59
Views
4
CrossRef citations to date
0
Altmetric
Review

Role of proteomic technologies in understanding risk of arterial thrombosis

, , &
Pages 539-550 | Published online: 09 Jan 2014

References

  • Nagata Y, Usuda K, Uchiyama A et al. Characteristics of the pathological images of coronary artery thrombi according to the infarct-related coronary artery in acute myocardial infarction. Circ. J.68(4), 308–314 (2004).
  • Aebersold R. A mass spectrometric journey into protein and proteome research. J. Am. Soc. Mass Spectrom.14(7), 685–695 (2003).
  • Matt P, Fu Z, Fu Q, Van Eyk JE. Biomarker discovery: proteome fractionation and separation in biological samples. Physiol. Genomics33(1), 12–17 (2008).
  • Kislinger T, Emili A. Multidimensional protein identification technology: current status and future prospects. Expert Rev. Proteomics2(1), 27–39 (2005).
  • Zhang G, Neubert TA. Use of stable isotope labeling by amino acids in cell culture (SILAC) for phosphotyrosine protein identification and quantitation. Methods Mol. Biol.527, 79–92, xi (2009).
  • Lilley KS, Friedman DB. All about DIGE: quantification technology for differential-display 2D-gel proteomics. Expert Rev. Proteomics1(4), 401–409 (2004).
  • Drake TA, Ping P. Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Proteomics approaches to the systems biology of cardiovascular diseases. J. Lipid Res.48(1), 1–8 (2007).
  • Meilhac O, Delbosc S, Michel JB. Cardiovascular biomarker discovery by SELDI-TOF mass spectrometry. Methods Mol. Biol.357, 331–341 (2007).
  • Fournier I, Wisztorski M, Salzet M. Tissue imaging using MALDI-MS: a new frontier of histopathology proteomics. Expert Rev. Proteomics5(3), 413–424 (2008).
  • Franck J, Arafah K, Elayed M et al. MALDI imaging: State of the art technology in clinical proteomics. Mol. Cell Proteomics DOI: 10.1007/s00418-008-0469-0469 (2009) (Epub ahead of print).
  • Duran MC, Mas S, Martin-Ventura JL et al. Proteomic analysis of human vessels: application to atherosclerotic plaques. Proteomics3(6), 973–978 (2003).
  • Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation111(25), 3481–3488 (2005).
  • Karabina SA, Brocheriou I, Le Naour G et al. Atherogenic properties of LDL particles modified by human group X secreted phospholipase A2 on human endothelial cell function. FASEB J.20(14), 2547–2549 (2006).
  • Chen CY, Lee CM, Hsu HC, Yang CY, Chow LP, Lee YT. Proteomic approach to study the effects of various oxidatively modified low-density lipoprotein on regulation of protein expression in human umbilical vein endothelial cell. Life Sci.80(26), 2469–2480 (2007).
  • Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J. Clin. Invest.115(10), 2656–2664 (2005).
  • Wang XL, Fu A, Raghavakaimal S, Lee HC. Proteomic analysis of vascular endothelial cells in response to laminar shear stress. Proteomics7(4), 588–596 (2007).
  • Wu J, Liu W, Sousa E et al. Proteomic identification of endothelial proteins isolated in situ from atherosclerotic aorta via systemic perfusion. J. Proteome Res.6(12), 4728–4736 (2007).
  • Aird WC. Spatial and temporal dynamics of the endothelium. J. Thromb. Haemost.3(7), 1392–1406 (2005).
  • Banfi C, Brioschi M, Wait R et al. Proteome of endothelial cell-derived procoagulant microparticles. Proteomics5(17), 4443–4455 (2005).
  • van Mourik JA, Romani dW, Voorberg J. Biogenesis and exocytosis of Weibel–Palade bodies. Histochem. Cell. Biol.117(2), 113–122 (2002).
  • Carter AM. Inflammation, thrombosis and acute coronary syndromes. Diab. Vasc. Dis. Res.2(3), 113–121 (2005).
  • Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation111(25), 3481–3488 (2005).
  • Jin M, Opalek JM, Marsh CB, Wu HM. Proteome comparison of alveolar macrophages with monocytes reveals distinct protein characteristics. Am. J. Respir. Cell Mol. Biol.31(3), 322–329 (2004).
  • Barderas MG, Tunon J, Darde VM et al. Atorvastatin modifies the protein profile of circulating human monocytes after an acute coronary syndrome. Proteomics9(7), 1982–1993 (2009).
