132
Views
12
CrossRef citations to date
0
Altmetric
Review

Protozoan parasite aquaporins

, , , , &
Pages 199-211 | Published online: 09 Jan 2014

References

  • Verkman AS, Mitra AK. Structure and function of aquaporin water channels. Am. J. Physiol Renal Physiol.278(1), F13–F28 (2000).
  • Sturm A, Amino R, van de Sand C et al. Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science313(5791), 1287–1290 (2006).
  • Liu Y, Promeneur D, Rojek A et al. Aquaporin 9 is the major pathway for glycerol uptake by mouse erythrocytes, with implications for malarial virulence. Proc. Natl. Acad. Sci. USA104(30), 12560–12564 (2007).
  • Gorin MB, Yancey SB, Cline J, Revel JP, Horwitz J. The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning. Cell39(1), 49–59 (1984).
  • Benga G, Popescu O, Pop VI. Water exchange through erythrocyte membranes: p-chloromercuribenzene sulfonate inhibition of water diffusion in ghosts studied by a nuclear magnetic resonance technique. Biosci. Rep.5(3), 223–228 (1985).
  • Denker BM, Smith BL, Kuhajda FP, Agre P. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J. Biol. Chem.263(30), 15634–15642 (1988).
  • Knepper MA, Soren N. Peter Agre, 2003 Nobel Prize Winner in Chemistry. J. Am. Soc. Nephrol.15, 1093–1095 (2004).
  • Agre P, Sasaki S, Chrispeels MJ. Aquaporins: a family of water channel proteins. Am. J. Physiol.265(3 Pt 2), F461 (1993).
  • Beitz E, Pavlovic-Djuranovic S, Yasui M, Agre P, Schultz JE. Molecular dissection of water and glycerol permeability of the aquaglyceroporin from Plasmodium falciparum by mutational analysis. Proc. Natl Acad.Sci. USA101(5), 1153–1158 (2004).
  • Forrest KL, Bhave M. Major intrinsic proteins (MIPs) in plants: a complex gene family with major impacts on plant phenotype. Funct. Integr. Genomics7(4), 263–289 (2007).
  • Ishibashi K, Hara S, Kondo S. Aquaporin water channels in mammals. Clin. Exp. Nephrol. DOI: 10.1007/s10157-008-0118-6 (2008) (Epub ahead of print).
  • Wolfe SL. Introduction to Cell and Molecular Biology. Wadsworth Publishing Company, NY, USA (1995).
  • Froger A, Tallur B, Thomas D, Delamarche C. Prediction of functional residues in water channels and related proteins. Protein Sci.7, 1458–1468 (1998).
  • Agre P, King LS, Yasui M et al. Aquaporin water channels – from atomic structure to clinical medicine. J. Physiol.542, 3–16 (2002).
  • Gorelick DA, Praetorius J, Tsunenari T, Nielsen S, Agre P. Aquaporin-11: a channel protein lacking apparent transport function expressed in brain. BMC Biochem.7, 14 (2006).
  • Beitz E, Becker D, von Bulow J et al.In vitro analysis and modification of aquaporin pore selectivity. Handb. Exp. Pharm.190, 77–92 (2009).
  • Reid ME, Lomas-Francis C. Molecular approaches to blood group identification. Curr. Opin. Hematol.9(2), 152–159 (2002).
  • Buzhynskyy N, Girmens JF, Faigle W, Scheuring S. Human cataract lens membrane at subnanometer resolution. J. Mol. Biol.374(1), 162–169 (2007).
  • Zardoya R, Villalba S. A phylogenetic framework for the aquaporin family in eukaryotes. J. Mol. Evol.52(5), 391–404 (2001).
  • Ishibashi K. New members of mammalian aquaporins: AQP10–AQP12. Handb. Exp. Pharmacol. (190), 251–262 (2009).
  • Jablonski EM, Mattocks MA, Sokolov E et al. Decreased aquaporin expression leads to increased resistance to apoptosis in hepatocellular carcinoma. Cancer Lett.250(1), 36–46 (2007).
