102
Views
22
CrossRef citations to date
0
Altmetric
Review

Emerging affinity-based techniques in proteomics

, , , &
Pages 573-583 | Published online: 09 Jan 2014

References

  • Fey SJ, Larsen PM. 2D or not 2D. Two-dimensional gel electrophoresis. Curr. Opin. Chem. Biol.5, 26–33 (2001).
  • Barnouin K. Two-dimensional gel electrophoresis for analysis of protein complexes. Methods Mol. Biol.261, 479–498 (2004).
  • Han X, Aslanian A, Yates JR. Mass spectrometry for proteomics. Curr. Opin. Chem. Biol.12, 483–490 (2008).
  • O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem.250, 4007–4021 (1975).
  • Duan X, Berthiaume F, Yarmush DM, Jayaraman A, Yarmush ML. A mouse serum two-dimensional gel map: application to profiling burn injury and infection. Electrophoresis25, 3055–3065 (2004).
  • Duan X, Yarmush ML, Jayaraman A, Yarmush ML. Dispensable role for interferon γ in the acute phase response: a proteomics analysis. Proteomics4, 1830–1839 (2004).
  • Jayaraman A, Roberts KA, Yoon J et al. Identification of neutrophil gelatinase-associated lipocalin (NGAL) as a discriminant marker of the hepatocyte secreted protein response to IL-1β: a proteomic analysis. Biotechnol. Bioeng.91, 502–515 (2005).
  • Nandakumar R, Nandakumar MP, Marten MR, Ross JM. Proteome analysis of membrane and cell wall associated proteins from Staphylococcus aureus. J. Proteome Res.4, 250–257 (2005).
  • Dooley GP, Reardon KF, Prenni JE et al. Proteomic analysis of diaminochlorotriazine adducts in wistar rat pituitary glands and LβT2 rat pituitary cells. Chem. Res. Toxicol.21, 844–851 (2008).
  • Rabilloud T. Membrane proteins and proteomics: love is possible, but so difficult. Electrophoresis30, S174–180 (2009).
  • Miller I, Crawford J, Gianazza E. Protein stains for proteomic applications: which, when, why? Proteomics6, 5385–5408 (2008).
  • Shen Y, Jacobs JM, Camp DG 2nd et al. Ultra-high-efficiency strong cation exchange LC/RPLC/MS/MS for high dynamic range characterization of the human plasma proteome. Anal. Chem.76(4), 1134–1144 (2004).
  • Wong DM, Adeli K. Microsomal proteomics. Methods Mol. Biol.519, 273–279 (2009).
  • Lin RX, Zhao HB, Li CR, Sun YN, Qian XH, Wang SQ. Proteomic analysis of ionizing radiation-induced proteins at the subcellular level. J. Proteome Res.8, 390–399 (2009).
  • Wepf A, Glatter T, Schmidt A, Aebersold R, Gstaiger M. Quantitative interaction proteomics using mass spectrometry. Nat. Methods6, 203–205 (2009).
  • Viner RI, Zhang T, Second T, Zabrouskov V. Quantification of post-translationally modified peptides of bovine α-crystallin using tandem mass tags and electron transfer dissociation. J. Proteomics72(5), 874–885 (2009).
  • Dwivedi RC, Spicer V, Harder M et al. Practical implementation of 2D HPLC scheme with accurate peptide retention prediction in both dimensions for high-throughput bottom-up proteomics. Anal. Chem.80(18), 7036–7042 (2008).
  • Parks BA, Jiang L, Thomas PM et al. Top-down proteomics on a chromatographic time scale using linear ion trap fourier transform hybrid mass spectrometers. Anal Chem.79, 7984–7991 (2007).
  • Yates RJ, Ruse CI, Nakorchevsky A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu. Rev. Biomed. Eng.11, 49–79 (2009).
  • Cravatt BF, Simon GM, Yates JR. The biological impact of mass-spectrometry-based proteomics. Nature450, 991–1000 (2007).
  • Ahn NG, Shabb JB, Old WM, Resing KA. Achieving in-depth proteomics profiling by mass spectrometry. ACS Chem. Biol.2, 39–52 (2007).
  • Stoevesandt O, Taussig MJ, He M. Protein microarrays: high-throughput tools for proteomics. Expert Rev. Proteomics6(2), 145–157 (2009).
  • Borrebaeck CA, Wingren C. High-throughput proteomics using antibody microarrays: an update. Expert Rev. Mol. Diagn.7(5), 673–686 (2007).