  • Barderas MG, Darde VM, Duran MC, Egido J, Vivanco F. Characterization of circulating human monocytes by proteomic analysis. Methods Mol. Biol.357, 319–328 (2007).
  • Barderas MG, Tunon J, Darde VM et al. Circulating human monocytes in the acute coronary syndrome express a characteristic proteomic profile. J. Proteome Res.6(2), 876–886 (2007).
  • Vergara D, Chiriaco F, Acierno R, Maffia M. Proteomic map of peripheral blood mononuclear cells. Proteomics8(10), 2045–2051 (2008).
  • Jin M, Diaz PT, Bourgeois T et al. 2D gel proteome reference map of blood monocytes. Proteome Sci.4, 16 (2006).
  • Dotzlaw H, Schulz M, Eggert M, Neeck G. A pattern of protein expression in peripheral blood mononuclear cells distinguishes rheumatoid arthritis patients from healthy individuals. Biochim. Biophys. Acta1696(1), 121–129 (2004).
  • Fuchs D, Piller R, Linseisen J, Daniel H, Wenzel U. The human peripheral blood mononuclear cell proteome responds to a dietary flaxseed-intervention and proteins identified suggest a protective effect in atherosclerosis. Proteomics7(18), 3278–3288 (2007).
  • Skopeliti M, Kratzer U, Altenberend F et al. Proteomic exploitation on prothymosin alpha-induced mononuclear cell activation. Proteomics.7(11), 1814–1824 (2007).
  • Kang JH, Ryu HS, Kim HT et al. Proteomic analysis of human macrophages exposed to hypochlorite-oxidized low-density lipoprotein. Biochim. Biophys. Acta1794(3), 446–458 (2009).
  • Dupont A, Chwastyniak M, Beseme O et al. Application of saturation dye 2D-DIGE proteomics to characterize proteins modulated by oxidized low density lipoprotein treatment of human macrophages. J. Proteome Res7(8), 3572–3582 (2008).
  • Rosengren AT, Nyman TA, Lahesmaa R. Proteome profiling of interleukin-12 treated human T helper cells. Proteomics5(12), 3137–3141 (2005).
  • Nyman TA, Rosengren A, Syyrakki S, Pellinen TP, Rautajoki K, Lahesmaa R. A proteome database of human primary T helper cells. Electrophoresis22(20), 4375–4382 (2001).
  • Rautajoki K, Nyman TA, Lahesmaa R. Proteome characterization of human T helper 1 and 2 cells. Proteomics4(1), 84–92 (2004).
  • Loyet KM, Ouyang W, Eaton DL, Stults JT. Proteomic profiling of surface proteins on Th1 and Th2 cells. J. Proteome Res.4(2), 400–409 (2005).
  • McGregor E, Kempster L, Wait R et al. Identification and mapping of human saphenous vein medial smooth muscle proteins by two-dimensional polyacrylamide gel electrophoresis. Proteomics1(11), 1405–1414 (2001).
  • Dupont A, Corseaux D, Dekeyzer O et al. The proteome and secretome of human arterial smooth muscle cells. Proteomics5(2), 585–596 (2005).
  • Boccardi C, Cecchettini A, Caselli A et al. A proteomic approach to the investigation of early events involved in vascular smooth muscle cell activation. Cell Tissue Res.328(1), 185–195 (2007).
  • Van Craeyveld E, Lievens J, Jacobs F, Feng Y, Snoeys J, De Geest B. Apolipoprotein A-I and lecithin:cholesterol acyltransferase transfer induce cholesterol unloading in complex atherosclerotic lesions. Gene Ther.16(6), 757–765. (2009).
  • Trivedi V, Boire A, Tchernychev B et al. Platelet matrix metalloprotease-1 mediates thrombogenesis by activating PAR1 at a cryptic ligand site. Cell137(2), 332–343 (2009).
  • Diebold I, Kraicun D, Bonello S, Gorlach A. The ‘PAI-1 paradox’ in vascular remodeling. Thromb. Haemost.100(6), 984–991 (2008).
  • Cosemans JM, Iserbyt BF, Deckmyn H, Heemskerk JW. Multiple ways to switch platelet integrins on and off. J. Thromb. Haemost.6(8), 1253–1261 (2008).
  • Rivera J, Lozano ML, Navarro-Nunez L, Vicente V. Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica94(5), 700–711 (2009).
