155
Views
9
CrossRef citations to date
0
Altmetric
Perspective

Cell-type-specific proteome and interactome: using HIV-1 Tat as a test case

, , &
Pages 515-526 | Published online: 09 Jan 2014

References

  • Ptak RG et al. Cataloguing the HIV type 1 human protein interaction network. AIDS Res. Hum. Retroviruses24(12), 1497–1502 (2008).
  • Alexaki A, Liu Y, Wigdahl B. Cellular reservoirs of HIV-1 and their role in viral persistence. Curr. HIV Res.6(5), 388–400 (2008).
  • Ellery PJ, Tippett E, Chiu YL et al. The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo. J. Immunol.178(10), 6581–6589 (2007).
  • Lambotte O, Taoufik Y, de Goër MG et al. Detection of infectious HIV in circulating monocytes from patients on prolonged highly active antiretroviral therapy. J. Acquir. Immune Defic. Syndr.23(2), 114–119 (2000).
  • McElrath MJ Pruett JE, Cohn ZA. Mononuclear phagocytes of blood and bone marrow: comparative roles as viral reservoirs in human immunodeficiency virus type 1 infections. Proc. Natl Acad. Sci. USA86(2), 675–679 (1989).
  • McElrath MJ Steinman RM, Cohn ZA. Latent HIV-1 infection in enriched populations of blood monocytes and T cells from seropositive patients. J. Clin. Invest.87(1), 27–30 (1991).
  • Mikovits JA, Lohrey NC, Schulof R, Courtless J, Ruscetti FW. Activation of infectious virus from latent human immunodeficiency virus infection of monocytes in vivo. J. Clin. Invest.90(4), 1486–1491 (1992).
  • Minagar A, Commins D, Alexander JS et al. NeuroAIDS: characteristics and diagnosis of the neurological complications of AIDS. Mol. Diagn. Ther.12(1), 25–43 (2008).
  • King JE, Eugenin EA, Buckner CM, Berman JW. HIV tat and neurotoxicity. Microbes Infect.8(5), 1347–1357 (2006).
  • D’Aversa TG, Eugenin EA, Berman JW. NeuroAIDS: contributions of the human immunodeficiency virus-1 proteins Tat and gp120 as well as CD40 to microglial activation. J. Neurosci. Res.81(3), 436–446 (2005).
  • Ma M, Geiger JD, Nath A. Characterization of a novel binding site for the human immunodeficiency virus type 1 envelope protein gp120 on human fetal astrocytes. J. Virol.68(10), 6824–6828 (1994).
  • Clapham PR, Weber JN, Whitby D et al. Soluble CD4 blocks the infectivity of diverse strains of HIV and SIV for T cells and monocytes but not for brain and muscle cells. Nature337(6205), 368–370 (1989).
  • Lavi E, Kolson DL, Ulrich AM, Fu L, González-Scarano F. Chemokine receptors in the human brain and their relationship to HIV infection. J. Neurovirol.4(3), 301–311 (1998).
  • Orenstein JM, Meltzer MS, Phipps T, Gendelman HE. Cytoplasmic assembly and accumulation of human immunodeficiency virus types 1 and 2 in recombinant human colony-stimulating factor-1-treated human monocytes: an ultrastructural study. J. Virol.62(8), 2578–2586 (1988).
  • Deneka M, Pelchen-Matthews A, Byland R, Ruiz-Mateos E, Marsh M. In macrophages, HIV-1 assembles into an intracellular plasma membrane domain containing the tetraspanins CD81, CD9, and CD53. J. Cell. Biol.177(2), 329–341 (2007).
  • Weinberg JB, Matthews TJ, Cullen BR, Malim MH. Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J. Exp. Med.174(6), 1477–1482 (1991).
  • Kinoshita S, Su L, Amano M, Timmerman LA, Kaneshima H, Nolan GP. The T cell activation factor NF-ATc positively regulates HIV-1 replication and gene expression in T cells. Immunity6(3), 235–244 (1997).
  • Yang Z, Engel JD. Human T cell transcription factor GATA-3 stimulates HIV-1 expression. Nucleic Acids Res.21(12), 2831–2836 (1993).