  • Zhou HP, Bouwman K, Schotanus M et al. Two-color, rolling-circle amplification on antibody microarrays for sensitive, multiplexed serum-protein measurements. Genome Biology5(4), R28 (2004).
  • Wulfkuhle JD, Aquino JA, Calvert VS et al. Signal pathway profiling of ovarian cancer from human tissue specimens using reverse-phase protein microarrays. Proteomics3(11), 2085–2090 (2003).
  • Paweletz CP, Charboneau L, Bichsel VE et al. Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene20(16), 1981–1989 (2001).
  • Silzel JW, Cercek B, Dodson C, Tsay T, Obremski RJ. Mass-sensing, multianalyte microarray immunoassay with imaging detection. Clin. Chem.44(9), 2036–2043 (1998).
  • Wiese R, Belosludtsev Y, Powdrill T, Thompson P, Hogan M. Simultaneous multianalyte ELISA performed on a microarray platform. Clin. Chem.47(8), 1451–1457 (2001).
  • Woodbury RL, Varnum SM, Zangar RC. Elevated HGF levels in sera from breast cancer patients detected using a protein microarray ELISA. J. Proteome Res.1(3), 233–237 (2002).
  • Lin Y, Huang R, Chen LP et al. Profiling of cytokine expression by biotin-labeled-based protein arrays. Proteomics3(9), 1750–1757 (2003).
  • Kverka M, Burianova J, Lodinova-Zadnikova R et al. Cytokine profiling in human colostrum and milk by protein array. Clin. Chem.53(5), 955–962 (2007).
  • Miller JC, Zhou H, Kwekel J et al. Antibody microarray profiling of human prostate cancer sera: antibody screening and identification of potential biomarkers. Proteomics3(1), 56–63 (2003).
  • Shin BK, Wang H, Hanash S. Proteomics approaches to uncover the repertoire of circulating biomarkers for breast cancer. J. Mammary Gland Biol. Neoplasia7(4), 407–413 (2002).
  • Melle C, Ernst G, Scheibner O et al. Identification of specific protein markers in microdissected hepatocellular carcinoma. J. Proteome Res.6(1), 306–315 (2007).
  • Ingvarsson J, Wingren C, Carlsson A et al. Detection of pancreatic cancer using antibody microarray-based serum protein profiling. Proteomics8(11), 2211–2219 (2008).
  • Nielsen UB, Cardone MH, Sinskey AJ, MacBeath G, Sorger PK. Profiling receptor tyrosine kinase activation by using Ab microarrays. Proc. Natl Acad. Sci. USA100(16), 9330–9335 (2003).
  • Korf U, Derdak S, Tresch A et al. Quantitative protein microarrays for time-resolved measurements of protein phosphorylation. Proteomics8(21), 4603–4612 (2008).
  • Schweitzer B, Roberts S, Grimwade B et al. Multiplexed protein profiling on microarrays by rolling-circle amplification. Nat. Biotechnol.20(4), 359–365 (2002).
  • Fulton RJ, McDade RL, Smith PL, Kienker LJ, Kettman JR. Advanced multiplexed analysis with the FlowMetrix(TM) system. Clin. Chem.43(9), 1749–1756 (1997).
  • Nolan JP, Sklar LA. Suspension array technology: evolution of the flat-array paradigm. Trends Biotechnol.20(1), 9–12 (2002).
  • Templin MF, Stoll D, Bachmann J, Joos TO. Protein microarrays and multiplexed sandwich immunoassays: what beats the beads? Comb. Chem. High Throughput Screen.7(3), 223–229 (2004).
  • Oliver KG, Kettman JR, Fulton RJ. Multiplexed analysis of human cytokines by use of the FlowMetrix system. Clin. Chem.44, 2057–2060 (1998).
  • Carson RT, Vignali DAA. Simultaneous quantitation of 15 cytokines using a multiplexed flow cytometric assay. J. Immunol. Methods227(1–2), 41–52 (1999).
  • Prabhakar U, Eirikis E, Davis HM. Simultaneous quantification of proinflammatory cytokines in human plasma using the LabMAP (TM) assay. J. Immunol. Methods260(1–2), 207–218 (2002).
  • Chen R, Lowe L, Wilson JD et al. Simultaneous quantification of six human cytokines in a single sample using microparticle-based flow cytometric technology. Clin. Chem.45(9), 1693–1694 (1999).
  • Cook EB, Stahl JL, Lowe L et al. Simultaneous measurement of six cytokines in a single sample of human tears using microparticle-based flow cytometry, allergies vs. non-allergies. J. Immunol. Methods254(1–2), 109–118 (2001).
