1,649
Views
3
CrossRef citations to date
0
Altmetric
Editorial

Role of proteomics in nutrigenomics and nutrigenetics

Pages 453-456 | Published online: 09 Jan 2014

References

  • Kussmann M, Daniel H. Editorial overview. Curr. Opin. Biotechnol.19(2), 63–65 (2008).
  • Kussmann M, Raymond F, Affolter M. OMICS-driven biomarker discovery in nutrition and health. J. Biotechnol.124(4), 758–787 (2006).
  • Kussmann M, Fay LB. Nutrigenomics and personalized nutrition, science and concept. Per. Med.5(5), 447–455 (2008).
  • Kussmann M, Affolter M, Nagy K et al. Mass spectrometry in nutrition, understanding dietary health effects at the molecular level. Mass. Spectrom. Rev.26(6), 727–750 (2007).
  • Ordovas JM, Corella D. Nutritional genomics. Annu. Rev. Genomics Hum. Genet.5, 71–118 (2004).
  • Kaput J. Nutrigenomics research for personalized nutrition and medicine. Curr. Opin. Biotechnol.19(2), 110–120 (2008).
  • Fay LB, German JB. Personalizing foods, is genotype necessary? Curr. Opin. Biotechnol.19(2), 121–128 (2008).
  • Gallou-Kabani C, Vige A, Gross MS et al. Nutri-epigenomics, lifelong remodelling of our epigenomes by nutritional and metabolic factors and beyond. Clin. Chem. Lab. Med.45(3), 321–327 (2007).
  • Junien C, Gallou-Kabani C, Vige A et al. [Nutritional epigenomics, consequences of unbalanced diets on epigenetics processes of programming during lifespan and between generations]. Ann. Endocrinol. (Paris)66(2 Pt 3), 2S19–2S28 (2005).
  • Beck HC, Nielsen EC, Matthiesen R et al. Quantitative proteomic analysis of post-translational modifications of human histones. Mol. Cell. Proteomics5(7), 1314–1325 (2006).
  • Bonenfant D, Coulot M, Towbin H et al. Characterization of histone H2A and H2B variants and their post-translational modifications by mass spectrometry. Mol. Cell. Proteomics5(3), 541–552 (2006).
  • Kussmann M, Affolter M. Proteomic methods in nutrition. Curr. Opin. Clin. Nutr. Metab. Care9(5), 575–583 (2006).
  • Kussmann M, Affolter M, Fay LB. Proteomics in nutrition and health. Comb. Chem. High Throughput Screen.8(8), 679–696 (2005).
  • Jacobs JM, Adkins JN, Qian WJ et al. Utilizing human blood plasma for proteomic biomarker discovery. J. Proteome Res.4(4), 1073–1085 (2005).
  • Aebersold R. A stress test for mass spectrometry-based proteomics. Nat. Methods (2009) (Epub ahead of print).
  • Bell AW, Deutsch EW, Au CE et al. A HUPO test sample study reveals common problems in mass spectrometry-based proteomics. Nat. Methods (2009) (Epub ahead of print).
  • Gong Y, Li X, Yang B et al. Different immunoaffinity fractionation strategies to characterize the human plasma proteome. J. Proteome Res.5(6), 1379–1387 (2006).
  • Thingholm TE, Jensen ON, Larsen MR. Analytical strategies for phosphoproteomics. Proteomics9(6), 1451–1468 (2009).
  • Mechref Y, Madera M, Novotny MV. Glycoprotein enrichment through lectin affinity techniques. Methods Mol. Biol.424, 373–396 (2008).
  • Wollscheid B, Bausch-Fluck D, Henderson C et al. Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins. Nat. Biotechnol.27(4), 378–386 (2009).
  • Moresco JJ, Dong MQ, Yates JR III. Quantitative mass spectrometry as a tool for nutritional proteomics. Am. J. Clin. Nutr.88(3), 597–604 (2008).
  • Panchaud A, Hansson J, Affolter M et al. ANIBAL, stable isotope-based quantitative proteomics by aniline and benzoic acid labeling of amino and carboxylic groups. Mol. Cell. Proteomics7(4), 800–812 (2008).
  • Gygi SP, Rist B, Gerber SA et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol.17(10), 994–999 (1999).
  • Ross PL, Huang YN, Marchese JN et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics3(12), 1154–1169 (2004).
  • Thompson A, Schafer J, Kuhn K et al. Tandem mass tags, a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem.75(8), 1895–1904 (2003).
  • de Godoy LM, Olsen JV, de Souza GA et al. Status of complete proteome analysis by mass spectrometry, SILAC labeled yeast as a model system. Genome Biol.7(6), R50 (2006).
