128
Views
23
CrossRef citations to date
0
Altmetric
Review

Defining pluripotent stem cells through quantitative proteomic analysis

, &
Pages 29-42 | Published online: 09 Jan 2014

References

  • Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature292(5819), 154–156 (1981).
  • Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA78(12), 7634–7638 (1981).
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts. Science282(5391), 1145–1147 (1998).
  • Yu J, Thomson JA. Pluripotent stem cell lines. Genes Dev.22(15), 1987–1997 (2008).
  • Pera MF, Tam PP. Extrinsic regulation of pluripotent stem cells. Nature465(7299), 713–720 (2010).
  • Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell132(4), 567–582 (2008).
  • Zhang X, Stojkovic P, Przyborski S et al. Derivation of human embryonic stem cells from developing and arrested embryos. Stem Cells24(12), 2669–2676 (2006).
  • Kim K, Lerou P, Yabuuchi A et al. Histocompatible embryonic stem cells by parthenogenesis. Science315(5811), 482–486 (2007).
  • Chung Y, Klimanskaya I, Becker S et al. Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature439(7073), 216–219 (2006).
  • Brons IG, Smithers LE, Trotter MW et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature448(7150), 191–195 (2007).
  • Tesar PJ, Chenoweth JG, Brook FA et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature448(7150), 196–199 (2007).
  • Byrne JA, Pedersen DA, Clepper LL et al. Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature450(7169), 497–502 (2007).
  • Simerly C, Dominko T, Navara C et al. Molecular correlates of primate nuclear transfer failures. Science300(5617), 297 (2003).
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell126(4), 663–676 (2006).
  • Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat. Biotechnol.25(10), 1177–1181 (2007).
  • Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature448(7151), 313–317 (2007).
  • Nakagawa M, Koyanagi M, Tanabe K et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol.26(1), 101–106 (2008).
  • Maherali N, Sridharan R, Xie W et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell1(1), 55–70 (2007).
  • Takahashi K, Tanabe K, Ohnuki M et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell131(5), 861–872 (2007).
  • Park IH, Zhao R, West JA et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature451(7175), 141–146 (2008).
  • Lowry WE, Richter L, Yachechko R et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl Acad. Sci. USA105(8), 2883–2888 (2008).
  • Yu JY, Vodyanik MA, Smuga-Otto K et al. Induced pluripotent stem cell lines derived from human somatic cells. Science318(5858), 1917–1920 (2007).
  • Shao L, Feng W, Sun Y et al. Generation of iPS cells using defined factors linked via the self-cleaving 2A sequences in a single open reading frame. Cell Res.19(3), 296–306 (2009).
  • Carey BW, Markoulaki S, Hanna J et al. Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc. Natl Acad. Sci. USA106(1), 157–162 (2009).
  • Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G. Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells27(3), 543–549 (2009).
  • Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature458(7239), 771–775 (2009).
  • Soldner F, Hockemeyer D, Beard C et al. Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell136(5), 964–977 (2009).
  • Woltjen K, Michael IP, Mohseni P et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature458(7239), 766–770 (2009).
  • Yusa K, Rad R, Takeda J, Bradley A. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat. Methods6(5), 363–369 (2009).
  • Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K. Induced pluripotent stem cells generated without viral integration. Science322(5903), 945–949 (2008).
  • Okita K, Nakagawa M, Hong HJ, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science322(5903), 949–953 (2008).
  • Gonzalez F, Barragan Monasterio M, Tiscornia G et al. Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proc. Natl Acad. Sci. USA106(22), 8918–8922 (2009).
  • Yu J, Hu K, Smuga-Otto K et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science324(5928), 797–801 (2009).
  • Zhou HY, Wu SL, Joo JY et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell4(5), 381–384 (2009).
  • Kim D, Kim CH, Moon JI et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell4(6), 472–476 (2009).
  • Zhao X, Li W, Lv Z et al. iPS cells produce viable mice through tetraploid complementation. Nature461(7260), 86–90 (2009).
  • Maherali N, Hochedlinger K. Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell3(6), 595–605 (2008).