  • Henderson AJ, Calame KL. CCAAT/enhancer binding protein (C/EBP) sites are required for HIV-1 replication in primary macrophages but not CD4(+) T cells. Proc. Natl Acad. Sci. USA94(16), 8714–8719 (1997).
  • Leea ES, Sarmab D, Zhoua H, Henderson AJ. CCAAT/enhancer binding proteins are not required for HIV-1 entry but regulate proviral transcription by recruiting coactivators to the long-terminal repeat in monocytic cells. Virology299(1), 20–31 (2002).
  • Felzien LK, Woffendin C, Hottiger MO, Subbramanian RA, Cohen EA, Nabel GJ. HIV transcriptional activation by the accessory protein, VPR, is mediated by the p300 co-activator. Proc. Natl Acad. Sci. USA95(9), 5281–5286 (1998).
  • Sawaya BE, Khalili K, Gordon J, Taube R, Amini S. Cooperative interaction between HIV-1 regulatory proteins Tat and Vpr modulates transcription of the viral genome. J. Biol. Chem.275(45), 35209–35214 (2000).
  • Eckstein DA, Sherman MP, Penn ML et al. HIV-1 Vpr enhances viral burden by facilitating infection of tissue macrophages but not nondividing CD4+ T cells. J. Exp. Med.194(10), 1407–1419 (2001).
  • Dong C, Kwas C, Wu L. Transcriptional restriction of human immunodeficiency virus type 1 gene expression in undifferentiated primary monocytes. J. Virol.83(8), 3518–3527 (2009).
  • Berro R, Kehn K, de la Fuente C et al. Acetylated Tat regulates human immunodeficiency virus type 1 splicing through its interaction with the splicing regulator p32. J. Virol.80(7), 3189–3204 (2006).
  • Chiu YL, Ho CK, Saha N, Schwer B, Shuman S, Rana TM. Tat stimulates cotranscriptional capping of HIV mRNA. Mol. Cell.10(3), 585–597 (2002).
  • Kuciak M, Gabus C, Ivanyi-Nagy R et al. The HIV-1 transcriptional activator Tat has potent nucleic acid chaperoning activities in vitro. Nucleic Acids Res.36(10), 3389–3400 (2008).
  • Bennasser Y, Le SY, Benkirane M, Jeang KT. Evidence that HIV-1 encodes an siRNA and a suppressor of RNA silencing. Immunity22(5), 607–619 (2005).
  • Bennasser Y, Jeang KT. HIV-1 Tat interaction with Dicer: requirement for RNA. Retrovirology3, 95 (2006).
  • Peruzzi F. The multiple functions of HIV-1 Tat: proliferation versus apoptosis. Front Biosci.11, 708–717 (2006).
  • Kalantari P, Harandi OF, Hankey PA, Henderson AJ. HIV-1 Tat mediates degradation of RON receptor tyrosine kinase, a regulator of inflammation. J. Immunol.181(2), 1548–1555 (2008).
  • Minghetti L, Visentin S, Patrizio M, Franchini L, Ajmone-Cat MA, Levi G. Multiple actions of the human immunodeficiency virus type-1 Tat protein on microglial cell functions. Neurochem. Res.29(5), 965–978 (2004).
  • Niikura M, Dornadula G, Zhang H et al. Mechanisms of transcriptional transactivation and restriction of human immunodeficiency virus type I replication in an astrocytic glial cell. Oncogene13(2), 313–322 (1996).
  • Berkhout B, Gatignol A, Rabson AB, Jeang KT. TAR-independent activation of the HIV-1 LTR: evidence that tat requires specific regions of the promoter. Cell62(4), 757–767 (1990).
  • Calnan BJ, Biancalana S, Hudson D, Frankel AD. Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Genes Dev.5(2), 201–210 (1991).
  • Nekhai S, R.Shukla R, Kumar A. A human primary T-lymphocyte-derived human immunodeficiency virus type 1 Tat-associated kinase phosphorylates the C-terminal domain of RNA polymerase II and induces CAK activity. J. Virol.71(10), 7436–7441 (1997).
