229
Views
43
CrossRef citations to date
0
Altmetric
Review

Proteogenomics and systems biology: quest for the ultimate missing parts

Pages 65-77 | Published online: 09 Jan 2014

References

  • Auffray C, Noble D. Origins of systems biology in William Harvey’s masterpiece on the movement of the heart and the bood in animals. Int. J. Mol. Sci.10(4), 1658–1669 (2009).
  • Noble D. The Music of Life: Biology Beyond the Genome. Oxford University Press, Oxford, UK (2006).
  • Strange K. The end of “naive reductionism”: rise of systems biology or renaissance of physiology? Am. J. Physiol. Cell. Physiol.288(5), C968–C974 (2005).
  • Kyrpides NC. Fifteen years of microbial genomics: meeting the challenges and fulfilling the dream. Nat. Biotechnol.27(7), 627–632 (2009).
  • Armengaud J, Dedieu A, Solques O, Pellequer JL, Quemeneur E. Deciphering structure and topology of conserved COG2042 orphan proteins. BMC Struct. Biol.5, 3 (2005).
  • Brückner A, Polge C, Lentze N, Auerbach D, Schlattner U. Yeast two-hybrid, a powerful tool for systems biology. Int. J. Mol. Sci.10(6), 2763–2788 (2009).
  • Mousson F, Kolkman A, Pijnappel WW, Timmers HT, Heck AJ. Quantitative proteomics reveals regulation of dynamic components within TATA-binding protein (TBP) transcription complexes. Mol. Cell. Proteomics7(5), 845–852 (2008).
  • Barglow KT, Cravatt BF. Activity-based protein profiling for the functional annotation of enzymes. Nat. Methods4(10), 822–827 (2007).
  • Beloqui A, Guazzaroni ME, Pazos F et al. Reactome array: forging a link between metabolome and genome. Science326, 252–257 (2009).
  • Gstaiger M, Aebersold R. Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat. Rev. Genet.10(9), 617–627 (2009).
  • Clamp M, Fry B, Kamal M et al. Distinguishing protein-coding and noncoding genes in the human genome. Proc. Natl Acad. Sci. USA104(49), 19428–19433 (2007).
  • Derrien T, Thézé J, Vaysse A et al. Revisiting the missing protein-coding gene catalog of the domestic dog. BMC Genomics10, 62 (2009).
  • Porcel BM, Delfour O, Castelli V et al. Numerous novel annotations of the human genome sequence supported by a 5´-end-enriched cDNA collection. Genome Res.14(3), 463–471 (2004).
  • Gallien S, Perrodou E, Carapito C et al. Ortho-proteogenomics: multiple proteomes investigation through orthology and a new MS-based protocol. Genome Res.19, 128–135 (2009).
  • Gupta N, Benhamida J, Bhargava V et al. Comparative proteogenomics: combining mass spectrometry and comparative genomics to analyze multiple genomes. Genome Res.18(7), 1133–1142 (2008).
  • Gogarten JP, Hilario E. Inteins, introns, and homing endonucleases: recent revelations about the life cycle of parasitic genetic elements. BMC Evol. Biol.6, 94 (2006).
  • Liu XQ. Protein-splicing intein: genetic mobility, origin, and evolution. Annu. Rev. Genet.34, 61–76 (2000).
  • Dassa B, London N, Stoddard BL, Schueler-Furman O, Pietrokovski S. Fractured genes: a novel genomic arrangement involving new split inteins and a new homing endonuclease family. Nucleic Acids Res.37(8), 2560–2573 (2009).
  • Comeau AM, Hatfull GF, Krisch HM, Lindell D, Mann NH, Prangishvili D. Exploring the prokaryotic virosphere. Res. Microbiol.159(5), 306–313 (2008).
  • La Scola B, Desnues C, Pagnier I et al. The virophage as a unique parasite of the giant mimivirus. Nature455(7209), 100–104 (2008).
  • Raoult D, Audic S, Robert C et al. The 1.2-megabase genome sequence of Mimivirus. Science306(5700), 1344–1350 (2004).
  • Yates JR 3rd, Eng JK, McCormack AL. Mining genomes: correlating tandem mass spectra of modified and unmodified peptides to sequences in nucleotide databases. Anal. Chem.67(18), 3202–3210 (1995).
  • Jaffe JD, Berg HC, Church GM. Proteogenomic mapping as a complementary method to perform genome annotation. Proteomics4(1), 59–77 (2004).
  • Jaffe JD, Stange-Thomann N, Smith C et al. The complete genome and proteome of Mycoplasma mobile. Genome Res.14(8), 1447–1461 (2004).