  • Marinelli RA, Gradilone SA, Carreras FI, Calamita G, Lehmann GL. Liver aquaporins: significance in canalicular and ductal bile formation. Ann. Hepatol.3(4), 130–136 (2004).
  • Jeyaseelan K, Sepramaniam S, Armugam A, Wintour EM. Aquaporins: a promising target for drug development. Expert. Opin. Ther. Targets10(6), 889–909 (2006).
  • Rash JE, Yosumura T, Hudson CS, Agre P, Nielsen S. Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. PNAS95, 11981–11986 (1998).
  • Beitz E. Aquaporin water and solute channels from malaria parasites and other pathogenic protozoa. ChemMedChem.1(6), 587–592 (2006).
  • Portincasa P, Palasciano G, Svelto M, Calamita G. Aquaporins in the hepatobiliary tract. Which, where and what they do in health and disease. Eur. J. Clin. Invest.38(1), 1–10 (2008).
  • Uzcategui NL, Zhou Y, Figarella K, Ye J, Mukhopadhyay R, Bhattacharjee H. Alteration in glycerol and metalloid permeability by a single mutation in the extracellular C-loop of Leishmania major aquaglyceroporin LmAQP1. Mol. Microbiol.70(6), 1477–1486 (2008).
  • Kirk K. Channels and transporters as drug targets in the plasmodium-infected erythrocyte. Acta Trop.89(3), 285–298 (2004).
  • Promeneur D, Liu Y, Maciel J, Agre P, King LS, Kumar N. Aquaglyceroporin PbAQP during intraerythrocytic development of the malaria parasite Plasmodium berghei. Proc. Natl. Acad.Sci. USA104(7), 2211–2216 (2007).
  • Gorrell MD, Warner FJ. Fooling the liver: malaria incognito. Hepatology45, 826 (2007).
  • Gonçalves LA, Vigário AM, Penha-Gonçalves C. Improved isolation of murine hepatocytes for in vitro malaria liver stage studies. Malar. J.6, 169 (2007).
  • Yuda M, Ishino T. Liver invasion by malarial parasites – how do malarial parasites break through the host barrier? Cell. Microbiol.6, 1119–1125 (2004).
  • Baer K, Roosevelt M, Clarkson AB Jr., Van RN, Schnieder T, Frevert U. Kupffer cells are obligatory for Plasmodium yoelii sporozoite infection of the liver. Cell. Microbiol.9, 397–412 (2007).
  • Frevert U, Engelmann S, Zougbede S et al. Intravital observation of Plasmodium berghei sporozoite infection of the liver. PLoS Biol.3, e192 (2005).
  • Mota MM, Pradel G, Vanderberg JP et al. Migration of Plasmodium sporozoites through cells before infection. Science291, 141–144 (2001).
  • Kariu T, Ishino T, Yano K, Chinzei Y, Yuda M. CelTOS, a novel malarial protein that mediates transmission to mosquito and vertebrate hosts. Mol. Microbiol.59, 1369–1379 (2006).
  • Sturm A, Heussler V. Live and let die: manipulation of host hepatocytes by exoerythrocytic Plasmodium parasites. Med. Microbiol. Immunol.196(3), 127–133 (2007).
  • Bahamontes-Rosa N, Wu B, Beitz E, Kremsner PG, Kun JF. Limited genetic diversity of the Plasmodium falciparum aquaglyceroporin gene. Mol. Biochem. Parasitol.156, 255–257 (2007).
  • Figarella K, Uzcategui NL, Zhou Y et al. Biochemical characterization of Leishmania major aquaglyceroporin LmAQP1: possible role in volume regulation and osmotaxis. Mol. Microbiol.65, 1006–1017 (2007).
  • Hansen M, Kun JF, Schultz JE, Beitz E. A single, bi-functional aquaglyceroporin in blood stage Plasmodium falciparum malaria parasites. J. Biol. Chem.2002, 277: 4874–4882.
  • Montalvetti A, Rohloff P, Docampo R. A functional aquaporin co-localizes with the vacuolar proton pyrophosphatase to acidocalcisomes and the contractile vacuole complex of Trypanosoma cruzi. J. Biol. Chem.279, 38673–38682 (2004).
