47
Views
11
CrossRef citations to date
0
Altmetric
Review

Optical coherence tomography in cornea and refractive surgery

, &
Pages 241-250 | Published online: 09 Jan 2014

References

  • Huang D, Swanson EA, Lin CP et al. Optical coherence tomography. Science254(5035), 1178–1181 (1991).
  • Fercher AF, Mengedoht KL, Werner W. Eye-length measurement by interferometry with partially coherent-light. Optics Letters13, 186–188 (1988).
  • Izatt JA, Hee MR, Swanson EA et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol.112(12), 1584–1589 (1994).
  • Gabriele ML, Wollstein G, Ishikawa H et al. Optical coherence tomography: history, current status, and laboratory work. Invest. Ophthalmol Vis. Sci.52(5), 2425–2436 (2011).
  • Baikoff G, Jodai HJ, Bourgeon G. Measurement of the internal diameter and depth of the anterior chamber: IOLMaster versus anterior chamber optical coherence tomographer. J. Cataract Refract. Surg.31(9), 1722–1728 (2005).
  • Garcia JPS, Rosen RB. Anterior segment imaging: optical coherence tomography versus ultrasound biomicroscopy. Ophthalmic Surg. Lasers Imaging39(6), 476–484 (2008).
  • Dinc U, Gorgun E, Oncel B et al. assessment of anterior chamber depth using visante optical coherence tomography, slitlamp optical coherence tomography, IOL master, pentacam and orbscan II. Ophthalmologica224(6), 341–346 (2010).
  • Yazici AT, Bozkurt E, Alagoz C et al. Central corneal thickness, anterior chamber depth, and pupil diameter measurements using Visante OCT, Orbscan, and Pentacam. J. Refract. Surg.26(2), 127–133 (2010).
  • Kucukevcilioglu M, Hurmeric V, Erdurman FC, Ceylan OM. Imaging late capsular block syndrome: ultrasound biomicfroscopy versus Scheimpflug camera. J. Cataract Refract. Surg.37(11), 2071–2074 (2011).
  • Ambrósio R, Belin MW. Imaging of the cornea: topography vs tomography. J. Refract. Surg.26(11), 847–849 (2010).
  • Kawamorita T, Uozato H, Kamiya K et al. Repeatability, reproducibility, and agreement characteristics of rotating Scheimpflug photography and scanning-slit corneal topography for corneal power measurement. J. Cataract Refract. Surg.35(1), 127–133 (2009).
  • Salouti R, Nowroozzadeh MH, Zamani M et al. Comparison of anterior and posterior elevation map measurements between 2 Scheimpflug imaging systems. J. Cataract Refract. Surg.35(5), 856–862 (2009).
  • Wang Z, Chen J, Yang B. Posterior corneal surface topographic changes after laser in situ keratomileusis are related to residual corneal bed thickness. Ophthalmology106(2), 406–409 (1999).
  • Wegener A, Laser-Junga H. Photography of the anterior eye segment according to Scheimpflug’s principle: options and limitations – a review. Clin. Exp. Ophthalmol.37(1), 144–154 (2009).
  • Dawczynski J, Koenigsdoerffer E, Augsten R, Strobel J. Anterior optical coherence tomography: a non-contact technique for anterior chamber evaluation. Graefe’s Arch Clin. Exp. Ophthalmol.245(3), 423–425 (2007).
  • Tan AN, Sauren LDC, de Brabander J et al. Reproducibility of anterior chamber angle measurements with anterior segment optical coherence tomography. Invest. Ophthalmol. Vis. Sci.52(5), 2095–2099 (2011).
  • Goldsmith JA, Li Y, Chalita MR et al. Anterior chamber width measurement by high-speed optical coherence tomography Ophthalmology112(2), 238–244 (2005).
