56
Views
14
CrossRef citations to date
0
Altmetric
Review

In silico methods for predicting T-cell epitopes: Dr Jekyll or Mr Hyde?

&
Pages 527-537 | Published online: 09 Jan 2014

References

  • Fundamental Immunology. Paul WE (Ed.). Lippincott Williams and Wilkins, PA, USA (2003).
  • Kaufmann SHE. The contribution of immunology to the rational design of novel antibacterial vaccines. Nat. Rev. Microbiol.5, 491–504 (2007).
  • Townsend ARM, Gotch FM, Davey J. Cytotoxic T cells recognize fragments of the influenza nucleoprotein. Cell42, 457–467 (1985).
  • Sercarz EE, Lehmann PV, Ametani A et al. Dominance and crypticity of T cell antigenic determinants. Annu. Rev. Immunol.11, 729–766 (1993).
  • Zinkernagel RM, Doherty PC. Restriction of in vitro T-cell mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature248, 701–702 (1974).
  • Davis MN, Flower DR. Harnessing bioinformatics to discover new vaccines. Drug Discov. Today12, 389–395 (2007).
  • Robinson J, Waller MJ, Parham P et al. SGE IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucl. Acids Res.31, 311–314 (2003).
  • Babbitt B, Allen PM, Matsueda G et al. The binding of immunogenic peptides to Ia histocompatibility molecules. Nature317, 359–361 (1985).
  • Garrett TPJ, Saper MA, Bjorkman PJ et al. Specificity pockets for the side chains of peptide antigens in HLA-Aw68. Nature342, 692–696 (1989).
  • Reche PA, Glutting JP, Zhang H, Reinherz EL. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics56, 405–419 (2004).
  • Tong JC, Tan TW, Ranganathan S. Methods and protocols for prediction of immunogenic epitopes. Brief Bioinformatics8, 96–108 (2006).
  • Gowthaman U, Agrewala JN. In silico tools for predicting peptides binding to HLA-class II molecules: more confusion than conclusion. J. Proteome Res.7, 154–163 (2008).
  • Rothbard JB, Gefter ML. Interactions between immunogenic peptides and MHC proteins Annu. Rev. Immunol.9, 527–565 (1991).
  • Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors. Ann. Rev. Immunol.24, 419–466 (2006).
  • Baldi P, Brunak S, Chauvin Y et al. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics6(5), 412–424 (2000).
  • Greenbaum JA, Andersen PH, Blythe M et al. Towards a consensus on datasets and evaluation metrics for developing B-cell epitope prediction tools. J. Mol. Recognit.20(2), 75–82 (2007).
  • Sette A, Buus S, Appella E et al. Prediction of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis. Proc. Natl Acad. Sci. USA86, 3296–3300 (1989).
  • Rammensee H, Bachmann J, Emmerich NP et al. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics50, 213–219 (1999).
  • Kast WM, Brandt RM, Sidney J et al. Role of HLA-A motifs in identification of potential CTL epitopes in human papilloma virus type 16 E6 and E7 proteins. J. Immunol.152, 3904–3912 (1994).
  • Ruppert J, Sidney J, Celis E et al. Prominent role of secondary anchor residues in peptide binding to HLA-A2.1 molecules. Cell74, 929–937 (1993).
  • Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol.152, 163–175 (1994).
  • Schönbach C, Ibe M, Shiga H et al. Fine tuning of peptide binding to HLA-B*3501 molecules by nonanchor residues. J. Immunol.14, 5951–5985 (1995).
  • Southwood S, Sidney J, Kondo A et al. Several common HLA-DR types share largely overlapping peptide binding repertoires. J. Immunol.160, 3363–3373 (1998).
  • Nielsen M, Lundegaard C, Worning P et al. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics20, 1388–1397 (2004).
  • Rajapakse M, Wyse L, Schmidt B et al. Deriving matrix of peptide-MHC interactions in diabetic mouse by genetic algorithm. Lecture Notes in Computer Sci.3578, 440–447 (2005).
  • Donnes P, Kohlbacher O. SVMHC: a server for prediction of MHC-binding peptides. Nucl. Acids Res.34(web server issue), W194–W197 (2006).
  • Brusic V, Rudy G, Honeyman G et al. Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics14, 121–130 (1998).
  • Yu K, Petrovsky N, Schönbach C et al. Methods for prediction of peptide binding to MHC molecules: a comparative study. Mol. Med.8, 137–148 (2002).