  • O’Malley J, Woltjen K, Kaji K. New strategies to generate induced pluripotent stem cells. Curr. Opin. Biotechnol.20(5), 516–521 (2009).
  • Martins-Taylor K, Xu RH. Determinants of pluripotency: from avian, rodents, to primates. J. Cell Biochem.109(1), 16–25 (2010).
  • Selvaraj V, Plane JM, Williams AJ, Deng WB. Switching cell fate: the remarkable rise of induced pluripotent stem cells and lineage reprogramming technologies. Trends Biotechnol.28(4), 214–223 (2010).
  • Aoi T, Yae K, Nakagawa M et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science321(5889), 699–702 (2008).
  • Miura K, Okada Y, Aoi T et al. Variation in the safety of induced pluripotent stem cell lines. Nat. Biotechnol.27(8), 743–745 (2009).
  • Kim K, Doi A, Wen B et al. Epigenetic memory in induced pluripotent stem cells. Nature467(7313), 285–290 (2010).
  • Polo JM, Liu S, Figueroa ME et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat. Biotechnol.28(8), 848–855 (2010).
  • Chan EM, Ratanasirintrawoot S, Park IH et al. Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat. Biotechnol.27(11), 1033–1037 (2009).
  • Taura D, Noguchi M, Sone M et al. Adipogenic differentiation of human induced pluripotent stem cells: comparison with that of human embryonic stem cells. FEBS Lett.583(6), 1029–1033 (2009).
  • Feng Q, Lu SJ, Klimanskaya I et al. Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells28(4), 704–712 (2010).
  • Marchetto MCN, Yeo GW, Kainohana O, Marsala M, Gage FH, Muotri AR. Transcriptional signature and memory retention of human-induced pluripotent stem cells. Plos One4(9), e7076 (2009).
  • Chin MH, Mason MJ, Xie W et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell5(1), 111–123 (2009).
  • Stadtfeld M, Apostolou E, Akutsu H et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature465(7295), 175–181 (2010).
  • Guenther MG, Frampton GM, Soldner F et al. Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell.7(2), 249–257 (2010).
  • Mann M, Kelleher NL. Precision proteomics: the case for high resolution and high mass accuracy. Proc. Natl Acad. Sci. USA105(47), 18132–18138 (2008).
  • Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R. Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell138(4), 795–806 (2009).
  • de Godoy LM, Olsen JV, Cox J et al. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast. Nature455(7217), 1251–1254 (2008).
  • Motoyama A, Yates JR 3rd. Multidimensional LC separations in shotgun proteomics. Anal. Chem.80(19), 7187–7193 (2008).
  • Ong SE, Mann M. Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol.1(5), 252–262 (2005).
  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol.17(10), 994–999 (1999).
  • Oda Y, Huang K, Cross FR, Cowburn D, Chait BT. Accurate quantitation of protein expression and site-specific phosphorylation. Proc. Natl Acad. Sci. USA96(12), 6591–6596 (1999).
  • Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem.389(4), 1017–1031 (2007).
  • Elliott MH, Smith DS, Parker CE, Borchers C. Current trends in quantitative proteomics. J. Mass Spectrom.44(12), 1637–1660 (2009).
  • Mann M. Functional and quantitative proteomics using SILAC. Nat. Rev. Mol. Cell Biol.7(12), 952–958 (2006).
  • Karp NA, Huber W, Sadowski PG, Charles PD, Hester SV, Lilley KS. Addressing accuracy and precision issues in iTRAQ quantitation. Mol. Cell Proteomics9(9), 1885–1897 (2010).
  • Unwin RD, Smith DL, Blinco D et al. Quantitative proteomics reveals posttranslational control as a regulatory factor in primary hematopoietic stem cells. Blood107(12), 4687–4694 (2006).
  • Graumann J, Hubner NC, Kim JB et al. Stable isotope labeling by amino acids in cell culture (SILAC) and proteome quantitation of mouse embryonic stem cells to a depth of 5,111 proteins. Mol. Cell Proteomics7(4), 672–683 (2008).
  • Van Hoof D, Pinkse MW, Oostwaard DW, Mummery CL, Heck AJ, Krijgsveld J. An experimental correction for arginine-to-proline conversion artifacts in SILAC-based quantitative proteomics. Nat. Methods4(9), 677–678 (2007).