  • Milla M, Piñero DP, Amparo F, Alió JL. Pachymetric measurements with a new Scheimpflug photography-based system: intraobserver repeatability and agreement with optical coherence tomography pachymetry. J. Cataract Refract. Surg.37(2), 310–316 (2011).
  • Nakagawa T, Maeda N, Higashiura R et al. Corneal topographic analysis in patients with keratoconus using 3-dimensional anterior segment optical coherence tomography. J. Cataract Refract. Surg.37(10), 1871–1878 (2011).
  • Nolan W. Anterior segment imaging: ultrasound biomicroscopy and anterior segment optical coherence tomography. Curr. Opin. Ophthalmol.19(2), 115–121 (2008).
  • Baïkoff G, Lutun E, Wei J, Ferraz C. Contact between 3 phakic intraocular lens models and the crystalline lens: an anterior chamber optical coherence tomography study. J. Cataract Refract. Surg.30(9), 2007–2012 (2004).
  • Baïkoff G, Lutun E, Wei J, Ferraz C. Anterior chamber optical coherence tomography study of human natural accommodation in a 19-year-old albino. J. Cataract Refract. Surg.30(3), 696–701 (2004).
  • Baïkoff G, Lutun E, Ferraz C, Wei J. Static and dynamic analysis of the anterior segment with optical coherence tomography. J. Cataract Refract. Surg.30(9), 1843–1850 (2004).
  • Mamalis N. Phakic intraocular lenses. J. Cataract Refract. Surg.36(11), 1805–1806 (2010).
  • Bechmann M, Ullrich S, Thiel MJ, Kenyon KR, Ludwig K. Imaging of posterior chamber phakic intraocular lens by optical coherence tomography. J. Cataract Refract. Surg.28(2), 360–363 (2002).
  • Lindland A, Heger H, Kugelberg M, Zetterström C. Vaulting of myopic and toric implantable collamer lenses during accommodation measured with Visante optical coherence tomography. Ophthalmology117(6), 1245–1250 (2010).
  • Jagow von B, Kohnen T. Corneal architecture of femtosecond laser and microkeratome flaps imaged by anterior segment optical coherence tomography. J. Cataract Refract. Surg.35(1), 35–41 (2009).
  • Can I, Bayhan HA, Celik H, Bostancı CB. Anterior segment optical coherence tomography evaluation and comparison of main clear corneal incisions in microcoaxial and biaxial cataract surgery. J. Cataract Refract. Surg.37(3), 490–500 (2011).
  • Torres LF, Saez-Espinola F, Colina JM et al.In vivo architectural analysis of 3.2 mm clear corneal incisions for phacoemulsification using optical coherence tomography. J. Cataract Refract. Surg.32(37), 1820–1826 (2006).
  • Fukuda S, Kawana K, Yasuno Y, Oshika T. Wound architecture of clear corneal incision with or without stromal hydration observed with 3-dimensional optical coherence tomography. Am. J. Ophthalmol.151(3), 413–419 (2011).
  • Xia Y, Liu X, Luo L et al. Early changes in clear cornea incision after phacoemulsification: an anterior segment optical coherence tomography study. Acta Ophthalmol.87(7), 764–768 (2009).
  • Cheng B, Liu Y, Liu Y et al. Early changes in morphology and intraocular pressure by size of clear corneal incision. Cornea30(6), 634–640 (2011).
  • Leng T, Lujan BJ, Yoo SH, Wang J. Three-dimensional spectral domain optical coherence tomography of a clear corneal cataract incision. Ophthalmic. Surg. Lasers Imaging39, S132–S134 (2008).
  • Morrison L, Talley T. Spontaneous Detachment of Descemet’s Membrane. Cornea8(4), 303–305 (1989).
  • Wylegała E, Nowińska A. Usefulness of anterior segment optical coherence tomography in Descemet membrane detachment. Eur. J. Ophthalmol.19(5), 723–728 (2009).
