129
Views
40
CrossRef citations to date
0
Altmetric
Review

Scaffolds and stem cells: delivery of cell transplants for retinal degenerations

&
Pages 459-470 | Published online: 09 Jan 2014

References

  • MacLaren RE, Pearson RA, MacNeil A et al. Retinal repair by transplantation of photoreceptor precursors. Nature 444(7116), 203–207 (2006).
  • Pearson RA, Barber AC, Rizzi M et al. Restoration of vision after transplantation of photoreceptors. Nature 485(7396), 99–103 (2012).
  • Deshpande P, McKean R, Blackwood KA et al. Using poly(lactide-co-glycolide) electrospun scaffolds to deliver cultured epithelial cells to the cornea. Regen. Med. 5(3), 395–401 (2010).
  • Pang K, Du L, Wu X. A rabbit anterior cornea replacement derived from acellular porcine cornea matrix, epithelial cells and keratocytes. Biomaterials 31(28), 7257–7265 (2010).
  • Zajicova A, Pokorna K, Lencova A et al. Treatment of ocular surface injuries by limbal and mesenchymal stem cells growing on nanofiber scaffolds. Cell Transplant. 19(10), 1281–1290 (2010).
  • Wei HJ, Chen CH, Lee WY et al. Bioengineered cardiac patch constructed from multilayered mesenchymal stem cells for myocardial repair. Biomaterials 29(26), 3547–3556 (2008).
  • Xiang Z, Liao R, Kelly MS, Spector M. Collagen-GAG scaffolds grafted onto myocardial infarcts in a rat model: a delivery vehicle for mesenchymal stem cells. Tissue Eng. 12(9), 2467–2478 (2006).
  • Leor J, Gerecht S, Cohen S et al. Human embryonic stem cell transplantation to repair the infarcted myocardium. Heart 93(10), 1278–1284 (2007).
  • Chen G, Hu YR, Wan H et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells and Schwann cells. Chin. Med. J. 123(17), 2424–2431 (2010).
  • Fansa H, Keilhoff G. Comparison of different biogenic matrices seeded with cultured Schwann cells for bridging peripheral nerve defects. Neurol. Res. 26(2), 167–173 (2004).
  • Olson HE, Rooney GE, Gross L et al. Neural stem cell- and Schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord. Tissue Eng. Part A 15(7), 1797–1805 (2009).
  • Oudega M, Gautier SE, Chapon P et al. Axonal regeneration into Schwann cell grafts within resorbable poly(α-hydroxyacid) guidance channels in the adult rat spinal cord. Biomaterials 22(10), 1125–1136 (2001).
  • Xiong Y, Zhu JX, Fang ZY et al. Coseeded Schwann cells myelinate neurites from differentiated neural stem cells in neurotrophin-3-loaded PLGA carriers. Int. J. Nanomedicine 7, 1977–1989 (2012).
  • Tomita M, Lavik E, Klassen H, Zahir T, Langer R, Young MJ. Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells. Stem Cells 23(10), 1579–1588 (2005).
  • Pitt CG, Gu ZW. Modification of the rates of chain cleavage of poly(ϵ-caprolactone) and related polyesters in the solid state. J. Control. Rel. 4, 283–292 (1987).
  • Sung HJ, Meredith C, Johnson C, Galis ZS. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 25(26), 5735–5742 (2004).
  • Wang Y, Kim YM, Langer R. In vivo degradation characteristics of poly(glycerol sebacate). J. Biomed. Mater. Res. A 66(1), 192–197 (2003).
  • Lavik EB, Klassen H, Warfvinge K, Langer R, Young MJ. Fabrication of degradable polymer scaffolds to direct the integration and differentiation of retinal progenitors. Biomaterials 26(16), 3187–3196 (2005).
  • Warfvinge K, Kiilgaard JF, Lavik EB et al. Retinal progenitor cell xenografts to the pig retina: morphologic integration and cytochemical differentiation. Arch. Ophthalmol. 123(10), 1385–1393 (2005).