  • García-Martínez LF, Mavankal G, Neveu JM, Lane WS, Ivanov D, Gaynor RB. Purification of a Tat-associated kinase reveals a TFIIH complex that modulates HIV-1 transcription. EMBO J.16(10), 2836–2850 (1997).
  • Cujec TP, Okamoto H, Fujinaga K et al. The HIV transactivator TAT binds to the CDK-activating kinase and activates the phosphorylation of the carboxy-terminal domain of RNA polymerase II. Genes Dev.11(20), 2645–2657 (1997).
  • Cujec TP, Cho H, Maldonado E et al. The human immunodeficiency virus transactivator Tat interacts with the RNA polymerase II holoenzyme. Mol. Cell. Biol.17(4), 1817–1823 (1997).
  • Parada CA, Roeder RG. Enhanced processivity of RNA polymerase II triggered by Tat-induced phosphorylation of its carboxy-terminal domain. Nature384(6607), 375–378 (1996).
  • Zhou C Rana TM. A bimolecular mechanism of HIV-1 Tat protein interaction with RNA polymerase II transcription elongation complexes. J. Mol. Biol.320(5), 925–942 (2002).
  • Chen D, Zhou Q. Tat activates human immunodeficiency virus type 1 transcriptional elongation independent of TFIIH kinase. Mol. Cell. Biol.19(4), 2863–2871 (1999).
  • Wei P, Garber ME, Fang SM, Fischer WH, Jones KA. A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell92(4), 451–462 (1998).
  • Wimmer J, Fujinaga K, Taube R et al. Interactions between Tat and TAR and human immunodeficiency virus replication are facilitated by human cyclin T1 but not cyclins T2a or T2b. Virology255(1), 182–189 (1999).
  • Zhou M, Halanski MA, Radonovich MF et al. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Mol. Cell. Biol.20(14), 5077–5086 (2000).
  • Isel C, Karn J. Direct evidence that HIV-1 Tat stimulates RNA polymerase II carboxyl-terminal domain hyperphosphorylation during transcriptional elongation. J. Mol. Biol.290(5), 929–941 (1999).
  • Zhou M, Deng L, Lacoste V et al. Coordination of transcription factor phosphorylation and histone methylation by the P-TEFb kinase during human immunodeficiency virus type 1 transcription. J. Virol.78(24), 13522–13533 (2004).
  • Nguyen VT, Kiss T, Michels AA, Bensaude O. 7SK small nuclear RNA binds to and inhibits the activity of CDK9/cyclin T complexes. Nature414(6861), 322–325 (2001).
  • Michels AA, Nguyen VT, Fraldi A et al. MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner. Mol. Cell. Biol.23(14), 4859–4869 (2003).
  • Yang Z, Zhu Q, Luo K, Zhou Q. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature414(6861), 317–322 (2001).
  • Yik JH, Chen R, Nishimura R, Jennings JL, Link AJ, Zhou Q. Inhibition of P-TEFb (CDK9/cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol. Cell.12(4), 971–982 (2003).
  • Yang Z, Yik JH, Chen R et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell.19(4), 535–545 (2005).
  • Michels AA, Fraldi A, Li Q et al. Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor. EMBO J.23(13), 2608–2619 (2004).
  • Fraldi A, Varrone F, Napolitano G et al. Inhibition of Tat activity by the HEXIM1 protein. Retrovirology2, 42 (2005).
  • Barboric M, Yik JH, Czudnochowski N et al. Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription. Nucleic Acids Res.35(6), 2003–2012 (2007).
  • Peng J, Zhu Y, Milton JT, Price DH. Identification of multiple cyclin subunits of human P-TEFb. Genes Dev.12(5), 755–762 (1998).
  • Price DH. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol. Cell. Biol.20(8), 2629–2634 (2000).
  • Napolitano G, Licciardo P, Gallo P, Majello B, Giordano A, Lania L. The CDK9-associated cyclins T1 and T2 exert opposite effects on HIV-1 Tat activity. AIDS13(12), 1453–1459 (1999).