  • Prokhorova TA, Rigbolt KT, Johansen PT et al. Stable isotope labeling by amino acids in cell culture (SILAC) and quantitative comparison of the membrane proteomes of self-renewing and differentiating human embryonic stem cells. Mol. Cell Proteomics8(5), 959–970 (2009).
  • Bendall SC, Hughes C, Stewart MH, Doble B, Bhatia M, Lajoie GA. Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol. Cell Proteomics7(9), 1587–1597 (2008).
  • Choudhary C, Mann M. Decoding signalling networks by mass spectrometry-based proteomics. Nat. Rev. Mol. Cell Biol.11(6), 427–439 (2010).
  • O’Brien RN, Shen Z, Tachikawa K, Lee PJ, Briggs SP. Quantitative proteome analysis of pluripotent cells by iTRAQ mass tagging reveals post-transcriptional regulation of proteins required for ES cell self-renewal. Mol. Cell Proteomics9(10), 2238–2251 (2010).
  • Williamson AJ, Smith DL, Blinco D et al. Quantitative proteomics analysis demonstrates post-transcriptional regulation of embryonic stem cell differentiation to hematopoiesis. Mol. Cell Proteomics7(3), 459–472 (2008).
  • Fathi A, Pakzad M, Taei A et al. Comparative proteome and transcriptome analyses of embryonic stem cells during embryoid body-based differentiation. Proteomics9(21), 4859–4870 (2009).
  • Lu R, Markowetz F, Unwin RD et al. Systems-level dynamic analyses of fate change in murine embryonic stem cells. Nature462(7271), 358–362 (2009).
  • Sampath P, Pritchard DK, Pabon L et al. A hierarchical network controls protein translation during murine embryonic stem cell self-renewal and differentiation. Cell Stem Cell2(5), 448–460 (2008).
  • Baharvand H, Fathi A, Gourabi H, Mollamohammadi S, Salekdeh GH. Identification of mouse embryonic stem cell-associated proteins. J. Proteome Res.7(1), 412–423 (2008).
  • Nasrabadi D, Rezaei Larijani M, Pirhaji L et al. Proteomic analysis of monkey embryonic stem cell during differentiation. J. Proteome Res.8(3), 1527–1539 (2009).
  • Kadota M, Nishigaki R, Wang CC et al. Proteomic signatures and aberrations of mouse embryonic stem cells containing a single human chromosome 21 in neuronal differentiation: an in vitro model of Down syndrome. NeuroScience129(2), 325–335 (2004).
  • Guo X, Ying W, Wan J et al. Proteomic characterization of early-stage differentiation of mouse embryonic stem cells into neural cells induced by all-trans retinoic acid in vitro. Electrophoresis22(14), 3067–3075 (2001).
  • Kurisaki A, Hamazaki TS, Okabayashi K et al. Chromatin-related proteins in pluripotent mouse embryonic stem cells are downregulated after removal of leukemia inhibitory factor. Biochem. Biophys. Res. Commun.335(3), 667–675 (2005).
  • Barthéléry M, Jaishankar A, Salli U, Vrana KE. Reptin52 expression during in vitro neural differentiation of human embryonic stem cells. Neurosci. Lett.452(1), 47–51 (2009).
  • Nasrabadi D, Larijani MR, Fathi A et al. Nuclear proteome analysis of monkey embryonic stem cells during differentiation. Stem Cell Rev.6(1), 50–61 (2010).
  • Van Hoof D, Passier R, Ward-Van Oostwaard D et al. A quest for human and mouse embryonic stem cell-specific proteins. Mol. Cell Proteomics5(7), 1261–1273 (2006).
  • Yocum AK, Gratsch TE, Leff N et al. Coupled global and targeted proteomics of human embryonic stem cells during induced differentiation. Mol. Cell Proteomics7(4), 750–767 (2008).
  • Chaerkady R, Kerr CL, Marimuthu A et al. Temporal analysis of neural differentiation using quantitative proteomics. J. Proteome Res.8(3), 1315–1326 (2009).
  • Wang J, Rao S, Chu J et al. A protein interaction network for pluripotency of embryonic stem cells. Nature444(7117), 364–368 (2006).