  • Ansong C, Purvine SO, Adkins JN, Lipton MS, Smith RD. Proteogenomics: needs and roles to be filled by proteomics in genome annotation. Brief Funct. Genomic Proteomic7(1), 50–62.
  • Banfield JF, Verberkmoes NC, Hettich RL, Thelen MP. Proteogenomic approaches for the molecular characterization of natural microbial communities. Omics9(4), 301–333 (2008).
  • Gupta N, Tanner S, Jaitly N et al. Whole proteome analysis of post-translational modifications: applications of mass-spectrometry for proteogenomic annotation. Genome Res.17(9), 1362–1377 (2007).
  • Wilkins MJ, Verberkmoes NC, Williams KH et al. Proteogenomic monitoring of Geobacter physiology during stimulated uranium bioremediation. Appl. Environ. Microbiol.28, 28 (2009).
  • Yuan J, Zhu L, Liu X et al. A proteome reference map and proteomic analysis of Bifidobacterium longum NCC2705. Mol. Cell. Proteomics5(6), 1105–1118 (2006).
  • de Groot A, Dulermo R, Ortet P et al. Alliance of proteomics and genomics to unravel the specificities of Sahara bacterium Deinococcus deserti. PLoS Genet.5(3), e1000434 (2009).
  • Lipton MS, Pasa-Tolic’ L, Anderson GA et al. Global analysis of the Deinococcus radiodurans proteome by using accurate mass tags. Proc. Natl Acad. Sci. USA99(17), 11049–11054 (2002).
  • Zhang W, Culley DE, Gritsenko MA et al. LC-MS/MS based proteomic analysis and functional inference of hypothetical proteins in Desulfovibrio vulgaris. Biochem. Biophys. Res. Commun.349(4), 1412–1419 (2006).
  • Lopez-Campistrous A, Semchuk P, Burke L et al. Localization, annotation, and comparison of the Escherichia coli K-12 proteome under two states of growth. Mol. Cell. Proteomics4(8), 1205–1209 (2005).
  • Maillet I, Berndt P, Malo C et al. From the genome sequence to the proteome and back: evaluation of E. coli genome annotation with a 2-D gel-based proteomics approach. Proteomics7(7), 1097–1106 (2007).
  • Kolker E, Purvine S, Galperin MY et al. Initial proteome analysis of model microorganism Haemophilus influenzae strain Rd KW20. J. Bacteriol.185(15), 4593–4602 (2003).
  • Link AJ, Hays LG, Carmack EB, Yates JR 3rd. Identifying the major proteome components of Haemophilus influenzae type-strain NCTC 8143. Electrophoresis18(8), 1314–1334 (1997).
  • Chaves DF, Ferrer PP, de Souza EM, Gruz LM, Monteiro RA, de Oliveira Pedrosa F. A two-dimensional proteome reference map of Herbaspirillum seropedicae proteins. Proteomics7(20), 3759–3763 (2007).
  • Dandekar T, Huynen M, Regula JT et al. Re-annotating the Mycoplasma pneumoniae genome sequence: adding value, function and reading frames. Nucleic Acids Res.28(17), 3278–3288 (2000).
  • Deshayes C, Perrodou E, Gallien S et al. Interrupted coding sequences in Mycobacterium smegmatis: authentic mutations or sequencing errors? Genome Biol.8(2), R20 (2007).
  • Jungblut PR, Müller EC, Mattow J, Kaufmann SH. Proteomics reveals open reading frames in Mycobacterium tuberculosis H37Rv not predicted by genomics. Infect. Immun.69(9), 5905–5907 (2001).
  • Elias DA, Monroe ME, Marshall MJ et al. Global detection and characterization of hypothetical proteins in Shewanella oneidensis MR-1 using LC-MS based proteomics. Proteomics5(12), 3120–3130 (2005).
  • Elias DA, Monroe ME, Smith RD, Fredrickson JK, Lipton MS. Confirmation of the expression of a large set of conserved hypothetical proteins in Shewanella oneidensis MR-1. J. Microbiol. Methods66(2), 223–233 (2006).
  • Gupta RS, Mok A. Phylogenomics and signature proteins for the α proteobacteria and its main groups. BMC Microbiol.7, 106 (2007).
  • Kolker E, Picone AF, Galperin MY et al. Global profiling of Shewanella oneidensis MR-1: expression of hypothetical genes and improved functional annotations. Proc. Natl Acad. Sci. USA102(6), 2099–2104 (2005).
  • Romine MF, Elias DA, Monroe ME et al. Validation of Shewanella oneidensis MR-1 small proteins by AMT tag-based proteome analysis. Omics8(3), 239–254 (2004).
  • Wei C, Peng J, Xiong Z, Yang J, Wang J, Jin Q. Subproteomic tools to increase genome annotation complexity. Proteomics8(20), 4209–4213 (2008).