  • Mueller LN, Brusniak MY, Mani DR et al. An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J. Proteome Res.7(1), 51–61 (2008).
  • Wong JW, Sullivan MJ, Cagney G. Computational methods for the comparative quantification of proteins in label-free LCn-MS experiments. Brief Bioinform.9(2), 156–165 (2008).
  • Gerber SA, Rush J, Stemman O et al. Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc. Natl Acad. Sci. USA100(12), 6940–6945 (2003).
  • Pratt JM, Simpson DM, Doherty MK et al. Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat. Protoc.1(2), 1029–1043 (2006).
  • Dupuis A, Hennekinne JA, Garin J et al. Protein Standard Absolute Quantification (PSAQ) for improved investigation of staphylococcal food poisoning outbreaks. Proteomics8(22), 4633–4636 (2008).
  • Mallick P, Schirle M, Chen SS et al. Computational prediction of proteotypic peptides for quantitative proteomics. Nat. Biotechnol.25(1), 125–131 (2007).
  • Lange V, Picotti P, Domon B et al. Selected reaction monitoring for quantitative proteomics, a tutorial. Mol. Syst. Biol.4, 222 (2008).
  • Yocum AK, Chinnaiyan AM. Current affairs in quantitative targeted proteomics, multiple reaction monitoring-mass spectrometr. Brief Funct. Genomic Proteomic8(2), 145–157 (2009).
  • Fuchs D, Winkelmann I, Johnson IT et al. Proteomics in nutrition research, principles, technologies and applications. Br. J. Nutr.94(3), 302–314 (2005).
  • Kussmann M, Blum-Sperisen S. OMICS-derived targets for inflammatory gut disorders, opportunities for the development of nutrition related biomarkers. Endocr. Metab. Immune Disord. Drug Targets7(4), 271–287 (2007).
  • Kussmann M, Affolter M. Proteomics and metabonomics routes towards obesity. In: Obesity – Genomics and Postgenomics. Sorensen T, Clément K (Eds). Informa Health Care Inc., NY, USA, 527–536 (2008).
  • Fuchs D, Piller R, Linseisen J et al. The human peripheral blood mononuclear cell proteome responds to a dietary flaxseed-intervention and proteins identified suggest a protective effect in atherosclerosis. Proteomics7(18), 3278–3288 (2007).
  • Breikers G, van Breda SG, Bouwman FG et al. Potential protein markers for nutritional health effects on colorectal cancer in the mouse as revealed by proteomics analysis. Proteomics6(9), 2844–2852 (2006).
  • tom-Dieck H, Doring F, Fuchs D et al. Transcriptome and proteome analysis identifies the pathways that increase hepatic lipid accumulation in zinc-deficient rats. J. Nutr.135(2), 199–205 (2005).
  • Mancone C, Amicone L, Fimia GM et al. Proteomic analysis of human very low-density lipoprotein by two-dimensional gel electrophoresis and MALDI-TOF/TOF. Proteomics7(1), 143–154 (2007).
  • Bantscheff M, Eberhard D, Abraham Y et al. Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat. Biotechnol.25(9), 1035–1044 (2007).
  • Anderson L, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol. Cell. Proteomics5(4), 573–588 (2006).
  • Panchaud A, Affolter M, Moreillon P et al. Experimental and computational approaches to quantitative proteomics, status quo and outlook. J. Proteomics71(1), 19–33 (2008).
  • Staab CA, Ceder R, Jagerbrink T et al. Bioinformatics processing of protein and transcript profiles of normal and transformed cell lines indicates functional impairment of transcriptional regulators in buccal carcinoma. J. Proteome Res.6(9), 3705–3717 (2007).
  • Nicholson JK, Connelly J, Lindon JC et al. Metabonomics, a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov.1(2), 153–161 (2002).
  • Doherty MK, Beynon RJ. Protein turnover on the scale of the proteome. Expert Rev. Proteomics3(1), 97–110 (2006).
  • Siffert W. G protein polymorphisms in hypertension, atherosclerosis, and diabetes. Ann. Rev. Med.56, 17–28 (2005).
  • Chen Y, Rollins J, Paigen B et al. Genetic and genomic insights into the molecular basis of atherosclerosis. Cell. Metab.6(3), 164–179 (2007).
  • Holtmann G, Siffert W, Haag S et al. G-protein β3 subunit 825 CC genotype is associated with unexplained (functional) dyspepsia. Gastroenterology126(4), 971–979 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.