  • Garcia A, Watson SP, Dwek RA, Zitzmann N. Applying proteomics technology to platelet research. Mass Spectrom. Rev.24(6), 918–930 (2005).
  • Garcia A, Prabhakar S, Hughan S et al. Differential proteome analysis of TRAP-activated platelets: involvement of DOK-2 and phosphorylation of RGS proteins. Blood103(6), 2088–2095 (2004).
  • Garcia A, Senis YA, Antrobus R et al. A global proteomics approach identifies novel phosphorylated signaling proteins in GPVI-activated platelets: involvement of G6f, a novel platelet Grb2-binding membrane adapter. Proteomics6(19), 5332–5343 (2006).
  • Maguire PB, Wynne KJ, Harney DF, O’Donoghue NM, Stephens G, Fitzgerald DJ. Identification of the phosphotyrosine proteome from thrombin activated platelets. Proteomics2(6), 642–648 (2002).
  • Guerrier L, Claverol S, Fortis F et al. Exploring the platelet proteome via combinatorial, hexapeptide ligand libraries. J. Proteome Res6(11), 4290–4303 (2007).
  • Zahedi RP, Lewandrowski U, Wiesner J et al. Phosphoproteome of resting human platelets. J. Proteome Res7(2), 526–534 (2008).
  • Gevaert K, Goethals M, Martens L et al. Exploring proteomes and analyzing protein processing by mass spectrometric identification of sorted N-terminal peptides. Nat. Biotechnol.21(5), 566–569 (2003).
  • Martens L, Van Damme P, Van Damme J et al. The human platelet proteome mapped by peptide-centric proteomics: a functional protein profile. Proteomics5(12), 3193–3204 (2005).
  • Blair P, Flaumenhaft R. Platelet α-granules: Basic biology and clinical correlates. Blood Rev.23(4), 177–189 (2009).
  • Smith SA, Mutch NJ, Baskar D, Rohloff P, Docampo R, Morrissey JH. Polyphosphate modulates blood coagulation and fibrinolysis. Proc. Natl Acad. Sci. USA103(4), 903–908 (2006).
  • Coppinger JA, Cagney G, Toomey S et al. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood103(6), 2096–2104 (2004).
  • Maynard DM, Heijnen HF, Horne MK, White JG, Gahl WA. Proteomic analysis of platelet α-granules using mass spectrometry. J. Thromb. Haemost.5(9), 1945–1955 (2007).
  • Italiano JE, Jr., Richardson JL, Patel-Hett S et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet α granules and differentially released. Blood111(3), 1227–1233 (2008).
  • Sehgal S, Storrie B. Evidence that differential packaging of the major platelet granule proteins von Willebrand factor and fibrinogen can support their differential release. J. Thromb. Haemost.5(10), 2009–2016 (2007).
  • Hernandez-Ruiz L, Valverde F, Jimenez-Nunez MD et al. Organellar proteomics of human platelet dense granules reveals that 14–13–3ζ is a granule protein related to atherosclerosis. J. Proteome Res.6(11), 4449–4457 (2007).
  • Garcia BA, Smalley DM, Cho H, Shabanowitz J, Ley K, Hunt DF. The platelet microparticle proteome. J. Proteome Res4(5), 1516–1521 (2005).
  • Moebius J, Zahedi RP, Lewandrowski U, Berger C, Walter U, Sickmann A. The human platelet membrane proteome reveals several new potential membrane proteins. Mol. Cell Proteomics4(11), 1754–1761 (2005).
  • Hartinger J, Stenius K, Hogemann D, Jahn R. 16-BAC/SDS-PAGE: a two-dimensional gel electrophoresis system suitable for the separation of integral membrane proteins. Anal. Biochem.240(1), 126–133 (1996).
  • Senis YA, Tomlinson MG, Garcia A et al. A comprehensive proteomics and genomics analysis reveals novel transmembrane proteins in human platelets and mouse megakaryocytes including G6b-B, a novel immunoreceptor tyrosine-based inhibitory motif protein. Mol. Cell. Proteomics6(3), 548–564 (2007).
  • Lewandrowski U, Wortelkamp S, Lohrig K et al. Platelet membrane proteomics: a novel repository for functional research. Blood114(1), E10–19 (2009).
  • Standeven KF, Ariens RA, Grant PJ. The molecular physiology and pathology of fibrin structure/function. Blood Rev.19(5), 275–288 (2005).