  • Kellar KL, Kalwar RR, Dubois KA, Crouse D, Chafin WD, Kane BE. Multiplexed fluorescent bead-based immunoassays for quantitation of human cytokines in serum and culture supernatants. Cytometry45(1), 27–36 (2001).
  • Bellisario R, Colinas RJ, Pass KA. Simultaneous measurement of antibodies to three HIV-1 antigens in newborn dried blood-spot specimens using a multiplexed microsphere-based immunoassay. Early Hum. Dev.64(1), 21–25 (2001).
  • Opalka D, Lachman CE, MacMullen SA et al. Simultaneous quantitation of antibodies to neutralizing epitopes on virus-like particles for human papillomavirus types 6, 11, 16, and 18 by a multiplexed luminex assay 2. Clin. Diagn. Lab. Immunol.10(1), 108–115 (2003).
  • McBride MT, Gammon S, Pitesky M et al. Multiplexed liquid arrays for simultaneous detection of simulants of biological warfare agents. Anal. Chem.75(8), 1924–1930 (2003).
  • Schwenk JM, Lindberg J, Sundberg M, Uhlen M, Nilsson P. Determination of binding specificities in highly multiplexed bead-based assays for antibody proteomics. Mol. Cell. Proteomics6(1), 125–132 (2007).
  • Schwenk JM, Gry M, Rimini R, Uhlen M, Nilsson P. Antibody suspension bead arrays within serum proteomics. J. Proteome Res.7(8), 3168–3179 (2008).
  • Du JY, Bernasconi P, Clauser KR et al. Bead-based profiling of tyrosine kinase phosphorylation identifies SRC as a potential target for glioblastoma therapy. Nat. Biotechnol.27(1), 77–83 (2009).
  • Han MY, Gao XH, Su JZ, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat. Biotechnol.19(7), 631–635 (2001).
  • Sukhanova A, Nabiev I. Fluorescent nanocrystal-encoded microbeads for multiplexed cancer imaging and diagnosis. Crit. Rev. Oncol. Hematol.68(1), 39–59 (2008).
  • Sukhanova A, Susha AS, Bek A et al. Nanocrystal-encoded fluorescent microbeads for proteomics: antibody profiling and diagnostics of autoimmune diseases. Nano Lett.7(8), 2322–2327 (2007).
  • Chattopadhyay PK, Price DA, Harper TF et al. Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nat. Med.12(8), 972–977 (2006).
  • Stoeva SI, Lee JS, Smith JE, Rosen ST, Mirkin CA. Multiplexed detection of protein cancer markers with biobarcoded nanoparticle probes. J. Am. Chem. Soc.128(26), 8378–8379 (2006).
  • Fredriksson S, Dixon W, Ji H, Koong AC, Mindrinos M, Davis RW. Multiplexed protein detection by proximity ligation for cancer biomarker validation. Nat. Methods4(4), 327–329 (2007).
  • Fredriksson S, Horecka J, Brustugun OT et al. Multiplexed proximity ligation assays to profile putative plasma biomarkers relevant to pancreatic and ovarian cancer. Clin. Chem.54(3), 582–589 (2008).
  • Pleskow DK, Berger HJ, Gyves J et al. Evaluation of a serologic marker, CA19-9, in the diagnosis of pancreatic-cancer. Ann. Int. Med.110(9), 704–709 (1989).
  • McIntosh MW, Drescher C, Karlan B et al. Combining CA 125 and SMR serum markers for diagnosis and early detection of ovarian carcinoma. Gynecol. Oncol.95(1), 9–15 (2004).
  • Fan R, Vermesh O, Srivastava A et al. Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat. Biotechnol.26(12), 1373–1378 (2008).
  • Kattah MG, Coller J, Cheung RK, Oshidary N, Utz PJ. HIT: a versatile proteomics platform for multianalyte phenotyping of cytokines, intracellular proteins and surface molecules. Nat. Med.14(11), 1284–1289 (2008).
  • Ellington AD, Szostak JW. selection of RNA molecules that bind specific ligands. Nature346(6287), 818–822 (1990).
  • Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science249(4968), 505–510 (1990).
  • Lee JF, Hesselberth JR, Meyers LA, Ellington AD. Aptamer database. Nucleic Acids Res.32, D95–D100 (2004).
  • Gold L, Polisky B, Uhlenbeck O, Yarus M. Diversity of oligonucleotide functions. Annu. Rev. Biochem.64, 763–797 (1995).