  • Jones BW, Watt CB, Frederick JM et al. Retinal remodeling triggered by photoreceptor degenerations. J. Comp. Neurol. 464(1), 1–16 (2003).
  • Humphries MM, Rancourt D, Farrar GJ et al. Retinopathy induced in mice by targeted disruption of the rhodopsin gene. Nat. Genet. 15(2), 216–219 (1997).
  • Tao S, Young C, Redenti S et al. Survival, migration and differentiation of retinal progenitor cells transplanted on micro-machined poly(methyl methacrylate) scaffolds to the subretinal space. Lab Chip 7(6), 695–701 (2007).
  • Steedman MR, Tao SL, Klassen H, Desai TA. Enhanced differentiation of retinal progenitor cells using microfabricated topographical cues. Biomed. Microdevices 12(3), 363–369 (2010).
  • Sodha S, Wall K, Redenti S, Klassen H, Young MJ, Tao SL. Microfabrication of a three-dimensional polycaprolactone thin-film scaffold for retinal progenitor cell encapsulation. J. Biomater. Sci. Polym. Ed. 22(4–6), 443–456 (2011).
  • McUsic AC, Lamba DA, Reh TA. Guiding the morphogenesis of dissociated newborn mouse retinal cells and hES cell-derived retinal cells by soft lithography-patterned microchannel PLGA scaffolds. Biomaterials 33(5), 1396–1405 (2012).
  • Neeley WL, Redenti S, Klassen H et al. A microfabricated scaffold for retinal progenitor cell grafting. Biomaterials 29(4), 418–426 (2008).
  • Redenti S, Neeley WL, Rompani S et al. Engineering retinal progenitor cell and scrollable poly(glycerol-sebacate) composites for expansion and subretinal transplantation. Biomaterials 30(20), 3405–3414 (2009).
  • Livesey FJ, Cepko CL. Vertebrate neural cell-fate determination: lessons from the retina. Nat. Rev. Neurosci. 2(2), 109–118 (2001).
  • Okano H, Temple S. Cell types to order: temporal specification of CNS stem cells. Curr. Opin. Neurobiol. 19(2), 112–119 (2009).
  • Eiraku M, Takata N, Ishibashi H et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472(7341), 51–56 (2011).
  • Osakada F, Jin ZB, Hirami Y et al. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J. Cell. Sci. 122(Pt 17), 3169–3179 (2009).
  • Sakaguchi DS, Van Hoffelen SJ, Theusch E et al. Transplantation of neural progenitor cells into the developing retina of the Brazilian opossum: an in vivo system for studying stem/progenitor cell plasticity. Dev. Neurosci. 26(5–6), 336–345 (2004).
  • Bhang SH, Lim JS, Choi CY, Kwon YK, Kim BS. The behavior of neural stem cells on biodegradable synthetic polymers. J. Biomater. Sci. Polym. Ed. 18(2), 223–239 (2007).
  • Leipzig ND, Shoichet MS. The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30(36), 6867–6878 (2009).
  • Saha K, Keung AJ, Irwin EF et al. Substrate modulus directs neural stem cell behavior. Biophys. J. 95(9), 4426–4438 (2008).
  • Banerjee A, Arha M, Choudhary S et al. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 30(27), 4695–4699 (2009).
  • Vasita R, Katti DS. Nanofibers and their applications in tissue engineering. Int. J. Nanomedicine 1(1), 15–30 (2006).
  • Ma PX, Zhang R. Synthetic nano-scale fibrous extracellular matrix. J. Biomed. Mater. Res. 46(1), 60–72 (1999).
  • Chen H, Fan X, Xia J et al. Electrospun chitosan-graft-poly (ϵ-caprolactone)/poly (ϵ-caprolactone) nanofibrous scaffolds for retinal tissue engineering. Int. J. Nanomedicine 6, 453–461 (2011).