  • Ishino Y, Okada H, Ikeuchi M, Taniguchi H. Mass spectrometry-based prokaryote gene annotation. Proteomics7(22), 4053–4065 (2007).
  • Yamazaki S, Yamazaki J, Nishijima K et al. Proteome analysis of an aerobic hyperthermophilic crenarchaeon, Aeropyrum pernix K1. Mol. Cell. Proteomics5(5), 811–823.
  • Goo YA, Yi EC, Baliga NS et al. Proteomic analysis of an extreme halophilic archaeon, Halobacterium sp. NRC-1. Mol. Cell. Proteomics2(8), 506–524 (2003).
  • Tebbe A, Klein C, Bisle B et al. Analysis of the cytosolic proteome of Halobacterium salinarum and its implication for genome annotation. Proteomics5(1), 168–179 (2005).
  • Giometti CS et al. Global analysis of a ‘simple’ proteome: Methanococcus jannaschii. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.782(1–2), 227–243 (2002).
  • Konstantinidis K, Tebbe A, Klein C et al. Genome-wide proteomics of Natronomonas pharaonis. J. Proteome Res.6(1), 185–193 (2007).
  • Zivanovic Y, Armengaud J, Lagorce A et al. Genome analysis and genome-wide proteomics of Thermococcus gammatolerans, the most radioresistant organism known amongst the archaea. Genome Biol.10(6), R70 (2009).
  • Shevchenko A, Jensen ON, Podtelejnikov AV et al. Linking genome and proteome by mass spectrometry: large-scale identification of yeast proteins from two dimensional gels. Proc. Natl Acad. Sci. USA93(25), 14440–14445 (1996).
  • Oshiro G, Wodicka LM, Washburn MP, Yates JR 3rd, Lockhart DJ, Winzeler EA. Parallel identification of new genes in Saccharomyces cerevisiae. Genome Res.12(8), 1210–1220 (2002).
  • Wright JC, Sugden D, Francis-McIntyre S et al. Exploiting proteomic data for genome annotation and gene model validation in Aspergillus niger. BMC Genomics10, 61 (2009).
  • Bindschedler LV, Burgis TA, Mills DJ, Ho JT, Cramer R, Spanu PD. In planta proteomics and proteogenomics of the biotrophic barley fungal pathogen Blumeria graminis f. sp. hordei. Mol. Cell. Proteomics8(10), 2368–2381 (2009).
  • Ferro M, Tardif M, Reguer E et al. PepLine: a software pipeline for high-throughput direct mapping of tandem mass spectrometry data on genomic sequences. J. Proteome Res.7(5), 1873–1883 (2008).
  • Lasonder E, Ishihama Y, Andersen JS et al. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature419(6906), 537–542 (2002).
  • Xia D, Sanderson SJ, Jones AR et al. The proteome of Toxoplasma gondii: integration with the genome provides novel insights into gene expression and annotation. Genome Biol.9(7), R116 (2008).
  • Baerenfaller K, Grossmann J, Grobei MA et al. Genome-scale proteomics reveals Arabidopsis thaliana gene models and proteome dynamics. Science320(5878), 938–941 (2008).
  • Kalume DE, Peri S, Reddy R et al. Genome annotation of Anopheles gambiae using mass spectrometry-derived data. BMC Genomics6, 128 (2005).
  • Merrihew GE, Davis C, Ewing B et al. Use of shotgun proteomics for the identification, confirmation, and correction of C. elegans gene annotations. Genome Res.18(10), 1660–1669 (2008).
  • Castellana NE, Payne SH, Shen Z, Stanke M, Bafna V, Briggs SP. Discovery and revision of Arabidopsis genes by proteogenomics. Proc. Natl Acad. Sci. USA105(52), 21034–21038 (2008).
  • Oyama M, Itagaki C, Hata H et al. Analysis of small human proteins reveals the translation of upstream open reading frames of mRNAs. Genome Res.14(10B), 2048–2052 (2004).
  • Tanner S, Shen Z, Ng J et al. Improving gene annotation using peptide mass spectrometry. Genome Res.17(2), 231–239 (2007).
  • Omenn GS, States DJ, Adamski M et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics5(13), 3226–3245 (2005).
  • Klein C, Aivaliotis M, Olsen JV et al. The low molecular weight proteome of Halobacterium salinarum. J. Proteome Res.6(4), 1510–1518 (2007).
  • Armengaud J. A perfect genome annotation is within reach with the proteomics and genomics alliance. Curr. Opin. Microbiol.12(3), 292–300 (2009).
  • Leitner A, Lindner W. Chemistry meets proteomics: the use of chemical tagging reactions for MS-based proteomics. Proteomics6(20), 5418–5434 (2006).