  • Urano E, Shimizu S, Futahashi Y et al. Cyclin K/CPR4 inhibits primate lentiviral replication by inactivating Tat/positive transcription elongation factor b-dependent long terminal repeat transcription. AIDS22(9), 1081–1083 (2008).
  • Garber ME, Wei P, KewalRamani VN et al. The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev.12(22), 3512–3527 (1998).
  • Brady J, Kashanchi F. Tat gets the “green” light on transcription initiation. Retrovirology2, 69 (2005).
  • Kashanchi F, Piras G, Radonovich MF et al. Direct interaction of human TFIID with the HIV-1 transactivator tat. Nature367(6460), 295–299 (1994).
  • Majello B, Napolitano G, Lania L. Recruitment of the TATA-binding protein to the HIV-1 promoter is a limiting step for Tat transactivation. AIDS12(15), 1957–1964 (1998).
  • Veschambre P, Simard P, Jalinot P. Evidence for functional interaction between the HIV-1 Tat transactivator and the TATA box binding protein in vivo. J. Mol. Biol.250(2), 169–180 (1995).
  • Raha T, Cheng SW, Green MR. HIV-1 Tat stimulates transcription complex assembly through recruitment of TBP in the absence of TAFs. PLoS Biol.3(2), E44 (2005).
  • Mavankal G, Ignatius Ou SH, Oliver H, Sigman D, Gaynor RB. Human immunodeficiency virus type 1 and 2 Tat proteins specifically interact with RNA polymerase II. Proc. Natl Acad. Sci. USA93(5), 2089–2094 (1996).
  • Ping YH, Rana TM. Tat-associated kinase (P-TEFb): a component of transcription preinitiation and elongation complexes. J. Biol. Chem.274(11), 7399–7404 (1999).
  • Montanuy I, Torremocha R, Hernández-Munain C, Suñé C. Promoter influences transcription elongation: TATA-box element mediates the assembly of processive transcription complexes responsive to cyclin-dependent kinase 9. J. Biol. Chem.283(12), 7368–7378 (2008).
  • Jeang KT, Chun R, Lin NH, Gatignol A, Glabe CG, Fan H. In vitro and in vivo binding of human immunodeficiency virus type 1 Tat protein and Sp1 transcription factor. J. Virol.67(10), 6224–6233 (1993).
  • Deng L, de la Fuente C, Fu P et al. Acetylation of HIV-1 Tat by CBP/P300 increases transcription of integrated HIV-1 genome and enhances binding to core histones. Virology277(2), 278–295 (2000).
  • Roof P, Ricci M, Genin P et al. Differential regulation of HIV-1 clade-specific B C, and E long terminal repeats by NF-κB and the Tat transactivator. Virology296(1), 77–83 (2002).
  • Pumfery A, Deng L, Maddukuri A et al. Chromatin remodeling and modification during HIV-1 Tat-activated transcription. Curr. HIV Res.1(3), 343–362 (2003).
  • Bukrinsky M. SNFing HIV transcription. Retrovirology3, 49 (2006).
  • Deng L, Wang D, de la Fuente C et al. Enhancement of the p300 HAT activity by HIV-1 Tat on chromatin DNA. Virology289(2), 312–326 (2001).
  • Kaehlcke K, Dorr A, Hetzer-Egger C et al. Acetylation of Tat defines a cyclinT1-independent step in HIV transactivation. Mol. Cell.12(1), 167–176 (2003).
  • Agbottah E, Deng L, Dannenberg LO, Pumfery A, Kashanchi F. Effect of SWI/SNF chromatin remodeling complex on HIV-1 Tat activated transcription. Retrovirology3, 48 (2006).
  • Mahmoudi T, Parra M, Vries RG et al. The SWI/SNF chromatin-remodeling complex is a cofactor for Tat transactivation of the HIV promoter. J. Biol. Chem.281(29), 19960–19968 (2006).
  • Ariumi Y, Serhan F, Turelli P, Telenti A, Trono D. The integrase interactor 1 (INI1) proteins facilitate Tat-mediated human immunodeficiency virus type 1 transcription. Retrovirology3, 47 (2006).