  • Cai S, Smith ME, Redenti SM, Wnek GE, Young MJ. Mouse retinal progenitor cell dynamics on electrospun poly(ϵ-caprolactone). J. Biomater. Sci. Polymer. Ed. doi:10.1163/092050611X584388 (2011) (Epub ahead of print).
  • Zhang Y, Klassen HJ, Tucker BA, Perez MT, Young MJ. CNS progenitor cells promote a permissive environment for neurite outgrowth via a matrix metalloproteinase-2-dependent mechanism. J. Neurosci. 27(17), 4499–4506 (2007).
  • Tucker BA, Redenti SM, Jiang C et al. The use of progenitor cell/biodegradable MMP2–PLGA polymer constructs to enhance cellular integration and retinal repopulation. Biomaterials 31(1), 9–19 (2010).
  • Redenti S, Tao S, Yang J et al. Retinal tissue engineering using mouse retinal progenitor cells and a novel biodegradable, thin-film poly(e-caprolactone) nanowire scaffold. J. Ocul. Biol. Dis. Infor. 1(1), 19–29 (2008).
  • Bakshi A, Fisher O, Dagci T, Himes BT, Fischer I, Lowman A. Mechanically engineered hydrogel scaffolds for axonal growth and angiogenesis after transplantation in spinal cord injury. J. Neurosurg. Spine 1(3), 322–329 (2004).
  • Royce Hynes S, McGregor LM, Ford Rauch M, Lavik EB. Photopolymerized poly(ethylene glycol)/poly(l-lysine) hydrogels for the delivery of neural progenitor cells. J. Biomater. Sci. Polym. Ed. 18(8), 1017–1030 (2007).
  • Bellamkonda R, Ranieri JP, Bouche N, Aebischer P. Hydrogel-based three-dimensional matrix for neural cells.J. Biomed. Mater. Res. 29(5), 663–671 (1995).
  • Hynes SR, Rauch MF, Bertram JP, Lavik EB. A library of tunable poly(ethylene glycol)/poly(L-lysine) hydrogels to investigate the material cues that influence neural stem cell differentiation. J. Biomed. Mater. Res. A 89(2), 499–509 (2009).
  • Bryant SJ, Nuttelman CR, Anseth KS. Cytocompatibility of UV and visible light photoinitiating systems on cultured NIH/3T3 fibroblasts in vitro. J. Biomater. Sci. Polym. Ed. 11(5), 439–457 (2000).
  • Gupta D, Tator CH, Shoichet MS. Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27(11), 2370–2379 (2006).
  • Ballios BG, Cooke MJ, van der Kooy D, Shoichet MS. A hydrogel-based stem cell delivery system to treat retinal degenerative diseases. Biomaterials 31(9), 2555–2564 (2010).
  • Fitzpatrick SD, Jafar Mazumder MA, Lasowski F, Fitzpatrick LE, Sheardown H. PNIPAAm-grafted-collagen as an injectable, in situ gelling, bioactive cell delivery scaffold. Biomacromolecules 11(9), 2261–2267 (2010).
  • Nägler K, Mauch DH, Pfrieger FW. Glia-derived signals induce synapse formation in neurones of the rat central nervous system. J. Physiol. (Lond.) 533(Pt 3), 665–679 (2001).
  • Barker AJ, Koch SM, Reed J, Barres BA, Ullian EM. Developmental control of synaptic receptivity. J. Neurosci. 28(33), 8150–8160 (2008).
  • Kucukdereli H, Allen NJ, Lee AT et al. Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc. Natl Acad. Sci. USA 108(32), E440–E449 (2011).
  • Kljavin IJ, Reh TA. Mueller cells are a preferred substrate for in vitro neurite extension by rod photoreceptor cells.J. Neurosci. 11(10), 2985–2994 (1991).
  • Johnson TV, Bull ND, Martin KR. Identification of barriers to retinal engraftment of transplanted stem cells. Invest. Ophthalmol. Vis. Sci. 51(2), 960–970 (2010).
