325
Views
25
CrossRef citations to date
0
Altmetric
Review

Proteomics in bone research

, , &
Pages 103-111 | Published online: 09 Jan 2014

References

  • Rodan GA. Bone mass homeostasis and bisphosphonate action. Bone20, 1–4 (1997).
  • Raisz LG, Rodan GA. Pathogenesis of osteoporosis. Endocrinol. Metab. Clin. North Am.32, 15–24 (2003).
  • Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am. J. Med.94, 646–650 (1993).
  • Melton LJ 3rd. How many women have osteoporosis now? J. Bone Miner. Res.10, 175–177 (1995).
  • Advisory Group on Osteoporosis. Report. Department of Health, London, UK (1994).
  • Abbott TA 3rd, Lawrence BJ, Wallach S. Osteoporosis: the need for comprehensive treatment guidelines. Clin. Ther.18, 127–149 (1996).
  • Rodan GA, Martin TJ. Therapeutic approaches to bone diseases. Science289, 1508–1514 (2000).
  • Riggs BL, Khosla S, Melton LJ 3rd. Sex steroids and the construction and conservation of the adult skeleton. Endocr. Rev.23, 279–302 (2002).
  • Rogers A, Eastell R. Circulating osteoprotegerin and receptor activator for nuclear factor κB ligand: clinical utility in metabolic bone disease assessment. J. Clin. Endocrinol. Metab.90, 6323–6331 (2005).
  • Srivastava S, Weitzmann MN, Kimble RB et al. Estrogen blocks M-CSF gene expression and osteoclast formation by regulating phosphorylation of Egr-1 and its interaction with Sp-1. J. Clin. Invest.102, 1850–1859 (1998).
  • Teitelbaum SL. Bone resorption by osteoclasts. Science289, 1504–1508 (2000).
  • Fatayerji D, Mawer EB, Eastell R. The role of insulin-like growth factor I in age-related changes in calcium homeostasis in men. J. Clin. Endocrinol. Metab.85, 4657–4662 (2000).
  • Seeman E. Invited review: pathogenesis of osteoporosis. J. Appl. Physiol.95, 2142–2151 (2003).
  • Lee SK, Lorenzo JA. Parathyroid hormone stimulates TRANCE and inhibits osteoprotegerin messenger ribonucleic acid expression in murine bone marrow cultures: correlation with osteoclast-like cell formation. Endocrinology140, 3552–3561 (1999).
  • Miura M, Tanaka K, Komatsu Y et al. A novel interaction between thyroid hormones and 1,25(OH)(2)D(3) in osteoclast formation. Biochem. Biophys. Res. Commun.291, 987–994 (2002).
  • Selye H. On the stimulation of new bone-formation with parathyroid extract and irradiated ergosterol. Endocrinology16, 547–558 (1932).
  • Lane NE, Sanchez S, Modin GW, Genant HK, Pierini E, Arnaud CD. Parathyroid hormone treatment can reverse corticosteroid-induced osteoporosis. Results of a randomized controlled clinical trial. J. Clin. Invest.102, 1627–1633 (1998).
  • Hosking D, Chilvers CE, Christiansen C et al. Prevention of bone loss with alendronate in postmenopausal women under 60 years of age. Early Postmenopausal Intervention Cohort Study Group. N. Engl. J. Med.338, 485–492 (1998).
  • Fisher JE, Rogers MJ, Halasy JM et al. Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc. Natl Acad. Sci. USA96, 133–138 (1999).
  • Maerevoet M, Martin C, Duck L. Osteonecrosis of the jaw and bisphosphonates. N. Engl. J. Med.353, 99–102 (2005).
  • Siris ES, Roodman GD. In: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism (6th Edition). Favus MJ (Ed.). ASBMR Washington, WA, USA 320–330 (2006).