  • Pavlovic-Djuranovic S, Schultz JE, Beitz E. A single aquaporin gene encodes a water/glycerol/urea facilitator in Toxoplasma gondii with similarity to plant tonoplast intrinsic proteins. FEBS Lett.555, 500–504. (2003).
  • Gardner MJ, Hall N, Fung E et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature (London)419, 498–511 (2002).
  • Carlton JM. Genome sequencing and comparative genomics of tropical disease pathogens. Cell. Microbiol.5, 861–873 (2003).
  • Stoeckert CJ Jr, Fischer S, Kissinger JC, Heiges M, Aurrecoechea C, Gajria B. PlasmoDB v5: new looks, new genomes. Trends Parasitol.22, 543–546 (2006).
  • Chen XM, O’Hara SP, Huang BQ, Splinter PL, Nelson JB, LaRusso NF. Localized glucose and water influx facilitates Cryptosporidium parvum cellular invasion by means of modulation of host–cell membrane protrusion. Proc. Natl Acad. Sci. USA102, 6338–6343 (2005).
  • Borgnia M, Nielsen S, Engel A, Agre P. Cellular and molecular biology of the aquaporin water channels. Annu. Rev. Biochem.68, 425–458 (1999).
  • Engel A, Fujiyoshi Y, Agre P. The importance of aquaporin water channel protein structures. EMBO J.19, 800–806 (2000).
  • Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science290(5493), 972–977 (2000).
  • Greenwood BM, Fidock DA, Kyle DE et al. Malaria: progress, perils, and prospects for eradication. J. Clin. Invest.118(4), 1266–1276 (2008).
  • Shirley MW, Harvey DA. A genetic linkage map of the apicomplexan protozoan parasite Eimeria tenella. Genome Res.10(10), 1587–1593 (2000).
  • Meisel JL, Perera DR, Meligro C, Rubin CE. Overwhelming watery diarrhea associated with a cryptosporidium in an immunosuppressed patient. Gastroenterology70(6), 1156–1160 (1976).
  • Nime FA, Burek JD, Page DL, Holscher MA, Yardley JH. Acute enterocolitis in a human being infected with the protozoan Cryptosporidium. Gastroenterology70(4), 592–598 (1976).
  • Graczyk TK, Fried B. Human waterborne trematode and protozoan infections. Adv. Parasitol.64, 111–160 (2007).
  • Kravetz JD, Federman DG. Toxoplasmosis in pregnancy. Am. J. Med.118(3), 212–216 (2005).
  • Bowie WR, King AS, Werker DH et al. Outbreak of toxoplasmosis associated with municipal drinking water. The BC Toxoplasma Investigation Team. Lancet350(9072), 173–177 (1997).
  • Ersfeld K. Genomes and genome projects of protozoan parasites. Curr. Issues Mol. Biol.5(3), 61–74 (2003).
  • Hall N, Carlton J. Comparative genomics of malaria parasites. Curr. Opin. Genet. Dev.15(6), 609–613 (2005).
  • Stuart K, Brun R, Croft S et al. Kinetoplastids: related protozoan pathogens, different diseases. J. Clin. Invest.118(4), 1301–1310 (2008).
  • Gull K. The biology of kinetoplastid parasites: insights and challenges from genomics and post-genomics. Int. J. Parasitol.31(5–6), 443–452 (2001).
  • Kim K, Weiss LM. Toxoplasma gondii: the model apicomplexan. Int. J. Parasitol.34(3), 423–432 (2004).
  • Fu D, Libson A, Miercke LJ et al. Structure of a glycerol-conducting channel and the basis for its selectivity. Science290(5491), 481–486 (2000).
  • Murata K, Mitsuoka K, Hirai T et al. Structural determinants of water permeation through aquaporin-1. Nature407(6804), 599–605 (2000).
  • Laski ME, Pressley TA. Aquaporin mediated water flux as a target for diuretic development. Semin. Nephrol.19(6), 533–550 (1999).
  • Kruse E, Uehlein N, Kaldenhoff R. The aquaporins. Genome Biol.7(2), 206–212 (2006).
  • Ghosh K, Takvorian PM, McBride SM, Cali A, Weiss LM. Heterologous expression of an Encephalitozoon cuniculi aquaporin in Xenopus oocytes. J. Eukaryot. Microbiol.53(Suppl 1), S72–S73 (2006).