  • Pagans S, Pedal A, North BJ et al. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol.3(2), E41 (2005).
  • Pagans S, Pedal A, North BJ et al. The β-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell85(7), 1135–1148 (1996).
  • Doranz BJ, Rucker J, Yi Y et al. A dual-tropic primary HIV-1 isolate that uses fusin and the β-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell85(7), 1149–1158 (1996).
  • Hatse S, Princen K, Bridger G, De Clercq E, Schols D. Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett.527(1–3), 255–262 (2002).
  • O’Brien MC, Ueno T, Jahan N, Zajac-Kaye M, Mitsuya H. HIV-1 expression induced by anti-cancer agents in latently HIV-1-infected ACH2 cells. Biochem. Biophys. Res. Commun.207(3), 903–909 (1995).
  • Perez VL, Rowe T, Justement JS, Butera ST, June CH, Folks TM. An HIV-1-infected T cell clone defective in IL-2 production and Ca2+ mobilization after CD3 stimulation. J. Immunol.147(9), 3145–3148 (1991).
  • Jordan A, Bisgrove D, Verdin E. HIV reproducibly establishes a latent infection after acute infection of T cells in vitro. EMBO J.22(8), 1868–1877 (2003).
  • Williams SA, Chen LF, Kwon H, Ruiz-Jarabo CM, Verdin E, Greene WC. NF-κB p50 promotes HIV latency through HDAC recruitment and repression of transcriptional initiation. EMBO J.25(1), 139–149 (2006).
  • Kim YK, Bourgeois CF, Pearson R et al. Recruitment of TFIIH to the HIV LTR is a rate-limiting step in the emergence of HIV from latency. EMBO J.25(15), 3596–3604 (2006).
  • Swiggard WJ, Baytop C, Yu JJ et al. Human immunodeficiency virus type 1 can establish latent infection in resting CD4+ T cells in the absence of activating stimuli. J. Virol.79(22), 14179–14188 (2005).
  • Jeeninga RE, Westerhout EM, van Gerven ML, Berkhout B. HIV-1 latency in actively dividing human T cell lines. Retrovirology5, 37 (2008).
  • Ringrose JH, Jeeninga RE, Berkhout B, Speijer D. Proteomic studies reveal coordinated changes in T-cell expression patterns upon infection with human immunodeficiency virus type 1. J. Virol.82(9), 4320–4330 (2008).
  • Chan EY, Qian WJ, Diamond DL et al. Quantitative analysis of human immunodeficiency virus type 1-infected CD4+ cell proteome: dysregulated cell cycle progression and nuclear transport coincide with robust virus production. J. Virol.81(14), 7571–7583 (2007).
  • Liou LY, Herrmann CH, Rice AP. Transient induction of cyclin T1 during human macrophage differentiation regulates human immunodeficiency virus type 1 Tat transactivation function. J. Virol.76(21), 10579–10587 (2002).
  • Chen R, Yang Z, Zhou Q. Phosphorylated positive transcription elongation factor b (P-TEFb) is tagged for inhibition through association with 7SK snRNA. J. Biol. Chem.279(6), 4153–4160 (2004).
  • Chen R, Liu M, Li H et al. PP2B and PP1α cooperatively disrupt 7SK snRNP to release P-TEFb for transcription in response to Ca2+ signaling. Genes Dev.22(10), 1356–1368 (2008).
  • Ammosova T, Washington K, Debebe Z, Brady J, Nekhai S. Dephosphorylation of CDK9 by protein phosphatase 2A and protein phosphatase-1 in Tat-activated HIV-1 transcription. Retrovirology2, 47 (2005).
  • Haaland RE, Herrmann CH, Rice AP. Increased association of 7SK snRNA with Tat cofactor P-TEFb following activation of peripheral blood lymphocytes. AIDS17(17), 2429–2436 (2003).
  • Rohr O, Marban C, Aunis D, Schaeffer E. Regulation of HIV-1 gene transcription: from lymphocytes to microglial cells. J. Leukoc. Biol.74(5), 736–749 (2003).