  • Gevaert K, Goethals M, Martens L et al. Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat. Biotechnol.21(5), 566–569 (2003).
  • Staes A, Van Damme P, Helsens K, Demol H, Vandekerckhove J, Gevaert K. Improved recovery of proteome-informative, protein N-terminal peptides by combined fractional diagonal chromatography (COFRADIC). Proteomics8(7), 1362–1370 (2008).
  • Baudet M, Ortet P, Gaillard JC et al. Proteomic-based refinement of Deinococcus deserti genome annotation reveals an unwonted use of non-canonical translation initiation codons. Mol. Cell. Proteomics (2009) (Epub ahead of print).
  • Dormeyer W, Mohammed S, van Breukelen B, Krijgsveld J, Heck AJR Targeted analysis of protein termini. J. Proteome Res.6(12), 4634–4645 (2007).
  • Goetze S, Qeli E, Mosimann C et al. Identification and functional characterization of N-terminally acetylated proteins in Drosophila melanogaster. PLoS Biol.7(11), E1000236 (2009).
  • Arnesen T, Van Damme P, Polevoda B et al. Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc. Natl Acad. Sci. USA106(20), 8157–8162 (2009).
  • Koonin EV. Comparative genomics, minimal gene-sets and the last universal common ancestor. Nat. Rev. Microbiol.1(2), 127–136 (2003).
  • Koonin EV, Wolf YI. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res.36(21), 6688–6719 (2008).
  • VerBerkmoes NC, Denef VJ, Hettich RL, Banfield JF. Systems biology: functional analysis of natural microbial consortia using community proteomics. Nat. Rev. Microbiol.7(3), 196–205 (2009).
  • Liu H, Sadygov RG, Yates JR 3rd. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem.76(14), 4193–4201 (2004).
  • Brun V et al. Isotope dilution strategies for absolute quantitative proteomics. J. Proteomics72(5), 740–749 (2009).
  • Mayya V, Han KD. Proteomic applications of protein quantification by isotope-dilution mass spectrometry. Expert Rev. Proteomics3(6), 597–610 (2006).
  • Malmström J, Beck M, Schmidt A, Lange V, Deutsch EW, Aebersold R. Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature460(7256), 762–765 (2009).
  • Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R. Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell138(4), 795–806 (2009).
  • Cravatt BF, Wright AT, Kozarich JW. Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem.77, 383–414 (2008).
  • Jessani N, Cravatt BF. The development and application of methods for activity-based protein profiling. Curr. Opin. Chem. Biol.8(1), 54–59 (2004).
  • Bantscheff M, Scholten A, Heck AJ. Revealing promiscuous drug-target interactions by chemical proteomics. Drug Discov. Today14(21–22), 1021–1029 (2009).
  • Rix U, Superti-Furga G. Target profiling of small molecules by chemical proteomics. Nat. Chem. Biol.5(9), 616–624 (2009).
  • Koonin EV, Mushegian AR. Complete genome sequences of cellular life forms: glimpses of theoretical evolutionary genomics. Curr. Opin. Genet. Dev.6(6), 757–762 (1996).
  • Perez-Iratxeta C, Palidwor G, Andrade-Navarro MA. Towards completion of the Earth’s proteome. EMBO Rep.8(12), 1135–1141 (2007).
  • Schneiker S, Perlova O, Kaiser O et al. Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat. Biotechnol.25(11), 1281–1289 (2007).
  • Chin JW. Modular approaches to expanding the functions of living matter. Nat. Chem. Biol.2(6), 304–311 (2006).
  • Tanouchi Y, Pai A, You L. Decoding biological principles using gene circuits. Mol. Biosyst.5(7), 695–703 (2009).
  • Callister SJ, McCue LA, Turse JE et al. Comparative bacterial proteomics: analysis of the core genome concept. PLoS ONE3(2), e1542 (2008).
  • Gibson DG, Benders GA, Andrews-Pfannkoch C et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science319, 1215–1220 (2008).
  • Lartigue C, Glass JI, Alperovich N et al. Genome transplantation in bacteria: changing one species to another. Science317(5838), 632–638 (2007).
  • Lartigue C, Vashee S, Algire MA et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science325(5948), 1693–1696 (2009).
  • Brancia FL. Recent developments in ion-trap mass spectrometry and related technologies. Expert Rev. Proteomics3(1), 143–151 (2006).
  • Han X, Aslanian A, Yates JR 3rd. Mass spectrometry for proteomics. Curr. Opin. Chem. Biol.12(5), 483–490 (2008).
  • Yates JR, Ruse CI, Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances and applications. Annu. Rev. Biomed. Eng.11, 49–79 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.