89
Views
2
CrossRef citations to date
0
Altmetric
Review

Proteomic approaches in neuroblastoma: a complementary clinical platform for the future

, , , , &
Pages 387-394 | Published online: 09 Jan 2014

References

  • Maris JM, Hogarty MD, Bagatell R, Cohn SL. Neuroblastoma. Lancet369(9579), 2106–2120 (2007).
  • Brodeur GM. Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer3(3), 203–216 (2003).
  • Shimada H, Umehara S, Monobe Y et al. International neuroblastoma pathology classification for prognostic evaluation of patients with peripheral neuroblastic tumors: a report from the Children’s Cancer Group. Cancer92(9), 2451–2461 (2001).
  • Hsu WM, Lee H, Juan HF et al. Identification of GRP75 as an independent favorable prognostic marker of neuroblastoma by a proteomics analysis. Clin. Cancer Res.14(19), 6237–6245 (2008).
  • Zanini C, Pulerà F, Carta F et al. Proteomic identification of heat shock protein 27 as a differentiation and prognostic marker in neuroblastoma but not in Ewing’s sarcoma. Virchows Arch.452(2), 157–167 (2008).
  • Cimmino F, Spano D, Capasso M et al. Comparative proteomic expression profile in all-trans retinoic acid differentiated neuroblastoma cell line. J. Proteome Res.6(7), 2550–2564 (2007).
  • Sandoval JA, Hickey RJ, Malkas LH. Isolation and characterization of a DNA synthesome from a neuroblastoma cell line. J. Pediatr. Surg.40(7), 1070–1077 (2005).
  • Sandoval JA, Grosfeld JL, Hickey RJ, Malkas LH. Structural analysis of the human neuroblastoma DNA replication complex: insights into faulty proliferation. J. Pediatr. Surg.41(1), 266–270 (2006).
  • Sandoval JA, Eppstein AC, Hoelz DJ et al. Proteomic analysis of neuroblastoma subtypes in response to mitogen-activated protein kinase inhibition: profiling multiple targets of cancer kinase signaling. J. Surg Res.134(1), 61–67 (2006).
  • Eppstein AC, Sandoval JA, Klein PJ et al. Differential sensitivity of chemoresistant neuroblastoma subtypes to MAPK-targeted treatment correlates with ERK, p53 expression, and signaling response to U0126. J. Pediatr. Surg.41(1), 252–259 (2006).
  • Izbicka E, Campos D, Marty J, Carrizales G, Mangold G, Tolcher A. Molecular determinants of differential sensitivity to docetaxel and paclitaxel in human pediatric cancer models. Anticancer Res.26(3A), 1983–1988 (2006).
  • Urbani A, Poland J, Bernardini S et al. A proteomic investigation into etoposide chemo-resistance of neuroblastoma cell lines. Proteomics5(3), 796–804 (2005).
  • Kumar HR, Zhong X, Hoelz DJ et al. Three-dimensional neuroblastoma cell culture: proteomic analysis between monolayer and multicellular tumor spheroids. Pediatr. Surg. Int.24(11), 1229–1234 (2008).
  • Turner KE, Kumar HR, Hoelz DJ et al. Proteomic analysis of neuroblastoma microenvironment: effect of the host–tumor interaction on disease progression. J. Surg. Res. DOI:10.1016/j.jss.2009.02.019 (2009) (Epub ahead of print).
  • Campostrini N, Pascali J, Hamdan M et al. Proteomic analysis of an orthotopic neuroblastoma xenograft animal model. J. Chromatogr. B. Analyt. Technol. Biomed. Life Sci.808(2), 279–286 (2004).
  • Novotny NM, Grosfeld JL, Turner KE et al. Oxidative status in neuroblastoma: a source of stress? J. Pediatr. Surg.43(2), 330–334 (2008).
  • Baek YM, Hwang HJ, Kim SW et al. A comparative proteomic analysis for capsaicin-induced apoptosis between human hepatocarcinoma (HepG2) and human neuroblastoma (SK-N-SH) cells. Proteomics8(22), 4748–4767 (2008).
  • Stenman UH, Hakama M, Knekt P, Aromaa A, Teppo L, Leinonen J. Serum concentrations of prostate specific antigen and its complex with α 1-antichymotrpsin before diagnosis of prostate cancer. Lancet344(8937), 1594–1598 (1994).
  • Ludwig JA, Weinstein JN. Biomarkers in cancer staging, prognosis and treatment selection. Nat. Rev. Cancer5(11), 845–856 (2005).