  • Jenison RD, Gill SC, Pardi A, Polisky B. High-resolution molecular discrimination by RNA. Science263(5152), 1425–1429 (1994).
  • Lin Y, Qiu Q, Gill SC, Jayasena SD. Modified RNA sequence pools for selection. Nucleic Acids Res.22(24), 5229–5234 (1994).
  • Pieken WA, Olsen DB, Benseler F, Aurup H, Eckstein F. Kinetic characterization of ribonuclease-resistant 2´-modified hammerhead ribozymes. Science253(5017), 314–317 (1991).
  • Kang J, Lee MS, Copland JA 3rd, Luxon BA, Gorenstein DG. Combinatorial selection of a single stranded DNA thioaptamer targeting TGF-β1 protein. Bioorg. Med. Chem. Lett.18(6), 1835–1839 (2008).
  • Win MN, Smolke CD. A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc. Natl Acad. Sci. USA104(36), 14283–14288 (2007).
  • Lynch SA, Desai SK, Sajja HK, Gallivan JP. A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function. Chem. Biol.14(2), 173–184 (2007).
  • Bayer TS, Smolke CD. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat. Biotechnol.23(3), 337–343 (2005).
  • Win MN, Smolke CD. Higher-order cellular information processing with synthetic RNA devices. Science322(5900), 456–460 (2008).
  • Xie S, Walton SP. Application and analysis of structure-switching aptamers for small molecule quantification. Anal. Chim. Acta638(2), 213–219 (2009).
  • Lynch SA, Gallivan JP. A flow cytometry-based screen for synthetic riboswitches. Nucleic Acids Res.37(1), 184–192 (2009).
  • Jhaveri S, Rajendran M, Ellington AD. selection of signaling aptamers. Nat. Biotechnol.18(12), 1293–1297 (2000).
  • Stojanovic MN, Kolpashchikov DM. Modular aptameric sensors. J. Am. Chem. Soc.126(30), 9266–9270 (2004).
  • Seetharaman S, Zivarts M, Sudarsan N, Breaker RR. Immobilized RNA switches for the analysis of complex chemical and biological mixtures. Nat. Biotechnol.19(4), 336–341 (2001).
  • Hesselberth JR, Robertson MP, Knudsen SM, Ellington AD. Simultaneous detection of diverse analytes with an aptazyme ligase array. Anal. Biochem.312(2), 106–112 (2003).
  • Bock C, Coleman M, Collins B et al. Photoaptamer arrays applied to multiplexed proteomic analysis. Proteomics4(3), 609–618 (2004).
  • Collett JR, Cho EJ, Ellington AD. Production and processing of aptamer microarrays. Methods37(1), 4–15 (2005).
  • Stadtherr K, Wolf H, Lindner P. An aptamer-based protein biochip. Anal. Chem.77(11), 3437–3443 (2005).
  • Kirby R, Cho EJ, Gehrke B et al. Aptamer-based sensor arrays for the detection and quantitation of proteins. Anal. Chem.76(14), 4066–4075 (2004).
  • Golden MC, Resing KA, Collins BD, Willis MC, Koch TH. Mass spectral characterization of a protein-nucleic acid photocrosslink. Protein Sci.8(12), 2806–2812 (1999).
  • Hansen JA, Wang J, Kawde AN, Xiang Y, Gothelf KV, Collins G. Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J. Am. Chem. Soc.128(7), 2228–2229 (2006).
  • Bjorling E, Uhlen M. Antibodypedia, a portal for sharing antibody and antigen validation data. Mol. Cell. Proteomics7(10), 2028–2037 (2008).
  • Taussig MJ, Stoevesandt O, Borrebaeck CA et al. ProteomeBinders: planning a European resource of affinity reagents for analysis of the human proteome. Nat. Methods4(1), 13–17 (2007).
  • Pernemalm M, Lewensohn R, Lehtiö J. Affinity prefractionation for MS-based plasma proteomics. Proteomics9, 1420–1427 (2009).
  • Oeljeklaus S, Meyer HE, Warscheid B. New dimensions in the study of protein complexes using quantitative mass spectrometry. FEBS Lett.583, 1674–1683 (2009).
  • Yang Z, Hancock WS. Monitoring glycosylation pattern changes of glycoproteins using multi-lectin affinity chromatography. J. Chromatogr. A1070, 57–64 (2005).
  • Stahl-Zeng J, Lange V, Ossola R et al. High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol. Cell. Proteomics6, 1809–1817 (2007).