  • Kalev-Landoy M, Day AC, Cordeiro MF, Migdal C. Optical coherence tomography in anterior segment imaging. Acta Ophthalmol.85(4), 427–430 (2007).
  • Ferré LA, Nada O, Sherknies D, Boisjoly H, Brunette I. Optical coherence tomography anatomy of the corneal endothelial transplantation wound. Cornea29(7), 737–744 (2010).
  • Ceylan OM, Turk A, Erdurman C et al. Comparison of oculus pentacam and stratus optical coherence tomography for measurement of central corneal thickness. Cornea30(6), 670–674 (2011).
  • Leung CK, Chan WM, Ko CY et al. Visualization of anterior chamber angle dynamics using optical coherence tomography. Ophthalmology112(6), 980–984 (2005).
  • Lim LS, Aung HT, Aung T, Tan DTH. Corneal imaging with anterior segment optical coherence tomography for lamellar keratoplasty procedures. Am. J. Ophthalmol.145(1), 81–90 (2008).
  • Kymionis GD, Ide T, Donaldson K, Yoo SH. Diagnosis of donor graft partial dislocation behind the iris after DSAEK with anterior segment OCT. Ophthalmic Surg. Lasers Imaging9, 1–2 (2010).
  • Ide T, Yoo SH, Kymionis G, Shah P. Double Descemet’s membranes after penetrating keratoplasty with anterior segment optical coherence tomography. Ophthalmic Surg. Lasers Imaging39(5), 422–425 (2008).
  • Kymionis GD, Suh LH, Dubovy SR, Yoo SH. Diagnosis of residual Descemet’s membrane after Descemet’s stripping endothelial keratoplasty with anterior segment optical coherence tomography. J. Cataract Refract. Surg.33(7), 1322–1324 (2007).
  • Suh LH, Yoo SH, Deobhakta A et al. Complications of Descemet’s stripping with automated endothelial keratoplasty: survey of 118 eyes at One Institute. Ophthalmology115(9), 1517–1524 (2008).
  • Yoo SH, Kymionis GD, Deobhakta AA et al. One-year results and anterior segment optical coherence tomography findings of Descemet stripping automated endothelial keratoplasty combined with phacoemulsification. Arch Ophthalmol.126(8), 1052–1055 (2008).
  • Suh LH, Shousha MA, Ventura RU et al. Epithelial ingrowth after Descemet stripping automated endothelial keratoplasty: description of cases and assessment with anterior segment optical coherence tomography. Cornea30(5), 528–534 (2011).
  • Stahl JE, Durrie DS, Schwendeman FJ, Boghossian AJ. Anterior segment OCT analysis of thin IntraLase femtosecond flaps. J. Refract. Surg.23(6), 555–558 (2007).
  • Li Y, Netto M, Shekhar R, Krueger R, Huang D. A longitudinal study of LASIK flap and stromal thickness with high-speed optical coherence tomography. Ophthalmology114(6), 1124–1132 (2007).
  • Rosas SCH, Li Y, Zhang X et al. Repeatability of laser in situ keratomileusis flap thickness measurement by Fourier-domain optical coherence tomography. J. Cataract Refract. Surg.37(4), 649–654 (2011).
  • Tran DB, Binder PS, Brame CL. LASIK flap revision using the IntraLase femtosecond laser. Int. Ophthalmol. Clin.48(1), 51–63 (2008).
  • Hurmeric V, Yoo SH. Femtosecond-assisted astigmatic keratotomy. Cataract Refractive Surgery Today Europe.10(9), 30–33 (2010).
  • Hoffart L, Proust H, Matonti F, Conrath J, Ridings B. Correction of postkeratoplasty astigmatism by femtosecond laser compared with mechanized astigmatic keratotomy. Am. J. Ophthalmol.147(5), 779–787 (2009).
  • Nubile M, Carpineto P, Lanzini M et al. Femtosecond laser arcuate keratotomy for the correction of high astigmatism after keratoplasty. Ophthalmology116(6), 1083–1092 (2009).