  • Simon T, Hero B, Hunneman DH, Berthold F. Tumour markers are poor predictors for relapse or progression in neuroblastoma. Eur. J. Cancer39(13), 1899–1903 (2003).
  • Sandoval JA, Dobrolecki LE, Huang J, Grosfeld JL, Hickey RJ, Malkas LH. Neuroblastoma detection using serum proteomic profiling: a novel mining technique for cancer? J. Pediatr. Surg.41(4), 639–646 (2006).
  • Combaret V, Bergeron C, Bréjon S et al. Protein chip array profiling analysis of sera from neuroblastoma patients. Cancer Lett.228(1–2), 91–96 (2005).
  • He QY, Zhu R, Ren Y, Tam PK, Chiu JF. Serological protein profiling of neuroblastoma by ProteinChip SELDI-TOF technology. J. Cell. Biochem.95(1), 165–72 (2005).
  • Sandoval JA, Turner KE, Hoelz DJ, Rescorla FJ, Hickey RJ, Malkas LH. Serum protein profiling to identify high-risk neuroblastoma: preclinical relevance of blood-based biomarkers. J. Surg. Res.142(2), 268–274 (2007).
  • Sandoval JA, Hoelz DJ, Woodruff HA et al. Novel peptides secreted from human neuroblastoma: useful clinical tools? J. Pediatr. Surg.41(1), 245–251 (2006).
  • Cohn SL, Pearson AD, London WB et al. The international neuroblastoma risk group (INRG) classification system: an INRG task force report. J. Clin. Oncol.27(2), 289–297 (2009).
  • Maris JM, Mosse YP, Bradfield JP et al. Chromosome 6p22 locus associated with clinically aggressive neuroblastoma. N. Engl. J. Med.358(24), 2585–2593 (2008).
  • Attiyeh EF, London WB, Mosse YP et al. Chromosome 1p and 11q deletions and outcome in neuroblastoma. N. Engl. J. Med.353(21), 2243–2253 (2005).
  • Caron H, van Sluis P, de Kraker J et al. Allelic loss of chromosome 1p as a predictor of unfavorable outcome in patients with neuroblastoma. N. Engl. J. Med.334(4), 225–230 (1996).
  • Bown N, Cotterill S, Lastowska M et al. Gain of chromosome arm 17q and adverse outcome in patients with neuroblastoma. N. Engl. J. Med.340(25), 1954–1961 (1999).
  • Barrett T, Troup DB, Wilhite SE et al. NCBI GEO: mining tens of millions of expression profiles--database and tools update. Nucleic Acids Res.37, D885–D890 (2009).
  • Rhodes DR, Kalyana-Sundaram S, Mahavisno V et al. Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia9(2), 166–180 (2007).
  • Oberthuer A, Berthold F, Warnat P et al. Customized oligonucleotide microarray gene expression-based classification of neuroblastoma patients outperforms current clinical risk stratification. J. Clin. Oncol.24(31), 5070–5078 (2006).
  • Schramm A, Vandesompele J, Schulte JH et al. Translating expression profiling into a clinically feasible test to predict neuroblastoma outcome. Clin. Cancer Res.13(5), 1459–1465 (2007).
  • Chen Y, Stallings RL. Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res.67(3), 976–983 (2007).
  • Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene26(34), 5017–5022 (2007).
  • He L, He X, Lim LP et al. A microRNA component of the p53 tumour suppressor network. Nature447(7148), 1130–1134 (2007).
  • Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc. Natl. Acad. Sci. USA104(39), 15472–15477 (2007).
  • Schulte JH, Horn S, Otto T et al. MYCN regulates oncogenic microRNAs in neuroblastoma. Int. J. Cancer122(3), 699–704 (2008).
  • He L, Thomson JM, Hemann MT et al. A microRNA polycistron as a potential human oncogene. Nature435(7043), 828–833 (2005).
  • O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature435(7043), 839–843 (2005).
  • Krutzfeldt J, Rajewsky N, Braich R et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature438(7068), 685–689 (2005).
  • Weiler J, Hunziker J, Hall J. Anti-miRNA oligonucleotides (AMOs): ammunition to target miRNAs implicated in human disease? Gene Therapy13(6), 496–502 (2006).
  • German JB, Hammock BD, Watkins SM. Metabolomics: building on a century of biochemistry to guide human health. Metabolomics1(1), 3–9 (2005).