  • Allegrucci C, Young LE. Differences between human embryonic stem cell lines. Hum. Reprod. Update13(2), 103–120 (2007).
  • Loring JF, Rao MS. Establishing standards for the characterization of human embryonic stem cell lines. Stem Cells24(1), 145–150 (2006).
  • Rosler ES, Fisk GJ, Ares X et al. Long-term culture of human embryonic stem cells in feeder-free conditions. Dev. Dyn.229(2), 259–274 (2004).
  • Maitra A, Arking DE, Shivapurkar N et al. Genomic alterations in cultured human embryonic stem cells. Nat. Genet.37(10), 1099–1103 (2005).
  • Baharvand H, Fathi A, van Hoof D, Salekdeh GH. Concise review: trends in stem cell proteomics. Stem Cells25(8), 1888–1903 (2007).
  • Odorico JS, Kaufman DS, Thomson JA. Multilineage differentiation from human embryonic stem cell lines. Stem Cells19(3), 193–204 (2001).
  • Villen J, Gygi SP. The SCX/IMAC enrichment approach for global phosphorylation analysis by mass spectrometry. Nat. Protoc.3(10), 1630–1638 (2008).
  • Thingholm TE, Jensen ON, Larsen MR. Analytical strategies for phosphoproteomics. Proteomics9(6), 1451–1468 (2009).
  • Blagoev B, Ong SE, Kratchmarova I, Mann M. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat. Biotechnol.22(9), 1139–1145 (2004).
  • Zhang Y, Wolf-Yadlin A, Ross PL et al. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules. Mol. Cell Proteomics4(9), 1240–1250 (2005).
  • Kruger M, Kratchmarova I, Blagoev B, Tseng YH, Kahn CR, Mann M. Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc. Natl Acad. Sci. USA105(7), 2451–2456 (2008).
  • Olsen JV, Blagoev B, Gnad F et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell127(3), 635–648 (2006).
  • Kratchmarova I, Blagoev B, Haack-Sorensen M, Kassem M, Mann M. Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science308(5727), 1472–1477 (2005).
  • Swaney DL, Wenger CD, Thomson JA, Coon JJ. Human embryonic stem cell phosphoproteome revealed by electron transfer dissociation tandem mass spectrometry. Proc. Natl Acad. Sci. USA106(4), 995–1000 (2009).
  • Brill LM, Xiong W, Lee KB et al. Phosphoproteomic analysis of human embryonic stem cells. Cell Stem Cell5(2), 204–213 (2009).
  • Van Hoof D, Munoz J, Braam SR et al. Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell5(2), 214–226 (2009).
  • Hutchins AP, Robson P. Unraveling the human embryonic stem cell phosphoproteome. Cell Stem Cell5(2), 126–128 (2009).
  • Jorgensen C, Linding R. Simplistic pathways or complex networks? Curr. Opin. Genet. Dev.20(1), 15–22 (2010).
  • Linding R, Jensen LJ, Ostheimer GJ et al. Systematic discovery of in vivo phosphorylation networks. Cell129(7), 1415–1426 (2007).
  • Bakal C, Linding R, Llense F et al. Phosphorylation networks regulating JNK activity in diverse genetic backgrounds. Science322(5900), 453–456 (2008).
  • Meshorer E, Misteli T. Chromatin in pluripotent embryonic stem cells and differentiation. Nat. Rev. Mol. Cell Biol.7(7), 540–546 (2006).
  • Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat. Rev. Genet.9(6), 465–476 (2008).
  • Kouzarides T. Chromatin modifications and their function. Cell128(4), 693–705 (2007).
  • Campos EI, Reinberg D. Histones: annotating chromatin. Annu. Rev. Genet.43, 559–599 (2009).
  • Azuara V, Perry P, Sauer S et al. Chromatin signatures of pluripotent cell lines. Nat. Cell Biol.8(5), 532–538 (2006).
  • Bernstein BE, Mikkelsen TS, Xie XH et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell125(2), 315–326 (2006).
  • Pan GJ, Tian SL, Nie J et al. Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell1(3), 299–312 (2007).