  • Abbey A, Ide T, Kymionis GD, Yoo SH. Femtosecond laser-assisted astigmatic keratotomy in naturally occurring high astigmatism. Br. J. Ophthalmol.93(12), 1566–1569 (2009).
  • Kymionis GD, Yoo SH, Ide T, Culbertson WW. Femtosecond-assisted astigmatic keratotomy for post-keratoplasty irregular astigmatism. J. Cataract Refract. Surg.35(1), 11–13 (2009).
  • Hurmeric V, Shousha MA, Yoo SH. New applications of femtosecond lasers. European Ophthalmic Review4(1), 48–50 (2010).
  • Yoo SH, Kymionis GD, Ide T, Diakonis VF. Overcorrection after femtosecond-assisted astigmatic keratotomy in a post-Descemet-stripping automated endothelial keratoplasty patient. J. Cataract Refract. Surg.35(10), 1833–1834 (2009).
  • Yoo SH, Hurmeric V. Femtosecond laser-assisted keratoplasty. Am J Ophthalmol.151(2), 190–191 (2011).
  • Yoo S, Kymionis GD, Koreishi A et al. Femtosecond laser-assisted sutureless anterior lamellar keratoplasty. Ophthalmology115(8), 1303–1307 (2008).
  • Chan CC, Ritenour RJ, Kumar NL, Sansanayudh W, Rootman DS. Femtosecond laser-assisted mushroom configuration deep anterior lamellar keratoplasty. Cornea29(3), 290–295 (2010).
  • Shousha MA, Yoo SH, Kymionis GD et al. Long-term results of femtosecond laser-assisted sutureless anterior lamellar keratoplasty. Ophthalmology118(2), 315–323 (2011).
  • Yoo SH, Kymionis GD, O’Brien T, Ide T, Culbertson W, Alfonso E. Femtosecond-assisted diagnostic corneal biopsy (FAB) in keratitis. Graefe’s Arch Clin. Exp. Ophthalmol.246(5), 759–762 (2008).
  • Kymionis GD, Ide T, Galor A, Yoo SH. Femtosecond-assisted anterior lamellar corneal staining-tattooing in a blind eye with leukocoria. Cornea28(2), 211–213 (2009).
  • Kanellopoulos AJ. Collagen cross-linking in early keratoconus with riboflavin in a femtosecond laser-created pocket: initial clinical results. J. Refract. Surg.25(11), 1034–1037 (2009).
  • Nagy Z, Takacs A, Filkorn T, Sarayba M. Initial clinical evaluation of an intraocular femtosecond laser in cataract surgery. J. Refract. Surg.25(12), 1053–1060 (2009).
  • William WC, Juan FB, Rafael F et al. Facilitation of nuclear cataract removal by femtosecond laser pretreatment. ASCRS (2011) (Abstract 982342).
  • Wang J, Jiao S, Ruggeri M, Shousha MA, Chen Q. In situ visualization of tears on contact lens using ultra high resolution optical coherence tomography. Eye Contact Lens35(2), 44–49 (2009).
  • Wang J, Conway TM, Yuan Y, Shen M, Cui L. Tear meniscus volume measured with ultra-high resolution OCT in dry eye after restasis treatment. ARVO Meeting Abstracts51 (2010) (Abstract 6266).
  • Wollstein G, Paunescu LA, Ko TH et al. Ultrahigh-resolution optical coherence tomography in glaucoma. Ophthalmology112(2), 229–237 (2005).
  • Shen M, Wang MR, Yuan Y et al. SD-OCT with prolonged scan depth for imaging the anterior segment of the eye. Ophthal. Surg. Lasers Imaging41(6), S65–S69 (2010).
  • Shousha MA, Perez VL, Wang J et al. Use of ultra-high-resolution optical coherence tomography to detect in vivo characteristics of Descemet’s membrane in Fuchs’ dystrophy. Ophthalmology117(6), 1220–1227 (2010).