  • Lindon JC, Holmes E, Nicholson JK. Metabonomics and its role in drug development and disease diagnosis. Expert Rev. Mol. Diag.4(2), 89–99 (2004).
  • Lindskog M, Kogner P, Ponthan F et al. Noninvasive estimation of tumour viability in a xenograft model of human neuroblastoma with proton magnetic resonance spectroscopy (1H MRS). Br. J. Cancer88(3), 478–485 (2003).
  • Lindskog M, Spenger C, Jarvet J, Gräslund A, Kogner P. Predicting resistance or response to chemotherapy by proton magnetic resonance spectroscopy in neuroblastoma. J. Natl. Cancer Inst.96(19), 1457–1466 (2004).
  • Wishart DS, Tzur D, Knox C et al. HMDB: the human metabolome database. Nucleic Acids Res.35, D521–D526 (2007).
  • Schmelzer K, Fahy E, Subramaniam S, Dennis EA. The lipid maps initiative in lipidomics. Methods Enzymol.432, 171–183 (2007).
  • Kitano H. Systems biology: a brief overview. Science295(5560), 1662–1664 (2002).
  • Ideker T, Galitski T, Hood L. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet.2, 343–372 (2001).
  • van der Greef J, Martin S, Juhasz P et al. The art and practice of systems biology in medicine: mapping patterns of relationships. J.Proteome. Res.6(4), 1540–1559 (2007).
  • Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B.57(1), 289–300 (1995).
  • Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. USA98(9), 5116–5121 (2001).
  • Steuer R, Kurths J, Fiehn O, Weckwerth W. Interpreting correlations in metabolomic networks. Biochem. Soc. Trans.31(Pt 6), 1476–1478 (2003).
  • Steuer R, Kurths J, Fiehn O, Weckwerth W. Observing and interpreting correlations in metabolomic networks. Bioinformatics19(8), 1019–1026 (2003).
  • Li DJ, Deng G, Xiao ZQ et al. Indentificating 14–3-3 sigma as a lymph node metastasis-related protein in human lung squamous carcinoma. Cancer Lett.279(1), 65–73 (2009).
  • Cheng AL, Huang WG, Chen ZC et al. Identificating cathepsin D as a biomarker for differentiation and prognosis of nasopharyngeal carcinoma by laser capture microdissection and proteomic analysis. J. roteome Res.7(6), 2415–2426 (2008).
  • Banks RE, Stanley AJ, Cairns DA et al. Influences of blood sample processing on low-molecular-weight proteome identified by surface-enhanced laser desorption/ionization mass spectrometry. Clin. Chem.51(9), 1637–1649 (2005).
  • Rai AJ, Gelfand CA, Haywood BC et al. HUPO plasma proteome project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics5(13), 3262–3277 (2005).
  • Omenn GS. Strategies for plasma proteomic profiling of cancers. Proteomics6(20), 5662–5673 (2006).
  • States DJ, Omenn GS, Blackwell TW et al. Challenges in deriving high-confidence protein identifications from data gathered by a HUPO plasma proteome collaborative study. Nat. Biotechnol.24(3), 333–338 (2006).
  • Chernokalskaya E, Gutierrez S, Pitt AM, Leonard JT. Ultrafiltration for proteomic sample preparation. Electrophoresis25(15), 2461–2468 (2004).
  • Tirumalai RS, Chan KC, Prieto DA, Issaq HJ, Conrads TP, Veenstra TD. Characterization of the low molecular weight human serum proteome. Mol. Cell. Proteomics2(10), 1096–1103 (2003).
  • Chertov O, Biragyn A, Kwak LW et al. Organic solvent extraction of proteins and peptides from serum as an effective sample preparation for detection and identification of biomarkers by mass spectrometry. Proteomics4(4), 1195–1203 (2004).
  • Marshall J, Jankowski A, Furesz S et al. Human serum proteins preseparated by electrophoresis or chromatography followed by tandem mass spectrometry. J. Proteome Res.3(3), 364–382 (2004).
  • Callesen AK, Madsen JS, Vach W, Kruse TA, Mogensen O, Jensen ON. Serum protein profiling by solid phase extraction and mass spectrometry: a future diagnostics tool? Proteomics9(6), 1428–1441 (2009).
  • Ong SE, Blagoev B, Kratchmarova I et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics1(5), 376–386 (2002).
  • Wiese S, Reidegeld KA, Meyer HE, Warscheid B. Protein labeling by iTRAQ: a new tool for quantitative mass spectrometry in proteome research. Proteomics7(3), 340–350 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.