  • Mamitsuka H. Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models. Proteins33, 460–474 (1998).
  • Moutaftsi M, Peters B, Pasquetto V et al. A consensus epitope prediction approach identifies the breadth of murine T (CD8+)-cell responses to vaccinia virus. Nat. Biotechnol.24, 817–819 (2006).
  • Wen J-S, Jiang L-F, Zhou J-M et al. Computational prediction and identification of dengue virus-specific CD4+ T-cell epitopes. Virus Res.132, 42–48 (2008).
  • Fonseca SG, Coutinho-Silva A, Fonseca LA et al. Identification of novel consensus CD4 T-cell epitopes from clade B HIV-1 whole genome that are frequently recognized by HIV-1 infected patients. AIDS20, 2263–2273 (2006).
  • Wang B, Yao K, Liu G, Xie F et al. Computational prediction and identification of Epstein–Barr virus latent membrane protein 2A antigen-specific CD8+ T-cell epitopes. Cell. Mol. Immunology.6(2), 97–103 (2009).
  • Gritzapis AD, Voutsas IF, Lekka E et al. Identification of a novel immunogenic HLA-A*0201-binding epitope of HER-2/neu with potent antitumor properties. J. Immunol.181(1), 146–154 (2008).
  • Shen L, Schroers R, Hammer J et al. Identification of a MHC class-II restricted epitope in carcinoembryonic antigen. Cancer Immunol. Immunother.53, 391–403 (2004).
  • Campi G, Crosti M, Consogno G et al. CD4+ T cells from healthy subjects and colon cancer patients recognize a carcinoembryonic antigen-specific immunodominant epitope. Cancer Res.63, 8481–8486 (2003).
  • Xing Q, Pang XW, Peng JR et al. Identification of new cytotoxic T-lymphocyte epitopes from cancer testis antigen HCA587. Biochem. Biophys. Res. Commun.372, 331–335 (2008).
  • Asemissen AM, Keilholz U, Tenzer S et al. Identification of a highly immunogenic HLA-A*01-binding T cell epitope of WT1. Clin. Cancer Res.12, 7476–7482 (2006).
  • Schreurs MW, Kueter EW, Scholten KB et al. Identification of a potential human telomerase reverse transcriptase-derived, HLA-A1-restricted cytotoxic T-lymphocyte epitope. Cancer Immunol. Immunother.54, 703–712 (2005).
  • Maecker B, von Bergwelt-Baildon MS, Sherr DH et al. Identification of a new HLA-A*0201-restricted cryptic epitope from CYP1B1. Int. J. Cancer115, 333–336 (2005).
  • Koren E, De Groot AS, Jawa V et al. Clinical validation of the “in silico” prediction of immunogenicity of a human recombinant therapeutic protein. Clin. Immunol.124, 26–32 (2007).
  • Carralot J, Dumrese C, Wessel R et al. CD8+ T cells specific for a potential HLA-A*0201 epitope from Chlamydophila pneumoniae are present in the PBMCs from infected patients. Int. Immunol.17, 591–597 (2005).
  • Heidema J, de Bree GJ, De Graaff PM et al. Human CD8+ T cell responses against five newly identified respiratory syncytial virus-derived epitopes. J. Gen. Virol.85, 2365–2374 (2004).
  • Ouyang Q, Standifer NE, Qin H et al. Recognition of HLA class I-restricted β cell epitopes in Type 1 diabetes. Diabetes55, 3068–3074 (2006).
  • Standifer NE, Ouyang Q, Panagiotopoulos C et al. Identification of novel HLA-A*0201-restricted epitopes in recent-onset type 1 diabetic subjects and antibody-positive relatives. Diabetes55, 3061–3067 (2006).
  • Calvo-Calle JM, Strug I, Nastke MD et al. Human CD4+ T cell epitopes from vaccinia virus induced by vaccination or infection. PLoS Pathog.3, E144 (2007).
  • Larsen MV, Lundegaard C, Lamberth K et al. Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics8, 424 (2007).
  • Gomez-Nunez M, Pinilla-Ibarz J, Dao T et al. Peptide binding motif predictive algorithms correspond with experimental binding of leukemia vaccine candidate peptides to HLA-A*0201 molecules. Leukemia Res.30, 1293–1298 (2006).
  • Al-Attiyah R, Mustafa AS. Computer-assisted prediction of HLA-DR binding and experimental analysis for human promiscuous Th1-cell peptides in the 24 kDa secreted lipoprotein (LppX) of Mycobacterium tuberculosis. Scand. J. Immunol.59, 16–24 (2004).