  • Mills BG, Singer FR, Weiner LP, Suffin SC, Stabile E, Holst P. Evidence for both respiratory syncytial virus and measles virus antigens in the osteoclasts of patients with Paget’s disease of bone. Clin. Orthop. Relat. Res.1(183), 303–311 (1984).
  • Hughes AE, Ralston SH, Marken J et al. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat. Genet.24, 45–48 (2000).
  • Thomas RJ, Guise TA, Yin JJ et al. Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology140, 4451–4458 (1999).
  • Yin JJ, Selander K, Chirgwin JM et al. TGF-β a signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. J. Clin. Invest.103, 197–206 (1999).
  • Romas E, Bakharevski O, Hards DK et al. Expression of osteoclast differentiation factor at sites of bone erosion in collagen-induced arthritis. Arthritis Rheum.43, 821–826 (2000).
  • Komori T, Yagi H, Nomura S et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell89, 755–764 (1997).
  • Nakashima K, Zhou X, Kunkel G et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell108, 17–29 (2002).
  • Galindo M, Pratap J, Young DW et al. The bone-specific expression of Runx2 oscillates during the cell cycle to support a G1-related antiproliferative function in osteoblasts. J. Biol. Chem.280, 20274–20285 (2005).
  • Gaur T, Lengner CJ, Hovhannisyan H et al. Canonical WNT signaling promotes osteogenesis by directly stimulating runx2 gene expression. J. Biol. Chem.280, 33132–33140 (2005).
  • Oyama M, Kozuka-Hata H, Suzuki Y, Semba K, Yamamoto T, Sugano S. Diversity of translation start sites may define increased complexity of the human short ORFeome. Mol. Cell. Proteomics6, 1000–1006 (2007).
  • Jimenez CR, Spijker S, de Schipper S et al. Peptidomics of a single identified neuron reveals diversity of multiple neuropeptides with convergent actions on cellular excitability. J. Neurosci.26, 518–529 (2006).
  • Helmerhorst EJ, Oppenheim FG. Saliva: a dynamic proteome J. Dent. Res.86, 680–693 (2007).
  • Kiernan UA. Quantification of target proteins and post-translational modifications in affinity-based proteomic approaches. Expert Rev. Proteomics4(3), 421–428 (2007).
  • Xiao GG, Recker RR, Deng HW. Recent advances in proteomics and cancer biomarker discovery. Clin. Med. Oncol.2, 1–10 (2008).
  • Aebersold R, Mann M. Mass spectrometry-based proteomics. Nature422, 198–207 (2003).
  • Zhao Y, Lee WN, Xiao GG. Quantitative proteomics and biomarker discovery in human cancer. Expert Rev. Proteomics6(2), 115–118 (2009).
  • Kubota K, Wakabayashi K, Matsuoka T. Proteome analysis of secreted proteins during osteoclast differentiation using two different methods: two-dimensional electrophoresis and isotope-coded affinity tags analysis with two-dimensional chromatography. Proteomics3, 616–626 (2003).
  • Wilson R, Belluoccio D, Little CB, Fosang AJ, Bateman JF. Proteomic characterization of mouse cartilage degradation in vitro. Arthritis Rheum.58, 3120–3131 (2008).
  • Kawai A, Kondo T, Suehara Y, Kikuta K, Hirohashi S. Global protein-expression analysis of bone and soft tissue sarcomas. Clin. Orthop. Relat. Res.466, 2099–2106 (2008).
  • Guo D, Tan W, Wang F et al. Proteomic analysis of human articular cartilage: identification of differentially expressed proteins in knee osteoarthritis. Joint Bone Spine75, 439–444 (2008).
  • Tan X, Cai D, Wu Y et al. Comparative analysis of serum proteomes: discovery of proteins associated with osteonecrosis of the femoral head. Transl. Res.148, 114–119 (2006).
  • Folio C, Mora MI, Zalacain M et al. Proteomic analysis of chemonaive pediatric osteosarcomas and corresponding normal bone reveals multiple altered molecular targets. J. Proteome Res.8(8), 3882–3888 (2009).