  • Gonzalez R, Jennings LL, Knuth M et al. Screening the mammalian extracellular proteome for regulators of embryonic human stem cell pluripotency. Proc. Natl Acad. Sci. USA107(8), 3552–3557 (2010).
  • Saladi SV, de la Serna IL. ATP dependent chromatin remodeling enzymes in embryonic stem cells. Stem Cell Rev.6(1), 62–73 (2010).
  • Fazzio TG, Huff JT, Panning B. An RNAi screen of chromatin proteins identifies Tip60-p400 as a regulator of embryonic stem cell identity. Cell134(1), 162–174 (2008).
  • Mikkelsen TS, Hanna J, Zhang XL et al. Dissecting direct reprogramming through integrative genomic analysis. Nature454(7200), 49–55 (2008).
  • Brandt WF, Holt C. The determination of the primary structure of histone f3 from chicken erythrocytes by automatic edman degradation. Eur. J. Biochem.46(2), 407–417 (1974).
  • Goldknopf IL, Busch H. Isopeptide linkage between nonhistone and histone-2a polypeptides of chromosomal conjugate-protein-A24. Proc. Natl Acad. Sci. USA74(3), 864–868 (1977).
  • Hunt LT, Dayhoff MO. Amino-terminal sequence identity of ubiquitin and nonhistone component of nuclear protein A24. Biochem. Biophys. Res. Commun.74(2), 650–655 (1977).
  • Collas P. The current state of chromatin immunoprecipitation. Mol. Biotechnol.45(1), 87–100 (2010).
  • Zhao XD, Han X, Chew JL et al. Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell1(3), 286–298 (2007).
  • Fouse SD, Shen Y, Pellegrini M et al. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3K4/K27 trimethylation. Cell Stem Cell2(2), 160–169 (2008).
  • Lister R, Pelizzola M, Dowen RH et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature462(7271), 315–322 (2009).
  • Hawkins R, Hon GC, K. Lee L et al. Distinct epigenomic landscapes of pluripotent and lineage-committed human cells Cell Stem Cell6(5), 479–491 (2010).
  • Jung HR, Pasini D, Helin K, Jensen ON. Quantitative mass spectrometry of histones h3.2 and h3.3 in suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at Lys-27 and Lys-36. Mol. Cell Proteomics9(5), 838–850 (2010).
  • Beck HC, Nielsen EC, Matthiesen R et al. Quantitative proteomic analysis of posttranslational modifications of human histones. Mol. Cell Proteomics5(7), 1314–1325 (2006).
  • Macek B, Waanders LF, Olsen JV, Mann M. Top-down protein sequencing and MS3 on a hybrid linear quadrupole ion trap-orbitrap mass spectrometer. Mol. Cell Proteomics5(5), 949–958 (2006).
  • Zubarev RA, Kelleher NL, McLafferty FW. Electron capture dissociation of multiply charged protein cations. A nonergodic process. J. Am. Chem. Soc.120(13), 3265–3266 (1998).
  • Syka JEP, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF. Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc. Natl Acad. Sci. USA101(26), 9528–9533 (2004).
  • Galasinski SC, Resing KA, Ahn NG. Protein mass analysis of histones. Methods31(1), 3–11 (2003).
  • Medzihradszky KF, Zhang X, Chalkley RJ et al. Characterization of Tetrahymena histone H2B variants and posttranslational populations by electron capture dissociation (ECD) Fourier transform ion cyclotron mass spectrometry (FT-ICR MS). Mol. Cell Proteomics3(9), 872–886 (2004).
  • Pesavento JJ, Bullock CR, Leduc RD, Mizzen CA, Kelleher NL. Combinatorial modification of human histone H4 quantitated by two-dimensional liquid chromatography coupled with top down mass spectrometry. J. Biol. Chem.283(22), 14927–14937 (2008).
  • Phanstiel D, Brumbaugh J, Berggren WT et al. Mass spectrometry identifies and quantifies 74 unique histone H4 isoforms in differentiating human embryonic stem cells. Proc. Natl Acad. Sci. USA105(11), 4093–4098 (2008).
  • Eliuk SM, Maltby D, Panning B, Burlingame AL. High resolution electron transfer dissociation studies of unfractionated intact histones from murine embryonic stem cells using on-line capillary LC separation. Mol. Cell Proteomics9(5), 824–837 (2010).
