982
Views
26
CrossRef citations to date
0
Altmetric
Editorial

Modeling retinal degenerative diseases with human iPS-derived cells: current status and future implications

, &
Pages 213-216 | Published online: 09 Jan 2014

References

  • Meyer JS, Howden SE, Wallace KA et al. Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 29(8), 1206–1218 (2011).
  • Phillips MJ, Wallace KA, Dickerson SJ et al. Blood-derived human iPS cells generate optic vesicle-like structures with the capacity to form retinal laminae and develop synapses. Invest. Ophthalmol. Vis. Sci. 53(4), 2007–2019 (2012).
  • Reh TA, Lamba D, Gust J. Directing human embryonic stem cells to a retinal fate. Methods Mol. Biol. 636, 139–153 (2010).
  • Jin ZB, Takahashi M. Generation of retinal cells from pluripotent stem cells. Prog. Brain Res. 201, 171–181 (2012).
  • Nakano T, Ando S, Takata N et al. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10(6), 771–785 (2012).
  • Kokkinaki M, Sahibzada N, Golestaneh N. Human induced pluripotent stem-derived retinal pigment epithelium (RPE) cells exhibit ion transport, membrane potential, polarized vascular endothelial growth factor secretion, and gene expression pattern similar to native RPE. Stem Cells 29(5), 825–835 (2011).
  • Buchholz DE, Hikita ST, Rowland TJ et al. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells 27(10), 2427–2434 (2009).
  • Rowland TJ, Blaschke AJ, Buchholz DE, Hikita ST, Johnson LV, Clegg DO. Differentiation of human pluripotent stem cells to retinal pigmented epithelium in defined conditions using purified extracellular matrix proteins. J. Tissue Eng. Regen. Med. doi:10.1002/term.1458 (2012) (Epub ahead of print).
  • Singh R, Shen W, Kuai D et al. iPS cell modeling of Best disease: insights into the pathophysiology of an inherited macular degeneration. Hum. Mol. Genet. 22(3), 593–607 (2013).
  • Blodi CF, Stone EM. Best’s vitelliform dystrophy. Ophthalmic Paediatr. Genet. 11(1), 49–59 (1990).
  • Petrukhin K, Koisti MJ, Bakall B et al. Identification of the gene responsible for Best macular dystrophy. Nat. Genet. 19(3), 241–247 (1998).
  • Mullins RF, Oh KT, Heffron E, Hageman GS, Stone EM. Late development of vitelliform lesions and flecks in a patient with best disease: clinicopathologic correlation. Arch. Ophthalmol. 123(11), 1588–1594 (2005).
  • Frangieh GT, Green WR, Fine SL. A histopathologic study of Best’s macular dystrophy. Arch. Ophthalmol. 100(7), 1115–1121 (1982).
  • McUsic AC, Lamba DA, Reh TA. Guiding the morphogenesis of dissociated newborn mouse retinal cells and hES cell-derived retinal cells by soft lithography-patterned microchannel PLGA scaffolds. Biomaterials 33(5), 1396–1405 (2012).
  • Lamba DA, Gust J, Reh TA. Transplantation of human embryonic stem cell-derived photoreceptors restores some visual function in Crx-deficient mice. Cell Stem Cell 4(1), 73–79 (2009).
  • Tucker BA, Scheetz TE, Mullins RF et al. Exome sequencing and analysis of induced pluripotent stem cells identify the cilia-related gene male germ cell-associated kinase (MAK) as a cause of retinitis pigmentosa. Proc. Natl Acad. Sci. USA 108(34), E569–E576 (2011).
  • Jin ZB, Okamoto S, Osakada F et al. Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PLoS ONE 6(2), e17084 (2011).
  • Howden SE, Gore A, Li Z et al. Genetic correction and analysis of induced pluripotent stem cells from a patient with gyrate atrophy. Proc. Natl Acad. Sci. USA 108(16), 6537–6542 (2011).
  • Eiraku M, Takata N, Ishibashi H et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472(7341), 51–56 (2011).

Website