  • Stober CB, Lange UG, Roberts MT et al. From genome to vaccines for leishmaniasis: screening 100 novel vaccine candidates against murine leishmania major infection. Vaccine24, 2602–2616 (2006).
  • Drouin EE, Glickstein L, Kwok WW et al. Searching for borrelial T cell epitopes associated with antibiotic-refractory Lyme arthritis. Mol. Immunol.45, 2323–2332 (2008).
  • Nyárády Z, Czömpöly T, Bosze S et al. Validation of in silico prediction by in vitro immunoserological results of fine epitope mapping on citrate synthase specific autoantibodies. Mol. Immunol.43, 830–838 (2006).
  • Andersen MH, Tan L, Søndergaard I et al. Poor correspondence between predicted and experimental binding of peptides to class I MHC molecules. Tissue Antigens55, 519–31 (2000).
  • Pelte C, Cherepnev G, Wang Y et al. Random screening of proteins for HLA-A*0201-binding nine-amino acid peptides is not sufficient for identifying CD8 T cell epitopes recognized in the context of HLA-A*0201. J. Immunol.172, 6783–6789 (2004).
  • Neumann F, Wagner C, Stevanovic S et al. Identification of an HLA-DR-restricted peptide epitope with a promiscuous binding pattern derived from the cancer testis antigen HOM-MEL-40/SSX2. Int. J. Cancer112, 661–668 (2004).
  • Mustafa AS, Shaban FA. ProPred analysis and experimental evaluation of promiscuous T-cell epitopes of three major secreted antigens of Mycobacterium tuberculosis. Tuberculosis86, 115–124 (2006).
  • Crowe SR, Miller SC, Brown DM et al. Uneven distribution of MHC class II epitopes within the influenza virus. Vaccine24, 457–467 (2006).
  • Lee S, Miller SA, Wright DW et al. Tissue-specific regulation of CD8-T-lymphocyte immunodominance in respiratory syncytial virus infection. J. Virol.81, 2349–2358 (2007).
  • Trost B, Bickis M, Kusalik A. Strength in numbers: achieving greater accuracy in MHC-I binding prediction by combining the results from multiple prediction tools. Immunome Res.3, 5 (2007).
  • Doolan DL, Southwood S, Freilich DA et al. Identification of Plasmodium falciparum antigens by antigenic analysis of genomic and proteomic data. Proc. Natl Acad. Sci. USA100, 9952–9957 (2003).
  • Lin HH, Zhang GL, Tongchusak S et al. Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research. BMC Bioinformatics12(9 Suppl. 12), S22 (2008).
  • Hennecke J, Wiley DC. T cell receptor-MHC interactions up close. Cell104, 1–4 (2001).
  • Stern LJ, Brown JH, Jardetzky TS et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature368, 215–221 (1994).
  • Sturniolo T, Bono E, Ding J et al. Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices. Nat. Biotechnol.17, 555–561 (1999).
  • El-Manzalawy Y, Dobbs D, Honavar V. On evaluating MHC-II binding peptide prediction methods. PLoS ONE24, 3(9) E3268 (2008).
  • Suri A, Lovitch SB, Unanue ER. The wide diversity and complexity of peptides bound to class II MHC molecules. Curr. Opin. Immunol.18(1), 70–77 (2006).
  • Lin HH, Ray S, Tongchusak S et al. Evaluation of MHC class I peptide binding prediction servers: applications for vaccine research. BMC Immunol.9, 8 (2008).
  • MacNamara A, Kadolsky U, Bangham CRM, Asquith B. T-cell epitope prediction: rescaling can mask biological variation between MHC molecules. PLoS Comput. Biol.5(3), E1000327 (2009).
  • Agrewala JN, Wilkinson RJ. Influence of HLA-DR on the phenotype of CD4+ T lymphocytes specific for an epitope of the 16-kDa α-crystallin antigen of Mycobacterium tuberculosi. Eur. J. Immunol.29, 1753–1761 (1999).
  • Agrewala JN, Wilkinson RJ. Differential regulation of Th1 and Th2 cells by p91–110 and p21–40 peptides of the 16-kD α-crystallin antigen of Mycobacterium tuberculosis. Clin. Exp. Immunol.114(3), 392–397 (1998).
  • Halling-Brown M, Sansom CE, Davies M et al. Are bacterial vaccine antigens T-cell epitope depleted? Trends Immunol.29(8), 374–379 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.