  • Plavina T, Wakshull E, Hancock WS, Hincapie M. Combination of abundant protein depletion and multi-lectin affinity chromatography (M-LAC) for plasma protein biomarker discovery. J. Proteome Res.6, 662–671 (2007).
  • Darii E, Lebeau D, Papin N et al. Quantification of target proteins using hydrogel antibody arrays and MALDI time-of-flight mass spectrometry (A2M2S). N. Biotechnol. DOI: 10.1016/j.nbt.2009.03.001 (2009) (Epub ahead of print).
  • Ekstrom S, Wallman L, Hok D, Marko-Varga G, Laurell T. Miniaturized solid-phase extraction and sample preparation for MALDI MS using a microfabricated integrated selective enrichment target. J. Proteome Res.5(5), 1071–1081 (2006).
  • Liu T, Qian WJ, Mottaz HM et al. Evaluation of multiprotein immunoaffinity subtraction for plasma proteomics and candidate biomarker discovery using mass spectrometry. Mol. Cell. Proteomics5, 2167–2174 (2006).
  • Kojima K. High-performance immunoaffinity chromatography, an immunoaffinity membrane for selective removal of plasma components, and safety evaluation of the latter system. J. Biochem. Biophys. Methods49, 241–251 (2001).
  • Yang Z, Hancock WS. Approach to the comprehensive analysis of glycoproteins isolated from human serum using a multi-lectin affinity column. J. Chromatogr. A1053, 79–88 (2004).
  • Romanov S, Medvedev A, Gambarian M et al. Homogeneous reporter system enables quantitative functional assessment of multiple transcription factors. Nat. Methods5(3), 253–260 (2008).
  • Davis FJ, Pillai JB, Gupta M, Gupta MP. Concurrent opposite effects of trichostatin A, an inhibitor of histone deacetylases, on expression of α-MHC and cardiac tubulins: implication for gain in cardiac muscle contractility. Am. J. Physiol. Heart Circ. Physiol.288(3), H1477–H1490 (2005).
  • Yaoi T, Jiang X, Li X. Development of a fluorescent microsphere-based multiplexed high-throughput assay system for profiling of transcription factor activation. Assay Drug Dev. Technol.4(3), 285–292 (2006).
  • Jiang X, Roth L, Lai C, Li X. Profiling activities of transcription factors in breast cancer cell lines. Assay Drug Dev. Technol.4(3), 293–305 (2006).
  • Dozmorov MG, Kyker KD, Hauser PJ et al. From microarray to biology: an integrated experimental, statistical and in silico analysis of how the extracellular matrix modulates the phenotype of cancer cells. BMC Bioinformatics9(Suppl. 9), S4 (2008).
  • Li Q, Dashwood WM, Zhong X, Nakagama H, Dashwood RH. Bcl-2 overexpression in PhIP-induced colon tumors: cloning of the rat Bcl-2 promoter and characterization of a pathway involving β-catenin, c-Myc and E2F1. Oncogene26(42), 6194–6202 (2007).
  • Jones RB, Gordus A, Krall JA, MacBeath G. A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature439(7073), 168–174 (2006).
  • Stoevesandt O, Kohler K, Wolf S, Andre T, Hummel W, Brock R. A network analysis of changes in molecular interactions in cellular signaling. Mol. Cell. Proteomics6(3), 503–513 (2007).
  • Gerber D, Maerkl SJ, Quake SR. An microfluidic approach to generating protein-interaction networks. Nat. Methods6(1), 71–74 (2009).
  • MacBeath G, Schreiber SL. Printing proteins as microarrays for high-throughput function determination. Science289(5485), 1760–1763 (2000).
  • Ramachandran N, Hainsworth E, Bhullar B et al. Self-assembling protein microarrays. Science305(5680), 86–90 (2004).
  • Ramachandran N, Raphael JV, Hainsworth E et al. Next-generation high-density self-assembling functional protein arrays. Nat. Methods5(6), 535–538 (2008).
  • He M, Stoevesandt O, Palmer EA, Khan F, Ericsson O, Taussig MJ. Printing protein arrays from DNA arrays. Nat. Methods5(2), 175–177 (2008).
  • Bell SP, Dutta A. DNA replication in eukaryotic cells. Annu. Rev. Biochem.71, 333–374 (2002).
  • Addona TA, Abbatiello SE, Schilling B et al. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat. Biotechnol.27(7), 622–623 (2009).
  • Martinez AW, Phillips ST, Butte MJ, Whitesides GM. Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. Engl.46(8), 1318–1320 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.