W, Humayun M, Bearman G. Snapshot hyperspectral imaging in ophthalmology. J. Biomed. Opt.12(1), 014036 (2007).
  • Mordant DJ, Al-Abboud I, Muyo G et al. Validation of human whole blood oximetry using a hyperspectral fundus camera with a model eye. Invest. Ophthalmol. Vis. Sci.52(5), 2851–2859 (2011).
  • Kashani AH, Kirkman E, Martin G, Humayun M.S. Hyperspectral computed tomographic imaging spectroscopy of vascular oxygen gradients in the rabbit retina in vivo. PLoS ONE6, e24482 (2011).
  • Hammer M, Vilser W, Riemer T et al. Retinal venous oxygen saturation increases by flicker light stimulation. Invest. Ophthalmol. Vis. Sci.52(1), 274–277 (2011).
  • Hammer M, Vilser W, Riemer T et al. Diabetic patients with retinopathy show increased retinal venous oxygen saturation. Graefes Arch. Clin. Exp. Ophthalmol.247, 1025–1030 (2009).
  • Hardarson SH, Basit S, Jonsdottir TE et al. Oxygen saturation in human retinal vessels is higher in dark than in light. Invest. Ophthalmol. Vis. Sci.50, 2308–2311 (2009).
  • Hardarson SH, Stefansson E. Oxygen saturation in central retinal vein occlusion. Am. J. Ophthalmol.150, 871–875 (2010).
  • Mordant DJ, Al-Abboud I, Muyo G et al. Spectral imaging of the retina. Eye (Lond.)25, 309–320 (2011).
  • Hossain P. Scanning laser ophthalmoscopy and fundus fluorescent leucocyte angiography. Br. J. Ophthalmol.83, 1250–1253 (1999).
  • Jayagopal A, Russ PK, Haselton FR. Surface engineering of quantum dots for in vivo vascular imaging. Bioconjug. Chem.18, 1424–1433 (2007).
  • Wasserman SM, Topper JN. The endothelium. In: Vascular Medicine: A Companion to Braunwald’s Heart Disease. Creager MA, DV Loscalzo J (Eds). Saunders Elsevier, PA, USA, 1–13 (2006).
  • Shepro D, Morel NM. Pericyte physiology. FASEB J.7, 1031–1038 (1993).
  • Hamilton NB, Attwell D, Hall CN. Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front. Neuroenergetics2, pii: 5 (2010).
  • Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature443, 700–704 (2006).
  • Bek T. Immunohistochemical characterization of retinal glial cell changes in areas of vascular occlusion secondary to diabetic retinopathy. Acta Ophthalmol. Scand.75, 388–392 (1997).
  • Adamis AP, Berman AJ. Immunological mechanisms in the pathogenesis of diabetic retinopathy. Semin. Immunopathol.30, 65–84 (2008).
  • Drenser K, Capone A, Trese M. Angiogenesis and angiomaintenance in pediatric retinal diseases. Retinal Physician1–6 (2011).
  • Sen M, Ghosh G. Transcriptional outcome of Wnt–Frizzled signal transduction in inflammation: evolving concepts. J. Immunol.181, 4441–4445 (2008).
  • Trudeau K, Molina AJ, Roy S. High glucose induces mitochondrial morphology and metabolic changes in retinal pericytes. Invest. Ophthalmol. Vis. Sci.52, 8657–8664 (2011).
  • Trudeau K, Molina AJ, Guo W, Roy S. High glucose disrupts mitochondrial morphology in retinal endothelial cells: implications for diabetic retinopathy. Am. J. Pathol.177, 447–455 (2010).
  • Ashton N. Vascular basement membrane changes in diabetic retinopathy. Montgomery lecture, 1973. Br. J. Ophthalmol.58, 344–366 (1974).
  • Ashton N. Studies of the retinal capillaries in relation to diabetic and other retinopathies. Br. J. Ophthalmol.47, 521–538 (1963).
  • Cunha-Vaz JG, Fonseca JR, Abreu JF, Ruas MA. A follow-up study by vitreous fluorophotometry of early retinal involvement in diabetes. Am. J. Ophthalmol.86, 467–473 (1978).
  • Boeri D, Maiello M, Lorenzi M. Increased prevalence of microthromboses in retinal capillaries of diabetic individuals. Diabetes50, 1432–1439 (2001).
  • Gilmore ED, Hudson C, Nrusimhadevara RK et al. Retinal arteriolar hemodynamic response to an acute hyperglycemic provocation in early and sight-threatening diabetic retinopathy. Microvasc. Res.73, 191–197 (2007).
  • Takahashi K, Kishi S, Muraoka K, Shimizu K. Reperfusion of occluded capillary beds in diabetic retinopathy. Am. J. Ophthalmol.126, 791–797 (1998).
  • Ramsay WJ, Ramsay RC, Purple RL, Knobloch WH. Involutional diabetic retinopathy. Am. J. Ophthalmol.84, 851–858 (1977).
  • Kohner EM, Dollery CT, Fraser TR, Bulpitt CJ. Effect of pituitary ablation on diabetic retinopathy studied by fluorescence angiography. Diabetes19, 703–714 (1970).
  • Bandello F, Gass JD, Lattanzio R, Brancato R. Spontaneous regression of neovascularization at the disk and elsewhere in diabetic retinopathy. Am. J. Ophthalmol.122, 494–501 (1996).
  • Miller-Kasprzak E, Jagodzinski PP. Endothelial progenitor cells as a new agent contributing to vascular repair. Arch. Immunol. Ther. Exp. (Warsz.)55, 247–259 (2007).
  • Asahara T, Murohara T, Sullivan A et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science275, 964–967 (1997).