  • Ho L, Ronan JL, Wu J et al. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc. Natl Acad. Sci. USA106(13), 5181–5186 (2009).
  • Mak AB, Ni Z, Hewel JA et al. A lentiviral functional proteomics approach identifies chromatin remodeling complexes important for the induction of pluripotency. Mol. Cell Proteomics9(5), 811–823 (2010).
  • Cordwell SJ, Thingholm TE. Technologies for plasma membrane proteomics. Proteomics10(4), 611–627 (2010).
  • Ahn SM, Goode RJA, Simpson RJ. Stem cell markers: insights from membrane proteomics? Proteomics8(23–24), 4946–4957 (2008).
  • Durr E, Yu J, Krasinska KM et al. Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat. Biotechnol.22(8), 985–992 (2004).
  • Watarai H, Hinohara A, Nagafune J, Nakayama T, Taniguchi M, Yamaguchi Y. Plasma membrane-focused proteomics: dramatic changes in surface expression during the maturation of human dendritic cells. Proteomics5(15), 4001–4011 (2005).
  • Cao R, Li X, Liu Z et al. Integration of a two-phase partition method into proteomics research on rat liver plasma membrane proteins. J. Proteome Res.5(3), 634–642 (2006).
  • McCarthy FM, Burgess SC, van den Berg BH, Koter MD, Pharr GT. Differential detergent fractionation for non-electrophoretic eukaryote cell proteomics. J. Proteome Res.4(2), 316–324 (2005).
  • Chen R, Jiang X, Sun D et al. Glycoproteomics analysis of human liver tissue by combination of multiple enzyme digestion and hydrazide chemistry. J. Proteome Res.8(2), 651–661 (2009).
  • Zhang H, Li XJ, Martin DB, Aebersold R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat. Biotechnol.21(6), 660–666 (2003).
  • Zhao Y, Zhang W, Kho Y. Proteomic analysis of integral plasma membrane proteins. Anal. Chem.76(7), 1817–1823 (2004).
  • Tan S, Tan HT, Chung MC. Membrane proteins and membrane proteomics. Proteomics8(19), 3924–3932 (2008).
  • Nagano K, Yoshida Y, Isobe T. Cell surface biomarkers of embryonic stem cells. Proteomics8(19), 4025–4035 (2008).
  • Nunomura K, Nagano K, Itagaki C et al. Cell surface labeling and mass spectrometry reveal diversity of cell surface markers and signaling molecules expressed in undifferentiated mouse embryonic stem cells. Mol. Cell Proteomics4(12), 1968–1976 (2005).
  • Foster LJ, Zeemann PA, Li C, Mann M, Jensen ON, Kassem M. Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation. Stem Cells23(9), 1367–1377 (2005).
  • Harkness L, Christiansen H, Nehlin J, Barington T, Andersen JS, Kassem M. Identification of a membrane proteomic signature for human embryonic stem cells independent of culture conditions. Stem Cell Res.1(3), 219–227 (2008).
  • Intoh A, Kurisaki A, Yamanaka Y et al. Proteomic analysis of membrane proteins expressed specifically in pluripotent murine embryonic stem cells. Proteomics9(1), 126–137 (2009).
  • Van Hoof D, Dormeyer W, Braam SR et al. Identification of cell surface proteins for antibody-based selection of human embryonic stem cell-derived cardiomyocytes. J. Proteome Res.9(3), 1610–1618 (2010).
  • Stadtfeld M, Maherali N, Breault DT, Hochedlinger K. Defining molecular cornerstomes during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell.2(3), 230–240 (2008).
  • Wobus AM, Boheler KR. Embryonic stem cells: prospects for developmental biology and cell therapy. Physiol. Rev.85(2), 635–678 (2005).
  • Cowan CA, Klimanskaya I, McMahon J et al. Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med.350(13), 1353–1356 (2004).
  • Huttenhain R, Malmstrom J, Picotti P, Aebersold R. Perspectives of targeted mass spectrometry for protein biomarker verification. Curr. Opin. Chem. Biol.13(5–6), 518–525 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.