  • Das S, Link B, Seitz B. Salzmann’s nodular degeneration of the cornea: a review and case series. Cornea24(7), 772–777 (2005).
  • Hurmeric, V, Yoo SH, Karp CL et al.In vivo morphologic characteristics of Salzmann nodular degeneration with ultra-high-resolution optical coherence tomography. Am. J. Ophthalmol.151(2), 248–256.e2 (2011).
  • Vajzovic LM, Karp CL, Haft P et al. Ultra high-resolution anterior segment optical coherence tomography in the evaluation of anterior corneal dystrophies and degenerations. Ophthalmology118(7), 1291–1296 (2011).
  • Shousha M, Karp C, Perez V et al. Diagnosis and management of conjunctival and corneal intraepithelial neoplasia using ultra high resolution optical coherence tomography. Ophthalmology118(8), 1531–1537 (2011).
  • Hurmeric V, Yoo SH, Fishler J, Chang VS, Wang J, Culbertson WW. In vivo structural characteristics of the femtosecond LASIK-induced opaque bubble layers with ultrahigh-resolution SD-OCT. Ophthalmic Surg. Lasers Imaging41, S109–S113 (2010).
  • Nordan LT, Slade SG, Baker RN, Suarez C, Juhasz T, Kurtz R. Femtosecond laser flap creation for laser in situ keratomileusis: six-month follow-up of initial U.S. clinical series. J. Refract. Surg.19(1), 8–14 (2003).
  • Seider M, Ide T, Kymionis GD, Culbertson WW, O’Brien T, Yoo S. Epithelial breakthrough during IntraLase flap creation for laser in situ keratomileusis. J. Cataract Refract. Surg.34(5), 859–863 (2008).
  • Ide T, Yoo SH, Kymionis GD, Haft P, O’Brien TP. Second femtosecond laser pass for incomplete laser in situ keratomileusis flaps caused by suction loss. J. Cataract Refract. Surg.35(1), 153–157 (2009).
  • Shah SA, Stark WJ. Mechanical penetration of a femtosecond laser-created laser-assisted in situ keratomileusis flap. Cornea29(3), 336–338 (2010).
  • Hurmeric V, Wang J, Yoo SH. Ultra-high-resolution optical coherence tomography imaging in LASIK. ASCRS (2011) (Abstract 983431).
  • Ide T, Wang J, Tao A et al. Intraoperative use of three-dimensional spectral-domain optical coherence tomography. Ophthalmic Surg. Lasers Imaging41(2), 250–254 (2010).
  • Dayani PN, Maldonado R, Farsiu S, Toth CA. Intraoperative use of handheld spectral domain optical coherence tomography imaging in macular surgery. Retina29(10), 1457–1468 (2009).
  • Scott AW, Farsiu S, Enyedi LB, Wallace DK, Toth CA. Imaging the infant retina with a hand-held spectral-domain optical coherence tomography device. Am. J. Ophthalmol.147(2), 364–373 e2 (2009).
  • Ehlers JP, Tao YK, Farsiu S, Maldonado R, Izatt JA, Toth CA. Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging. Invest. Ophthalmol. Vis. Sci.52(6), 3153–3159 (2011).
  • Tang M, Chen A, Li Y, Huang D. Corneal power measurement with Fourier-domain optical coherence tomography. J. Cataract Refract. Surg.36(12), 2115–2122 (2010).
  • Boscia F, La Tegola MG, Alessio G, Sborgia C. Accuracy of Orbscan optical pachymetry in corneas with haze. J. Cataract Refract. Surg.28(2), 253–258 (2002).
  • Kermani O, Will F, Massow O, Oberheide U, Lubatschowski H. Control of femtosecond thin-flap LASIK using OCT in human donor eyes. J. Refract. Surg.26(1), 57–60 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.