  • Asahara T, Masuda H, Takahashi T et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res.85, 221–228 (1999).
  • Loomans CJ, de Koning EJ, Staal FJ et al. Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of Type 1 diabetes. Diabetes53, 195–199 (2004).
  • Kränkel N, Adams V, Linke A et al. Hyperglycemia reduces survival and impairs function of circulating blood-derived progenitor cells. Arterioscler. Thromb. Vasc. Biol.25, 698–703 (2005).
  • Pistrosch F, Passauer J, Fischer S et al. In Type 2 diabetes, rosiglitazone therapy for insulin resistance ameliorates endothelial dysfunction independent of glucose control. Diabetes Care27, 484–490 (2004).
  • Joussen AM, Poulaki V, Le ML et al. A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J.18, 1450–1452 (2004).
  • Tolentino MJ, McLeod DS, Taomoto M et al. Pathologic features of vascular endothelial growth factor-induced retinopathy in the nonhuman primate. Am. J. Ophthalmol133, 373–385 (2002).
  • Tolentino MJ, Miller JW, Gragoudas ES et al. Vascular endothelial growth factor is sufficient to produce iris neovascularization and neovascular glaucoma in a nonhuman primate. Arch. Ophthalmol.114, 964–970 (1996).
  • Hofman P, van Blijswijk BC, Gaillard PJ, Vrensen GF, Schlingemann RO. Endothelial cell hypertrophy induced by vascular endothelial growth factor in the retina: new insights into the pathogenesis of capillary nonperfusion. Arch. Ophthalmol.119, 861–866 (2001).
  • Song H, Wang L, Hui Y. Expression of CD18 on the neutrophils of patients with diabetic retinopathy. Graefes Arch. Clin. Exp. Ophthalmol.245, 24–31 (2007).
  • Miyamoto K, Khosrof S, Bursell SE et al. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc. Natl Acad. Sci. USA96, 10836–10841 (1999).
  • Mizutani M, Kern TS, Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J. Clin. Invest.97, 2883–2890 (1996).
  • Joussen AM, Poulaki V, Mitsiades N et al. Suppression of Fas–FasL-induced endothelial cell apoptosis prevents diabetic blood–retinal barrier breakdown in a model of streptozotocin-induced diabetes. FASEB J.17, 76–78 (2003).
  • Joussen AM, Murata T, Tsujikawa A et al. Leukocyte-mediated endothelial cell injury and death in the diabetic retina. Am. J. Pathol.158, 147–152 (2001).
  • Powell ED, Field RA. Diabetic retinopathy and rheumatoid arthritis. Lancet2, 17–18 (1964).
  • No authors listed. Effects of aspirin treatment on diabetic retinopathy. ETDRS report number 8. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology98, 757–765 (1991).
  • No authors listed. Effect of aspirin alone and aspirin plus dipyridamole in early diabetic retinopathy. A multicenter randomized controlled clinical trial. The DAMAD Study Group. Diabetes38, 491–498 (1989).
  • Hattori Y, Hashizume K, Nakajima K et al. The effect of long-term treatment with sulindac on the progression of diabetic retinopathy. Curr. Med. Res. Opin.23, 1913–1917 (2007).
  • Pendergast SD, Trese MT. Familial exudative vitreoretinopathy. Results of surgical management. Ophthalmology105, 1015–1023 (1998).
  • Ranchod TM, Ho LY, Drenser KA, Capone A Jr, Trese MT. Clinical presentation of familial exudative vitreoretinopathy. Ophthalmology118, 2070–2075 (2011).
  • Criswick VG, Schepens CL. Familial exudative vitreoretinopathy. Am. J. Ophthalmol.68(4), 578–594 (1969).
  • Wu WC, Drenser K, Trese M, Capone A Jr, Dailey W. Retinal phenotype–genotype correlation of pediatric patients expressing mutations in the Norrie disease gene. Arch. Ophthalmol.125, 225–230 (2007).
  • Xu Q, Wang Y, Dabdoub A et al. Vascular development in the retina and inner ear: control by Norrin and Frizzled-4, a high-affinity ligand–receptor pair. Cell116, 883–895 (2004).
  • Drenser KA, Dailey W, Vinekar A et al. Clinical presentation and genetic correlation of patients with mutations affecting the FZD4 gene. Arch. Ophthalmol.127, 1649–1654 (2009).
  • MacDonald ML, Goldberg YP, Macfarlane J et al. Genetic variants of frizzled-4 gene in familial exudative vitreoretinopathy and advanced retinopathy of prematurity. Clin. Genet.67, 363–366 (2005).
  • Ye X, Wang Y, Nathans J. The Norrin/Frizzled4 signaling pathway in retinal vascular development and disease. Trends Mol. Med.16, 417–425 (2010).
  • Walsh MK, Drenser KA, Capone A Jr, Trese MT. Norrie disease vs familial exudative vitreoretinopathy. Arch. Ophthalmol.129, 819–820 (2011).
  • Drenser KA, Walsh MK, Capone A Jr, Trese MT, Luo CK. Preterm treatment of Norrie disease. Ophthalmology118, 1694–1695.e1 (2011).
  • Shastry BS. Genetic susceptibility to advanced retinopathy of prematurity (ROP). J. Biomed. Sci.17, 69 (2010).
  • Bizarro MJ, Hussain N, Jonsson B et al. Genetic susceptibility to retinopathy of prematurity. Pediatrics118, 1858–1863 (2006).
  • Ells A, Guernsey DL, Wallace K et al. Severe retinopathy of prematurity associated with FZD4 mutations. Ophthalmic Genet.31, 37–43 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.