  • Henderson AJ Zou X, Calame KL. C/EBP proteins activate transcription from the human immunodeficiency virus type 1 long terminal repeat in macrophages/monocytes. J. Virol.69(9), 5337–5344 (1995).
  • Tesmer VM, Rajadhyaksha A, Babin J, Bina M. NF-IL6-mediated transcriptional activation of the long terminal repeat of the human immunodeficiency virus type 1. Proc. Natl Acad. Sci. USA90(15), 7298–7302 (1993).
  • Mameli G, Deshmane SL, Ghafouri M et al. C/EBPβ regulates human immunodeficiency virus 1 gene expression through its association with CDK9. J. Gen. Virol.88(Pt 2), 631–640 (2007).
  • Ambrosino C, Ruocco MR, Chen X et al. HIV-1 Tat induces the expression of the interleukin-6 (IL6) gene by binding to the IL6 leader RNA and by interacting with CAAT enhancer-binding protein b (NF-IL6) transcription factors. J. Biol. Chem.272(23), 14883–14892 (1997).
  • Coyle-Rink J, Sweet T, Abraham S et al. Interaction between TGFb signaling proteins and C/EBP controls basal and Tat-mediated transcription of HIV-1 LTR in astrocytes. Virology299(2), 240–247 (2002).
  • Brès V, Kiernan RE, Linares LK et al. A non-proteolytic role for ubiquitin in Tat-mediated transactivation of the HIV-1 promoter. Nat. Cell. Biol.5(8), 754–761 (2003).
  • Boulanger MC, Liang C, Russell RS et al. Methylation of Tat by PRMT6 regulates human immunodeficiency virus type 1 gene expression. J. Virol.79(1), 124–131 (2005).
  • Van Duyne R, Easley R, Wu W et al. Lysine methylation of HIV-1 Tat regulates transcriptional activity of the viral LTR. Retrovirology5, 40 (2008).
  • Yu L, Loewenstein PM, Zhang Z, Green M. In vitro interaction of the human immunodeficiency virus type 1 Tat transactivator and the general transcription factor TFIIB with the cellular protein TAP. J. Virol.69(5), 3017–3023 (1995).
  • Kiernan RE, Vanhulle C, Schiltz L et al. HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J.18(21), 6106–6118 (1999).
  • Ott M, Schnölzer M, Garnica J et al. Acetylation of the HIV-1 Tat protein by p300 is important for its transcriptional activity. Curr. Biol.9(24), 1489–1492 (1999).
  • Peterlin BM, Price DH. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell.23(3), 297–305 (2006).
  • Tréand C, du Chéné I, Brès V et al. Requirement for SWI/SNF chromatin-remodeling complex in Tat-mediated activation of the HIV-1 promoter. EMBO J.25(8), 1690–1699 (2006).
  • Xie B, Invernizzi CF, Richard S, Wainberg MA. Arginine methylation of the human immunodeficiency virus type 1 Tat protein by PRMT6 negatively affects Tat Interactions with both cyclin T1 and the Tat transactivation region. J. Virol.81(8), 4226–4234 (2007).
  • Ammosova T, Berro R, Jerebtsova M et al. Phosphorylation of HIV-1 Tat by CDK2 in HIV-1 transcription. Retrovirology3, 78 (2006).
  • Berro R, de la Fuente C, Klase Z et al. Identifying the membrane proteome of HIV-1 latently infected cells. J. Biol. Chem.282(11), 8207–8218 (2007).
  • Kadiu I, Wang T, Schlautman JD et al. HIV-1 transforms the monocyte plasma membrane proteome. Cell. Immunol.258(1), 44–58 (2009).
  • Liang WS, Maddukuri A, Teslovich TM et al. Therapeutic targets for HIV-1 infection in the host proteome. Retrovirology2, 20 (2005).
  • Gautier VW, Gu L, O’Donoghue N, Pennington S, Sheehy N, Hall WW. In vitro nuclear interactome of the HIV-1 Tat protein. Retrovirology6(1), 47 (2009).
  • Agbottah E, de La Fuente C, Nekhai S et al. Antiviral activity of CYC202 in HIV-1-infected cells. J. Biol. Chem.280(4), 3029–3042 (2005).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.