  • Fatah K, Hamsten A, Blomback B, Blomback M. Fibrin gel network characteristics and coronary heart disease: relations to plasma fibrinogen concentration, acute phase protein, serum lipoproteins and coronary atherosclerosis. Thromb. Haemost.68(2), 130–135 (1992).
  • Fatah K, Silveira A, Tornvall P, Karpe F, Blomback M, Hamsten A. Proneness to formation of tight and rigid fibrin gel structures in men with myocardial infarction at a young age. Thromb. Haemost.76(4), 535–540 (1996).
  • Carter AM, Cymbalista CM, Spector TD, Grant PJ. Heritability of clot formation, morphology, and lysis: the EuroCLOT study. Arterioscler. Thromb. Vasc. Biol.27(12), 2783–2789 (2007).
  • Bhasin N, Ariens RA, West RM, Parry DJ, Grant PJ, Scott DJ. Altered fibrin clot structure and function in the healthy first-degree relatives of subjects with intermittent claudication. J. Vasc. Surg.48(6), 1497–1503, 1503 (2008).
  • Carr ME. Fibrin formed in plasma is composed of fibers more massive than those formed from purified fibrinogen. Thromb. Haemost.59(3), 535–539 (1988).
  • Saha S, Harrison SH, Shen C et al. HIP2: an online database of human plasma proteins from healthy individuals. BMC Med. Genomics1, 12 (2008).
  • Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol. Cell. Proteomics1(11), 845–867 (2002).
  • Omenn GS, States DJ, Adamski M et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics5(13), 3226–3245 (2005).
  • Guerrier L, Thulasiraman V, Castagna A et al. Reducing protein concentration range of biological samples using solid-phase ligand libraries. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.833(1), 33–40 (2006).
  • Restuccia U, Boschetti E, Fasoli E et al. pI-based fractionation of serum proteomes versus anion exchange after enhancement of low-abundance proteins by means of peptide libraries. J. Proteomics72(6), 1061–1070 (2009).
  • Pernemalm M, Lewensohn R, Lehtiö J. Affinity prefractionation for MS-based plasma proteomics. Proteomics9(6), 1420–1427 (2009).
  • Misek DE, Kuick R, Wang H et al. A wide range of protein isoforms in serum and plasma uncovered by a quantitative intact protein analysis system. Proteomics5(13), 3343–3352 (2005).
  • Tammen H, Schulte I, Hess R et al. Peptidomic analysis of human blood specimens: comparison between plasma specimens and serum by differential peptide display. Proteomics5(13), 3414–3422 (2005).
  • Marshall J, Kupchak P, Zhu W et al. Processing of serum proteins underlies the mass spectral fingerprinting of myocardial infarction. J. Proteome Res.2(4), 361–372 (2003).
  • Donahue MP, Rose K, Hochstrasser D et al. Discovery of proteins related to coronary artery disease using industrial-scale proteomics analysis of pooled plasma. Am. Heart J.152(3), 478–485 (2006).
  • Hong M, Zhang X, Hu Y et al. The potential biomarkers for thromboembolism detected by SELDI-TOF-MS. Thromb. Res.123(3), 556–564 (2009).
  • Howes J-M, Keen JN, Findlay JB, Carter AM. The application of proteomics technology to thrombosis research: the identification of potential therapeutic targets in cardiovascular disease. Diab. Vasc. Dis. Res.5(3), 205–212 (2008).
  • Rijken DC, Dirkx SP, Luider TM, Leebeek FW. Hepatocyte-derived fibrinogen-related protein-1 is associated with the fibrin matrix of a plasma clot. Biochem. Biophys. Res. Commun.350(1), 191–194 (2006).
  • Howes J-M, Kenn JN, Findlay JBC, Grant PJ, Carter AM. Deciphering the plasma clot proteome. Mol. Cell. Proteomics3, S218 (2004).
  • Orru S, Caputo I, D’Amato A, Ruoppolo M, Esposito C. Proteomics identification of acyl-acceptor and acyl-donor substrates for transglutaminase in a human intestinal epithelial cell line. Implications for celiac disease. J. Biol. Chem.278(34), 31766–31773 (2003).
  • Ruoppolo M, Orru S, D’Amato A et al. Analysis of transglutaminase protein substrates by functional proteomics. Protein Sci.12(6), 1290–1297 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.