  • Kang JH, Park KK, Lee IS et al. Proteome analysis of responses to ascochlorin in a human osteosarcoma cell line by 2-D gel electrophoresis and MALDI-TOF MS. J. Proteome Res.5, 2620–2631 (2006).
  • Cubukcuoglu Deniz G, Durdu S, Akar AR, Ozyurda U. Biotechnology and stem cell research: a glance into the future. Anadolu Kardiyol. Derg.8, 297–302 (2008).
  • Jiang Y, Jahagirdar BN, Reinhardt RL et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature418, 41–49 (2002).
  • Hassan HT, El-Sheemy M. Adult bone-marrow stem cells and their potential in medicine. J. R. Soc. Med.97, 465–471 (2004).
  • Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res. Ther.9, 204 (2007).
  • Celebi B, Elcin YM. Proteome analysis of rat bone marrow mesenchymal stem cell subcultures. J. Proteome Res.8, 2164–2172 (2009).
  • Mareddy S, Broadbent J, Crawford R, Xiao Y. Proteomic profiling of distinct clonal populations of bone marrow mesenchymal stem cells J. Cell. Biochem.106, 776–786 (2009).
  • Foster LJ, Zeemann PA, Li C, Mann M, Jensen ON, Kassem M. Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation. Stem Cells23, 1367–1377 (2005).
  • Zhang L, Feng X, McDonald JM. The role of calmodulin in the regulation of osteoclastogenesis. Endocrinology144, 4536–4543 (2003).
  • Sun HJ, Bahk YY, Choi YR et al. A proteomic analysis during serial subculture and osteogenic differentiation of human mesenchymal stem cell. J. Orthop. Res.24, 2059–2071 (2006).
  • Spreafico A, Frediani B, Capperucci C et al. A proteomic study on human osteoblastic cells proliferation and differentiation. Proteomics6, 3520–3532 (2006).
  • Kim SH, Jun S, Jang HS, Lim SK. Identification of parathyroid hormone-regulated proteins in mouse bone marrow cells by proteomics. Biochem. Biophys. Res. Commun.330, 423–429 (2005).
  • Xu J, Khor KA, Sui J, Zhang J, Tan TL, Chen WN. Comparative proteomics profile of osteoblasts cultured on dissimilar hydroxyapatite biomaterials: an iTRAQ-coupled 2-D LC-MS/MS analysis. Proteomics8, 4249–4258 (2008).
  • Bennett KP, Bergeron C, Acar E et al. Proteomics reveals multiple routes to the osteogenic phenotype in mesenchymal stem cells. BMC Genomics8, 380 (2007).
  • Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science308, 1472–1477 (2005).
  • Lacey DL, Timms E, Tan HL et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell93, 165–176 (1998).
  • Ha BG, Hong JM, Park JY et al. Proteomic profile of osteoclast membrane proteins: identification of Na+/H+ exchanger domain containing 2 and its role in osteoclast fusion. Proteomics8, 2625–2639 (2008).
  • Czupalla C, Mansukoski H, Pursche T, Krause E, Hoflack B. Comparative study of protein and mRNA expression during osteoclastogenesis. Proteomics5, 3868–3875 (2005).
  • Kendler DL, Roux C, Benhamou CL et al. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women transitioning from alendronate therapy. J. Bone Miner. Res. DOI: 10.1359/jbmr.090716 (2009) (Epub ahead of print).
  • Kostenuik PJ, Nguyen HQ, McCabe J et al. Denosumab, a fully human monoclonal antibody to RANKL, inhibits bone resorption and increases BMD in knock-in mice that express chimeric (murine/human) RANKL. J. Bone Miner. Res.24, 182–195 (2009).
  • Tang Y, Wu X, Lei W et al. TGF-β1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat. Med.15, 757–765 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.