  • Kinouchi R, Takeda M, Yang L et al. Robust neural integration from retinal transplants in mice deficient in GFAP and vimentin. Nat. Neurosci. 6(8), 863–868 (2003).
  • Profyris C, Cheema SS, Zang D, Azari MF, Boyle K, Petratos S. Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiol. Dis. 15(3), 415–436 (2004).
  • Bringmann A, Iandiev I, Pannicke T et al. Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog. Retin. Eye Res. 28(6), 423–451 (2009).
  • Hirami Y, Osakada F, Takahashi K et al. Generation of retinal cells from mouse and human induced pluripotent stem cells. Neurosci. Lett. 458(3), 126–131 (2009).
  • Kelley MW, Turner JK, Reh TA. Retinoic acid promotes differentiation of photoreceptors in vitro. Development 120(8), 2091–2102 (1994).
  • Jiang X, Cao HQ, Shi LY, Ng SY, Stanton LW, Chew SY. Nanofiber topography and sustained biochemical signaling enhance human mesenchymal stem cell neural commitment. Acta Biomater. 8(3), 1290–1302 (2012).
  • Arnhold S, Klein H, Semkova I, Addicks K, Schraermeyer U. Neurally selected embryonic stem cells induce tumor formation after long-term survival following engraftment into the subretinal space. Invest. Ophthalmol. Vis. Sci. 45(12), 4251–4255 (2004).
  • Ghosh F, Neeley WL, Arnér K, Langer R. Selective removal of photoreceptor cells in vivo using the biodegradable elastomer poly(glycerol sebacate). Tissue Eng. Part A 17(13–14), 1675–1682 (2011).
  • Bandyopadhyay M, Rohrer B. Photoreceptor structure and function is maintained in organotypic cultures of mouse retinas. Mol. Vis. 16, 1178–1185 (2010).
  • Jacobson SG, Aleman TS, Cideciyan AV et al. Human cone photoreceptor dependence on RPE65 isomerase. Proc. Natl Acad. Sci. USA 104(38), 15123–15128 (2007).
  • Park KK, Liu K, Hu Y et al. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322(5903), 963–966 (2008).
  • Park KK, Liu K, Hu Y, Kanter JL, He Z. PTEN/mTOR and axon regeneration. Exp. Neurol. 223(1), 45–50 (2010).
  • Sun F, Park KK, Belin S et al. Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature 480(7377), 372–375 (2011).
  • Hill AJ, Zwart I, Tam HH et al. Human umbilical cord blood-derived mesenchymal stem cells do not differentiate into neural cell types or integrate into the retina after intravitreal grafting in neonatal rats. Stem Cells Dev. 18(3), 399–409 (2009).
  • Hara A, Taguchi A, Aoki H et al. Folate antagonist, methotrexate induces neuronal differentiation of human embryonic stem cells transplanted into nude mouse retina. Neurosci. Lett. 477(3), 138–143 (2010).
  • Aoki H, Hara A, Niwa M, Motohashi T, Suzuki T, Kunisada T. Transplantation of cells from eye-like structures differentiated from embryonic stem cells in vitro and in vivo regeneration of retinal ganglion-like cells. Graefes Arch. Clin. Exp. Ophthalmol. 246(2), 255–265 (2008).
  • Jones D. Pharmaceutical applications of polymers for drug delivery. Rapra Rev. Rep. 15(6), 3–40 (2004).
  • Wang Y, Ameer GA, Sheppard BJ, Langer R. A tough biodegradable elastomer. Nat. Biotechnol. 20(6), 602–606 (2002).
  • Polymer Data Handbook. Mark JE (Ed.). Oxford University Press Inc., New York, NY, USA 656 (1999).
  • Schiffman JD, Schauer CL. Cross-linking chitosan nanofibers. Biomacromolecules 8(2), 594–601 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.