  • Wiwanitkit V. Identification of transmembrane region and orientation of aquaglyceroporin of Plasmodium falciparum. Indian J. Med. Microbiol.26(3), 246–247 (2008).
  • Newby ZE, O’Connell J, III, Robles-Colmenares Y, Khademi S, Miercke LJ, Stroud RM. Crystal structure of the aquaglyceroporin PfAQP from the malarial parasite Plasmodium falciparum. Nat. Struct. Mol. Biol.15(6), 619–625 (2008).
  • Keeling PJ. Reduction and compaction in the genome of the apicomplexan parasite Cryptosporidium parvum. Dev. Cell6(5), 614–616 (2004).
  • Huang J, Mullapudi N, Sicheritz-Ponten T, Kissinger JC. A first glimpse into the pattern and scale of gene transfer in Apicomplexa. Int. J. Parasitol.34(3), 265–274 (2004).
  • Maurel C, Reizer J, Schroeder JI, Chrispeels MJ. The vacuolar membrane protein γ-TIP creates water specific channels in Xenopus oocytes. EMBO J.12(6), 2241–2247 (1993).
  • Gourbal B, Sonuc N, Bhattacharjee H et al. Drug uptake and modulation of drug resistance in Leishmania by an aquaglyceroporin. J. Biol. Chem.279(30), 31010–31017 (2004).
  • Holland KP, Elford HL, Bracchi V, Annis CG, Schuster SM, Chakrabarti D. Antimalarial activities of polyhydroxyphenyl and hydroxamic acid derivatives. Antimicrob. Agents Chemother.42(9), 2456–2458 (1998).
  • Kasper LH, Pfefferkorn ER. Hydroxyurea inhibition of growth and DNA synthesis in Toxoplasma gondii: characterization of a resistant mutant. Mol. Biochem. Parasitol.6(3), 141–150 (1982).
  • Maharjan M, Singh S, Chatterjee M, Madhubala R. Role of aquaglyceroporin (AQP1) gene and drug uptake in antimony-resistant clinical isolates of Leishmania donovani. Am. J. Trop. Med. Hyg.79(1), 69–75 (2008).
  • Wille U, Schade B, Duszenko M. Characterization of glycerol uptake in bloodstream and procyclic forms of Trypanosoma brucei. Eur. J. Biochem.256(1), 245–250 (1998).
  • Rohloff P, Montalvetti A, Docampo R. Acidocalcisomes and the contractile vacuole complex are involved in osmoregulation in Trypanosoma cruzi. J. Biol. Chem.279(50), 52270–52281 (2004).
  • Zeuthen T, Wu B, Pavlovic-Djuranovic S et al. Ammonia permeability of the aquaglyceroporins from Plasmodium falciparum, Toxoplasma gondii and Trypansoma brucei. Mol. Microbiol.61(6), 1598–1608 (2006).
  • Dixon MW, Thompson J, Gardiner DL, Trenholme KR. Sex in Plasmodium: a sign of commitment. Trends Parasitol.24(4), 168–175 (2008).
  • Kaneko O. Erythrocyte invasion: vocabulary and grammar of the Plasmodium rhoptry. Parasitol. Int.56(4), 255–262 (2007).
  • Sinnis P, Zavala F. The skin stage of malaria infection: biology and relevance to the malaria vaccine effort. Future Microbiol.3, 275–278 (2008).
  • Warrell DA. The 1996 Runme Shaw Memorial Lecture: malaria – past, present and future. Ann. Acad. Med. Singapore26(3), 380–387 (1997).
  • Leach AR. Molecular Modelling: pRinciples and Applications. Prentice Hall, Harlow, UK (2001).
  • de Groot BL, van Aalten DM, Scheek RM, Amadei A, Vriend G, Berendsen HJ. Prediction of protein conformational freedom from distance constraints. Proteins29(2), 240–251 (1997).
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J. Mol. Graph.14(1), 33–38 (1996).
  • Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJ. GROMACS: fast, flexible, and free. J. Comput. Chem.26(16), 1701–1718 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.